Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Brillouin microscopy

Abstract

The field of Brillouin microscopy and imaging was established approximately 20 years ago, thanks to the development of non-scanning high-resolution optical spectrometers. Since then, the field has experienced rapid expansion, incorporating technologies from telecommunications, astrophotonics, multiplexed microscopy, quantum optics and machine learning. Consequently, these advancements have led to much-needed improvements in imaging speed, spectral resolution and sensitivity. The progress in Brillouin microscopy is driven by a strong demand for label-free and contact-free methods to characterize the mechanical properties of biomaterials at the cellular and subcellular scales. Understanding the local biomechanics of cells and tissues has become crucial in predicting cellular fate and tissue pathogenesis. This Primer aims to provide a comprehensive overview of the methods and applications of Brillouin microscopy. It includes key demonstrations of Brillouin microscopy and imaging that can serve as a reference for the existing research community and new adopters of this technology. The article concludes with an outlook, presenting the authors’ vision for future developments in this vibrant field. The Primer also highlights specific examples where Brillouin microscopy can have a transformative impact on biology and biomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of Brillouin light scattering microscopy.
Fig. 2: Length scales of the Brillouin light scattering process.
Fig. 3: Characteristic parameters of Brillouin microscopy experiments.
Fig. 4: Brillouin imaging technology.
Fig. 5: Representative data obtained using Brillouin technology.
Fig. 6: Ballistic and multiple Brillouin scattering processes.
Fig. 7: A typical workflow depicting analysis of Brillouin microscopy data with modern machine learning approaches.
Fig. 8: Application of Brillouin microscopy to ocular disease diagnostics and treatment.

Similar content being viewed by others

References

  1. Wolff, J., Das Gesetz der Transformation der Knochen [German] (Hirschwald, 1892).

  2. Ingber, D. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35, 564–577 (2003).

    Article  Google Scholar 

  3. Keller, R. Physical biology returns to morphogenesis. Science 338, 201–203 (2012).

    Article  ADS  Google Scholar 

  4. Baratchi, S. et al. Molecular sensors of blood flow in endothelial cells. Trends Mol. Med. 23, 850–868 (2017).

    Article  Google Scholar 

  5. Kalli, M. & Stylianopoulos, T. Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Front. Oncol. 8, 55 (2018).

    Article  Google Scholar 

  6. Urbanska, M. et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat. Methods 17, 587–593 (2020).

    Article  Google Scholar 

  7. Arbore, C. et al. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys. Rev. 11, 765–782 (2019).

    Article  Google Scholar 

  8. Wang, H. et al. Recent advances of optical tweezers-based dynamic force spectroscopy and mechanical measurement assays for live-cell mechanobiology. Front. Phys. 10, 1–11 (2022).

    Google Scholar 

  9. Staunton, J. R. et al. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci. Rep. 6, 19686 (2016).

    Article  ADS  Google Scholar 

  10. Benitez, R. & Toca-herrera, J. L. Looking at cell mechanics with atomic force microscopy: experiment and theory. Microsc. Res. Tech. 77, 947–958 (2014).

    Article  Google Scholar 

  11. Li, Y. et al. Ultrahigh-sensitive optical coherence elastography. Light Sci. Appl. 9, 58 (2020).

    Article  ADS  Google Scholar 

  12. Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2, 39–43 (2008).

    Article  ADS  Google Scholar 

  13. Poon, C. et al. Brillouin imaging for studies of micromechanics in biology and biomedicine: from current state-of-the-art to future clinical translation. J. Phys. Photonics 3, 012002 (2021).

    Article  ADS  Google Scholar 

  14. Prevedel, R. et al. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods 16, 969–977 (2019).

    Article  Google Scholar 

  15. Antonacci, G. et al. Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys. Rev. 12, 615–624 (2020).

    Article  Google Scholar 

  16. Matsuda, O. et al. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).

    Article  Google Scholar 

  17. Tomoda, M. et al. Time-domain Brillouin imaging of sound velocity and refractive index using automated angle scanning. Photoacoustics 31, 100486 (2023).

    Article  Google Scholar 

  18. Gusev, V. & Ruello P. Advances in applications of time-domain Brillouin scattering for nanoscale imaging. Appl. Phys. Rev. 5, 031101 (2018).

    Article  ADS  Google Scholar 

  19. Conrad, C. et al. Mechanical characterization of 3D ovarian cancer nodules using Brillouin confocal microscopy. Cell. Mol. Bioeng. 12, 215–226 (2019).

    Article  Google Scholar 

  20. Bevilacqua, C. et al. Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy. Biomed. Opt. Express 10, 1420–1431 (2019).

    Article  Google Scholar 

  21. Scarcelli, G. et al. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 133, 480–482 (2015).

    Article  Google Scholar 

  22. Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

    Article  Google Scholar 

  23. Fiore, A., Bevilacqua, C. & Scarcelli, G. Direct three-dimensional measurement of refractive index via dual photon-phonon scattering. Phys. Rev. Lett. 122, 103901 (2019).

    Article  ADS  Google Scholar 

  24. Chan, C. J., Bevilacqua, C. & Prevedel, R. Mechanical mapping of mammalian follicle development using Brillouin microscopy. Commun. Biol. 4, 1133 (2021).

    Article  Google Scholar 

  25. Palombo, F. et al. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J. Royal Soc. Interface 11, 20140739 (2014).

    Article  Google Scholar 

  26. Bottani, C. E. & Fioretto, D. Brillouin scattering of phonons in complex materials. Adv. Phys.: X 3, 1467281 (2018).

    Google Scholar 

  27. Merklein, M. et al. 100 years of Brillouin scattering: historical and future perspectives. Appl. Phys. Rev. 9, 041306 (2022).

    Article  ADS  Google Scholar 

  28. Kim, M. et al. Shear Brillouin light scattering microscope. Opt. Express 24, 319–328 (2016).

    Article  ADS  Google Scholar 

  29. Fioretto, D. et al. Cauchy relation in relaxing liquids. J. Chem. Phys. 128, 214502 (2008).

    Article  ADS  Google Scholar 

  30. Cusack, S. & Miller, A. Determination of the elastic constants of collagen by Brillouin light scattering. J. Mol. Biol. 135, 39–51 (1979).

    Article  Google Scholar 

  31. Koski, K. J. et al. Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262–267 (2013).

    Article  ADS  Google Scholar 

  32. Remer, I. et al. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods 17, 913–916 (2020).

    Article  Google Scholar 

  33. Ballmann, C. W. et al. Stimulated Brillouin scattering microscopic imaging. Sci. Rep. 5, 18139 (2015).

    Article  ADS  Google Scholar 

  34. Mock, R., Hillebrands, B. & Sandercock, R. Construction and performance of a Brillouin scattering set-up using a triple-pass tandem Fabry–Perot interferometer. J. Phys. E Sci. Instruments 20, 656 (1987).

    Article  ADS  Google Scholar 

  35. Shirasaki, M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 21, 366–368 (1996).

    Article  ADS  Google Scholar 

  36. Alunni Cardinali, M. et al. Brillouin–Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. J. R. Soc. Interface 19, 20210642 (2022).

    Article  Google Scholar 

  37. Bevilacqua, C. et al. High-resolution line-scan Brillouin microscopy for live imaging of mechanical properties during embryo development. Nat. Methods 20, 755–760 (2023).

    Article  Google Scholar 

  38. Margueritat, J. et al. High-frequency mechanical properties of tumors measured by Brillouin light scattering. Phys. Rev. Lett. 122, 018101 (2019).

    Article  ADS  Google Scholar 

  39. Zhang, J. et al. Rapid biomechanical imaging at low irradiation level via dual line-scanning Brillouin microscopy. Nat. Methods 20, 677–681 (2023).

    Article  Google Scholar 

  40. Mahajan, V. et al. Mapping tumor spheroid mechanics in dependence of 3D microenvironment stiffness and degradability by Brillouin microscopy. Cancers 13, 5549 (2021).

    Article  Google Scholar 

  41. Karampatzakis, A. et al. Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging. NPJ Biofilms Microbiomes 3, 20 (2017).

    Article  Google Scholar 

  42. Zhang, J. et al. Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. Small 16, 1907688 (2020).

    Article  Google Scholar 

  43. Bacete, L. et al. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 119, e2119258119 (2022).

    Article  Google Scholar 

  44. Antonacci, G. et al. Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS. Commun. Biol. 1, 139 (2018).

    Article  Google Scholar 

  45. Fasciani, A. et al. MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat. Genet. 52, 1397–1411 (2020).

    Article  Google Scholar 

  46. Schlüßler, R. et al. Correlative all-optical quantification of mass density and mechanics of subcellular compartments with fluorescence specificity. eLife 11, e68490 (2022).

    Article  Google Scholar 

  47. Shao, P. et al. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci. Rep. 9, 7467 (2019).

    Article  ADS  Google Scholar 

  48. Kennedy, B. F., Wijesinghe, P. & Sampson, D. D. The emergence of optical elastography in biomedicine. Nat. Photonics 11, 215–221 (2017).

    Article  ADS  Google Scholar 

  49. Olie, C. S. et al. Cytoskeletal disorganization underlies PABPN1-mediated myogenic disability. Sci. Rep. 10, 17621 (2020).

    Article  ADS  Google Scholar 

  50. Frittoli, E. et al. Tissue fluidification promotes a cGAS–STING cytosolic DNA response in invasive breast cancer. Nat. Mater. 22, 644–655 (2022).

    Article  ADS  Google Scholar 

  51. Pukhlyakova, E. et al. β-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc. Natl Acad. Sci. USA 115, 6231–6236 (2018).

    Article  ADS  Google Scholar 

  52. Schlüßler, R. et al. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging. Biophys. J. 115, 911–923 (2018).

    Article  ADS  Google Scholar 

  53. Bailey, M. et al. Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: a probe of tissue micromechanics. Sci. Adv. 6, eabc1937 (2020).

    Article  ADS  Google Scholar 

  54. Polonchuk, L. et al. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication 13, 045009 (2021).

    Article  Google Scholar 

  55. Pagano, S. et al. Bio-mechanical characterization of a CAD/CAM PMMA resin for digital removable prostheses. Dental Mater. 37, e118–e130 (2021).

    Article  Google Scholar 

  56. Lainović, T. et al. Micromechanical imaging of dentin with Brillouin microscopy. Acta Biomaterialia 105, 214–222 (2020).

    Article  Google Scholar 

  57. Mahmodi, H. et al. Mechanical mapping of bioprinted hydrogel models by Brillouin microscopy. Bioprinting 23, e00151 (2021).

    Article  Google Scholar 

  58. Mattarelli, M., Vassalli, M. & Caponi, S. Relevant length scales in Brillouin imaging of biomaterials: the interplay between phonons propagation and light focalization. ACS Photonics 7, 2319–2328 (2020).

    Article  Google Scholar 

  59. Passeri, A. A. et al. Size and environment: the effect of phonon localization on micro-Brillouin imaging. Biomater. Adv. 147, 213341 (2023).

    Article  Google Scholar 

  60. Caponi, S., Fioretto, D. & Mattarelli, M. On the actual spatial resolution of Brillouin imaging. Opt. Lett. 45, 1063–1066 (2020).

    Article  ADS  Google Scholar 

  61. Mattarelli, M. et al. Vibration spectroscopy of weakly interacting mesoscopic colloids. Soft Matter 8, 4235–4243 (2012).

    Article  ADS  Google Scholar 

  62. Still, T. et al. Eigenvibrations of submicrometer colloidal spheres. J. Phys. Chem. Lett. 1, 2440–2444 (2010).

    Article  Google Scholar 

  63. Gomopoulos, N. et al. Out-of-plane longitudinal elastic modulus of supported polymer thin films. Macromolecules 42, 7164–7167 (2009).

    Article  ADS  Google Scholar 

  64. Kabakova, I., Scarcelli, G. & Yun, S.-H. in Semiconductors and Semimetals Ch. 15 (eds Eggleton, B. J., Steel, M. J. & Poulton, C. G.) 313–348 (Elsevier, 2022).

  65. Remer, I. & Bilenca, A. High-speed stimulated Brillouin scattering spectroscopy at 780 nm. APL Photonics 1, 061301 (2016).

    Article  ADS  Google Scholar 

  66. Shaashoua, R. et al. Brillouin gain microscopy. Preprint at https://doi.org/10.48550/arXiv.2306.00889 (2023).

  67. Chow, D. M. & Yun, S.-H. Pulsed stimulated Brillouin microscopy. Opt. Express 31, 19818–19827 (2023).

    Article  Google Scholar 

  68. Lindsay, S., Anderson, M. & Sandercock, J. Construction and alignment of a high performance multipass vernier tandem Fabry–Perot interferometer. Rev. Sci. Instrum. 52, 1478–1486 (1981).

    Article  ADS  Google Scholar 

  69. Dil, J. G. Brillouin scattering in condensed matter. Rep. Prog. Phys. 45, 285–334 (1982).

    Article  ADS  Google Scholar 

  70. Hickman, G. D. et al. Aircraft laser sensing of sound velocity in water: Brillouin scattering. Remote sensing Environ. 36, 165–178 (1991).

    Article  ADS  Google Scholar 

  71. Harley, R. et al. Phonons and the elastic moduli of collagen and muscle. Nature 267, 285–287 (1977).

    Article  ADS  Google Scholar 

  72. Randall, J. T. & Vaughan, J. M. Brillouin scattering in systems of biological significance. Philos. Trans. Royal Soc. Lond. Series A, Math. Phys. Sci. 293, 341–348 (1979).

    ADS  Google Scholar 

  73. Rad, M. A. et al. Micromechanical characterisation of 3D bioprinted neural cell models using Brillouin microspectroscopy. Bioprinting 25, e00179 (2022).

    Article  Google Scholar 

  74. Vaughan, J. & Randall, J. Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 284, 489–491 (1980).

    Article  ADS  Google Scholar 

  75. Randall, J. & Vaughan, J. The measurement and interpretation of Brillouin scattering in the lens of the eye. Proc. Royal Soc. Lond. B: Biol. Sci. 214, 449–470 (1982).

    Article  ADS  Google Scholar 

  76. Mercatelli, R. et al. Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies. Commun. Biol. 2, 117 (2019).

    Article  Google Scholar 

  77. Lee, S. et al. A Brillouin scattering study of the hydration of Li‐ and Na‐DNA films. Biopolymers: Original Res. Biomolecules 26, 1637–1665 (1987).

    Article  Google Scholar 

  78. Scarponi, F. et al. High-performance versatile setup for simultaneous Brillouin–Raman microspectroscopy. Phys. Rev. X 7, 031015 (2017).

    Google Scholar 

  79. Itoh, S.-I., Yamana, T. & Kojima, S. Quick measurement of Brillouin spectra of glass-forming material trimethylene glycol by angular dispersion-type Fabry–Perot interferometer system. Japanese J.Appl. Phys. 35, 2879 (1996).

    Article  ADS  Google Scholar 

  80. Cardinali, M. A. et al. Mechano-chemistry of human femoral diaphysis revealed by correlative Brillouin–Raman microspectroscopy. Sci. Rep. 10, 17341 (2020).

    Article  ADS  Google Scholar 

  81. Cardinali, M. A. et al. Brillouin micro-spectroscopy of subchondral, trabecular bone and articular cartilage of the human femoral head. Biomed. Opt. Express 10, 2606–2611 (2019).

    Article  Google Scholar 

  82. Koski, K. J. & Yarger, J. L. Brillouin imaging. Appl. Phys. Lett. 87, 061903 (2005).

    Article  ADS  Google Scholar 

  83. Scarcelli, G. & Yun, S. H. Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy. Opt. Express 19, 10913–10922 (2011).

    Article  ADS  Google Scholar 

  84. Berghaus, K. V., Yun, S. H. & Scarcelli, G. High speed sub-GHz spectrometer for Brillouin scattering analysis. J. Vis. Exp. 106, e53468 (2015).

    Google Scholar 

  85. Antonacci, G. et al. Elastic suppression in Brillouin imaging by destructive interference. Appl. Phys. Lett. 107, 061102 (2015).

    Article  ADS  Google Scholar 

  86. Fiore, A. et al. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media. Appl. Phys. Lett. 108, 203701 (2016).

    Article  ADS  Google Scholar 

  87. Edrei, E., Gather, M. C. & Scarcelli, G. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. Opt. Express 25, 6895–6903 (2017).

    Article  ADS  Google Scholar 

  88. Nikolić, M. & Scarcelli, G. Long-term Brillouin imaging of live cells with reduced absorption-mediated damage at 660 nm wavelength. Biomed. Optics Exp. 10, 1567–1580 (2019).

    Article  Google Scholar 

  89. Raghunathan, R. et al. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography. J. Biomed. Opt. 22, 086013 (2017).

    Article  ADS  Google Scholar 

  90. Zhang, J. et al. Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography. Birth Defects Res. 111, 991–998 (2018).

    Article  ADS  Google Scholar 

  91. Huisken, J. et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article  ADS  Google Scholar 

  92. Stelzer, E. H. et al. Light sheet fluorescence microscopy. Nat. Rev. Methods Primers 1, 73 (2021).

    Article  Google Scholar 

  93. Zhang, J. et al. Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci. Rep. 6, 35398 (2016).

    Article  ADS  Google Scholar 

  94. Remer, I., Cohen, L. & Bilenca, A. High-speed continuous-wave stimulated Brillouin scattering spectrometer for material analysis. J. Vis. Exp. 127, e55527 (2017).

    Google Scholar 

  95. Faris, G. W., Jusinski, L. E. & Hickman, A. P. High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals. J. Opt. Soc. Am. B 10, 587–599 (1993).

    Article  ADS  Google Scholar 

  96. Ratanaphruks, K., Tandy Grubbs, W. & MacPhail, R. A. cw stimulated Brillouin gain spectroscopy of liquids. Chem. Phys. Lett. 182, 371–378 (1991).

    Article  ADS  Google Scholar 

  97. Taylor, M. A. et al. Heterodyne Brillouin microscopy for biomechanical imaging. Biomed. Opt. Exp. 12, 6259–6268 (2021).

    Article  Google Scholar 

  98. Shaashoua, R. et al. Enhancing biomechanical stimulated Brillouin scattering imaging with physics-driven model selection. Preprint at https://doi.org/10.48550/arXiv.2306.00910 (2023).

  99. Shaashoua, R. & Bilenca, A. Aperture-induced spectral effects in stimulated Brillouin scattering microscopy. Appl. Phys. Lett. 122, 143702 (2023).

    Article  ADS  Google Scholar 

  100. Li, T. et al. Quantum-enhanced stimulated Brillouin scattering spectroscopy and imaging. Optica 9, 959–964 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  101. Yang, F. et al. Pulsed stimulated Brillouin microscopy enables high-sensitivity mechanical imaging of live and fragile biological specimens. Nat. Methods 20, 1971–1979 (2023).

    Article  Google Scholar 

  102. Ballmann, C. W. et al. Impulsive Brillouin microscopy. Optica 4, 124–128 (2017).

    Article  ADS  Google Scholar 

  103. Li, J. et al. High-speed non-contact measurement of elasto-optic coefficient via laser-induced phonons. Appl. Phys. Lett. 121, 251102 (2022).

    Article  ADS  Google Scholar 

  104. Krug, B. et al. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography. Opt. Express 30, 4748–4758 (2022).

    Article  ADS  Google Scholar 

  105. Krug, B., Koukourakis, N. & Czarske, J. W. Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels. Opt. Express 27, 26910–26923 (2019).

    Article  ADS  Google Scholar 

  106. Maznev, A. A., Nelson, K. A. & Rogers, J. A. Optical heterodyne detection of laser-induced gratings. Opt. Lett. 23, 1319–1321 (1998).

    Article  ADS  Google Scholar 

  107. Kinoshita, S. et al. New high‐resolution phonon spectroscopy using impulsive stimulated Brillouin scattering. Rev. Sci. Instrum. 64, 3384–3393 (1993).

    Article  ADS  Google Scholar 

  108. Nelson, K. A. & Fayer, M. D. Laser induced phonons: a probe of intermolecular interactions in molecular solids. J. Chem. Phys. 72, 5202–5218 (2008).

    Article  ADS  Google Scholar 

  109. Erdogan, T. & Mizrahi, V. Thin-film filters come of age. Photonics Spectra 37, 94–100 (2003).

    Google Scholar 

  110. Meng, Z., Traverso, A. J. & Yakovlev, V. V. Background clean-up in Brillouin microspectroscopy of scattering medium. Opt. Express 22, 5410–5415 (2014).

    Article  ADS  Google Scholar 

  111. Lepert, G. et al. Assessing corneal biomechanics with Brillouin spectro-microscopy. Faraday Discuss 187, 415–428 (2016).

    Article  ADS  Google Scholar 

  112. Berghaus, K. et al. High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion. Opt. Lett. 40, 4436–4439 (2015).

    Article  ADS  Google Scholar 

  113. Correa, N. et al. Image analysis applied to Brillouin images of tissue-mimicking collagen gelatins. Biomed. Opt. Express 10, 1329–1338 (2019).

    Article  Google Scholar 

  114. Hauck, N. et al. PNIPAAm microgels with defined network architecture as temperature sensors in optical stretchers. Mater. Adv. 3, 6179–6190 (2022).

    Article  Google Scholar 

  115. Girardo, S. et al. Standardized microgel beads as elastic cell mechanical probes. J. Mater. Chem. B 6, 6245–6261 (2018).

    Article  Google Scholar 

  116. Hauck, N. et al. Droplet-assisted microfluidic fabrication and characterization of multifunctional polysaccharide microgels formed by multicomponent reactions. Polymers 10, 1055 (2018).

    Article  Google Scholar 

  117. Wu, P.-J. et al. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat. Methods 15, 561–562 (2018).

    Article  Google Scholar 

  118. Zhao & Vanderwal, J. J. Brillouin scattering study of gelatin gel. Polym. Gels Netw. 5, 23–36 (1997).

    Article  Google Scholar 

  119. Johnson, D. L. Elastodynamics of gels. J. Chem. Phys. 77, 1531–1539 (1982).

    Article  ADS  Google Scholar 

  120. Scarcelli, G. & Yun, S. H. Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’. Nat. Methods 15, 562–563 (2018).

    Article  Google Scholar 

  121. Shao, P. et al. Effects of corneal hydration on Brillouin microscopy in vivo. Invest. Ophthalmol. Vis. Sci. 59, 3020–3027 (2018).

    Article  Google Scholar 

  122. Scarcelli, G. et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest. Ophthalmol. Vis. Sci. 54, 1418–1425 (2013).

    Article  Google Scholar 

  123. Scarcelli, G., Kim & Yun, S. H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys. J. 101, 1539–1545 (2011).

    Article  ADS  Google Scholar 

  124. Scarcelli, G., Pineda, R. & Yun, S. H. Brillouin optical microscopy for corneal biomechanics. Invest. Ophthalmol. Vis. Sci. 53, 185–190 (2012).

    Article  Google Scholar 

  125. Gouveia, R. M. et al. Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nat. Commun. 10, 1496 (2019).

    Article  ADS  Google Scholar 

  126. Weber, I. P. et al. The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy. Phys. Biol. 14, 065006 (2017).

    Article  ADS  Google Scholar 

  127. Amini, R. et al. Amoeboid-like migration ensures correct horizontal cell layer formation in the developing vertebrate retina. eLife 11, e76408 (2022).

    Article  Google Scholar 

  128. Soans, K. G. et al. Collective cell migration during optic cup formation features changing cell–matrix interactions linked to matrix topology. Curr. Biol. 32, 4817–4831.e9 (2022).

    Article  Google Scholar 

  129. Sánchez-Iranzo, H. et al. A 3D Brillouin microscopy dataset of the in-vivo zebrafish eye. Data Brief 30, 105427 (2020).

    Article  Google Scholar 

  130. Ryu, S. et al. Label-free histological imaging of tissues using Brillouin light scattering contrast. Biomed. Opt. Express 12, 1437–1448 (2021).

    Article  ADS  Google Scholar 

  131. Riquelme-Guzmán, C. et al. In vivo assessment of mechanical properties during axolotl development and regeneration using confocal Brillouin microscopy. Open Biol. 12, 220078 (2022).

    Article  Google Scholar 

  132. Zhang, H. et al. Motion tracking Brillouin microscopy evaluation of normal, keratoconic, and post-laser vision correction corneas. Am. J. Ophthalmol. 254, 128–140 (2023).

    Article  Google Scholar 

  133. Zhang, J. & Scarcelli, G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat. Protocols 16, 1251–1275 (2021).

    Article  Google Scholar 

  134. Webb, J. N. et al. Detecting mechanical anisotropy of the cornea using Brillouin microscopy. Transl. Vis. Science Technol. 9, 26–26 (2020).

    Article  Google Scholar 

  135. Eltony, A. M., Shao, P. & Yun, S. H. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Nat. Commun 13, 1354 (2022).

    Article  ADS  Google Scholar 

  136. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  Google Scholar 

  137. Nikolić, M., Scarcelli, G. & Tanner, K. Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophys. J. 121, 3586–3599 (2022).

    Article  ADS  Google Scholar 

  138. Bakhshandeh, S. et al. Optical quantification of intracellular mass density and cell mechanics in 3D mechanical confinement. Soft Matter 17, 853–862 (2021).

    Article  ADS  Google Scholar 

  139. Mattana, S. et al. Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques. Light Sci. Appl. 7, 17139–17139 (2018).

    Article  Google Scholar 

  140. Barer, R. Interference microscopy and mass determination. Nature 169, 366–367 (1952).

    Article  ADS  Google Scholar 

  141. Kim, K. et al. Diffraction optical tomography using a quantitative phase imaging unit. Opt. Lett. 39, 6935–6938 (2014).

    Article  ADS  Google Scholar 

  142. Montrose, C. J., Solovyev, V. A. & Litovitz, T. A. Brillouin scattering and relaxation in liquids. J Acoust. Soc. Am. 43, 117–130 (2005).

    Article  Google Scholar 

  143. Antonacci, G. et al. Spectral broadening in Brillouin imaging. Appl. Phys. Lett. 103, 221105 (2013).

    Article  ADS  Google Scholar 

  144. Mattarelli, M. et al. Disentanglement of multiple scattering contribution in Brillouin microscopy. ACS Photonics 9, 2087–2091 (2022).

    Article  Google Scholar 

  145. Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom. Intell. Lab. Syst. 117, 100–114 (2012).

    Article  Google Scholar 

  146. Xiang, Y. et al. Multivariate analysis of Brillouin imaging data by supervised and unsupervised learning. J. Biophotonics 14, e202000508 (2021).

    Article  Google Scholar 

  147. Xiang, Y., Foreman, M. R. & Torok, P. SNR enhancement in Brillouin microspectroscopy using spectrum reconstruction. Biomed. Opt. Express 11, 1020–1031 (2020).

    Article  Google Scholar 

  148. Li, J. et al. Sensitive impulsive stimulated Brillouin spectroscopy by an adaptive noise-suppression matrix pencil. Opt. Express 30, 29598–29610 (2022).

    Article  ADS  Google Scholar 

  149. Torok, P. & Foreman, M. R. Precision and informational limits in inelastic optical spectroscopy. Sci. Rep. 9, 6140 (2019).

    Article  ADS  Google Scholar 

  150. Antonacci, G. et al. Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. J. R. Soc. Interface 12, 20150843 (2015).

    Article  Google Scholar 

  151. Elsayad, K. Spectral phasor analysis for Brillouin microspectroscopy. Front. Phys. 7, 62 (2019).

    Article  Google Scholar 

  152. Fioretto, D., Caponi, S. & Palombo, F. Brillouin–Raman mapping of natural fibers with spectral moment analysis. Biomed. Opt. Express 10, 1469–1474 (2019).

    Article  Google Scholar 

  153. Jun, L. et al. Minimum volume simplex analysis: a fast algorithm for linear hyperspectral unmixing. IEEE Trans. Geosci. Remote Sensing 53, 5067–5082 (2015).

    Article  Google Scholar 

  154. Palombo, F. et al. Hyperspectral analysis applied to micro-Brillouin maps of amyloid-β plaques in Alzheimer’s disease brains. Analyst 143, 6095–6102 (2018).

    Article  ADS  Google Scholar 

  155. Bradbury, P. et al. Timothy grass pollen induces spatial reorganisation of F-actin and loss of junctional integrity in respiratory cells. Inflammation 45, 1209–1223 (2022).

    Article  Google Scholar 

  156. Krafft, C. et al. Disease recognition by infrared and Raman spectroscopy. J. Biophotonics 2, 13–28 (2009).

    Article  Google Scholar 

  157. Bao, G. & Suresh, S. Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003).

    Article  ADS  Google Scholar 

  158. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  ADS  Google Scholar 

  159. Janmey, P. A. & McCulloch, C. A. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9, 1–34 (2007).

    Article  Google Scholar 

  160. Bershadsky, A., Kozlov, M. & Geiger, B. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr. Opin. Cell Biol. 18, 472–481 (2006).

    Article  Google Scholar 

  161. Hu, S. H. et al. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am. J. Physiol. Cell Physiol. 285, C1082–C1090 (2003).

    Article  Google Scholar 

  162. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    Article  Google Scholar 

  163. Antonacci, G. & Braakman, S. Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci. Rep. 6, 37217 (2016).

    Article  ADS  Google Scholar 

  164. Coppola, S. et al. Quantifying cellular forces and biomechanical properties by correlative micropillar traction force and Brillouin microscopy. Biomed. Opt. Express 10, 2202–2212 (2019).

    Article  Google Scholar 

  165. Elsayad, K. et al. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Sci. Signal. 9, rs5 (2016).

    Article  Google Scholar 

  166. Zhang, J. et al. Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus. Lab Chip 17, 663–670 (2017).

    Article  Google Scholar 

  167. Abuhattum, S. et al. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci. Rep. 12, 10325 (2022).

    Article  ADS  Google Scholar 

  168. Krachmer, J. H., Feder, R. S. & Belin, M. W. Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 28, 293–322 (1984).

    Article  Google Scholar 

  169. Jun, A. S. et al. Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS ONE 6, e16437 (2011).

    Article  ADS  Google Scholar 

  170. Rabinowitz, Y. Ectasia after laser in situ keratomileusis. Curr. Opin. Ophthalmol. 17, 421–427 (2006).

    Article  Google Scholar 

  171. Binder, P. S. et al. Keratoconus and corneal ectasia after LASIK. J. Refract. Surg. 21, 749–752 (2005).

    Article  Google Scholar 

  172. Roy, A. S. & Dupps, W. J. Jr Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest. Ophthalmol. Vis. Sci. 52, 9174–9187 (2012).

    Google Scholar 

  173. Meek, K. et al. Changes in collagen orientation and distribution in keratoconus corneas. Invest. ophthalmol. Vis. Sci. 46, 1948–2004 (2005).

    Article  Google Scholar 

  174. Morishige, N. et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest. Ophthalmol. Vis. Sci. 48, 1087–1181 (2007).

    Article  Google Scholar 

  175. Zimmermann, D. R. et al. Comparative studies of collagens in normal and keratoconus corneas. Exp. Eye Res. 46, 431–442 (1988).

    Article  Google Scholar 

  176. Petsche, S. J. & Pinsky, P. M. The role of 3-D collagen organization in stromal elasticity: a model based on X-ray diffraction data and second harmonic-generated images. Biomech. Model. Mechanobiol. 12, 1101–1113 (2014).

    Article  Google Scholar 

  177. Zhang, H. et al. Motion-tracking Brillouin microscopy for in-vivo corneal biomechanics mapping. Biomed. Opt. Express 13, 6196–6210 (2022).

    Article  Google Scholar 

  178. Ambekar, Y. et al. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy. Biomed. Opt. Express 11, 2041–2051 (2020).

    Article  Google Scholar 

  179. Besner, S. et al. In vivo Brillouin analysis of the aging crystalline lens. Invest. Ophthalmol. Vis. Sci. 57, 5093–5100 (2016).

    Article  Google Scholar 

  180. Liu, W. & Wang, Z. Current understanding of the biomechanics of ventricular tissues in heart failure. Bioengineering 7, 2 (2020).

    Article  Google Scholar 

  181. Villalba-Orero, M. et al. Assessment of myocardial viscoelasticity with Brillouin spectroscopy in myocardial infarction and aortic stenosis models. Sci. Rep. 11, 21369 (2021).

    Article  ADS  Google Scholar 

  182. Libby, P. Mechanisms of acute coronary syndromes. N. Engl. J. Med. 369, 883–884 (2013).

    Google Scholar 

  183. VIRMANI, R. et al. Pathology of the thin-cap fibroatheroma. J. Interv. Cardiol. 16, 267–272 (2003).

    Article  Google Scholar 

  184. Mathieu, V. et al. Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant. J. Biomech. Eng. 133, 021006 (2011).

    Article  Google Scholar 

  185. Matsukawa, M. et al. Application of a micro-Brillouin scattering technique to characterize bone in the GHz range. Ultrasonics 54, 1155–1161 (2014).

    Article  Google Scholar 

  186. Akilbekova, D. et al. Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones. J. Biomed. Opt. 23, 097004 (2018).

    Article  ADS  Google Scholar 

  187. Wu, P.-J. et al. Detection of proteoglycan loss from articular cartilage using Brillouin microscopy, with applications to osteoarthritis. Biomed. Opt. Express 10, 2457–2466 (2019).

    Article  Google Scholar 

  188. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article  ADS  Google Scholar 

  189. Cross, S. E. et al. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783 (2007).

    Article  ADS  Google Scholar 

  190. Soteriou, D. et al. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat. Biomed. Eng. 7, 1392–1403 (2023).

    Article  Google Scholar 

  191. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).

    Article  ADS  Google Scholar 

  192. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

    Article  Google Scholar 

  193. Gensbittel, V. et al. Mechanical adaptability of tumor cells in metastasis. Dev. Cell 56, 164–179 (2021).

    Article  Google Scholar 

  194. Roberts, A. B. et al. Tumor cell nuclei soften during transendothelial migration. J. Biomech. 121, 110400 (2021).

    Article  Google Scholar 

  195. Cao, X. et al. A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys. J. 111, 1541–1552 (2016).

    Article  ADS  Google Scholar 

  196. Conrad, C. et al. Mechanical modulation of tumor nodules under flow. IEEE Trans. Biomed. Eng. 69, 294–301 (2021).

    Article  Google Scholar 

  197. Wisniewski, E. et al. Dorsoventral polarity directs cell responses to migration track geometries. Sci. Adv. 6, eaba6505 (2020).

    Article  ADS  Google Scholar 

  198. Koehl, M. A. R. Biomechanical approaches to morphogenesis. Seminars in Developmental Biology 1, 367–378 (1990).

    Google Scholar 

  199. Miller, C. J. & Davidson, L. A. The interplay between cell signalling and mechanics in developmental processes. Nat. Rev. Genet. 14, 733–744 (2013).

    Article  Google Scholar 

  200. Heer, N. C. & Martin, A. C. Tension, contraction and tissue morphogenesis. Development 144, 4249–4260 (2017).

    Article  Google Scholar 

  201. Handler, C., Scarcelli, G. & Zhang, J. Time-lapse mechanical imaging of neural tube closure in live embryo using Brillouin microscopy. Sci. Rep. 13, 263 (2023).

    Article  ADS  Google Scholar 

  202. Viola, J. M. et al. Tubule jamming in the developing kidney creates cyclical mechanical stresses instructive to in vitro nephron formation. Preprint at bioRxiv https://doi.org/10.1101/2022.06.03.494718 (2022).

  203. Ambekar, Y. S. et al. Multimodal imaging system combining optical coherence tomography and Brillouin microscopy for neural tube imaging. Opt. Lett. 47, 1347–1350 (2022).

    Article  ADS  Google Scholar 

  204. Sun, W. et al. The bioprinting roadmap. Biofabrication 12, 022002 (2020).

    Article  ADS  Google Scholar 

  205. Vedadghavami, A. et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomaterialia 62, 42–63 (2017).

    Article  Google Scholar 

  206. Xiang, Y. et al. Background-free fibre optic Brillouin probe for remote mapping of micromechanics. Biomed. Opt. Express 11, 6687–6698 (2020).

    Article  Google Scholar 

  207. Antonacci, G., Elsayad, K. & Polli, D. On-Chip notch filter on a silicon nitride ring resonator for Brillouin spectroscopy. ACS Photonics 9, 772–777 (2022).

    Article  Google Scholar 

  208. Randleman, J. B. et al. Subclinical keratoconus detection and characterization using motion tracking Brillouin microscopy. Ophthalmology https://doi.org/10.1016/j.ophtha.2023.10.011 (2023).

    Article  Google Scholar 

  209. Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018).

    Article  Google Scholar 

  210. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Schlüßler, S. Möllmert, K. Kim, T. Beck, J. Czarske, K. Elsayad, R. Prevedel, G. Antonacci, P. Török, F. Palombo, M. Mattarelli and T. Dehoux for many stimulating discussions. I.K. is supported by the Australian Research Council Centre of Excellence in Optical Microcombs for Breakthrough Science (CE230100006) and the Australian Research Council Centre of Excellence in Quantum Biotechnology (CE230100021). J.Z. is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH) (K25HD097288, R21HD112663). G.S is supported by the National Science Foundation (DBI-1942003) and NIH (R21CA258008, R01EY028666, R01EY030063). A.B. acknowledges the support of the Israel Science Foundation (grant no. 2576/21). S.C. is supported by European Union — NextGenerationEU under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem grant ECS00000041 — VITALITY — CUP B43C22000470005 and PRIN 2022 PNRR P2022RH4HH.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (I.K. and S.C.); Experimentation (all authors); Results (all authors); Applications (I.K., J.Z., J.G. and G.S.); Reproducibility and data deposition (J.Z., S.C. and I.K.); Limitations and optimizations (J.G., G.S. and S.C.); Outlook (J.G.); Overview of the Primer (all authors).

Corresponding author

Correspondence to Irina Kabakova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Giuseppe Antonacci, Robert Prevedel, Seok Hyun Yun and Vladislav V. Yakovlev for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bio-Brillouin Society: https://www.biobrillouin.org/

Supplementary information

Glossary

Abbe diffraction limit

This determines the size of the spot to which the light can be focused based on the law of diffraction. It is approximately proportional to half of the light wavelength, setting the lower limit to the resolution of a classical optical system.

Beat signal

The wave pattern formed via interference of two waves with slightly different frequencies.

Bragg angle

The angle between the incident light beam and the diffracting grating plane.

Brillouin frequency shift

(BFS). The frequency shift that a light wave experiences undergoing Brillouin scattering process.

Elasticity tensor

A fourth-rank tensor describing the stress–strain relation in a linear elastic material. Most materials can be described as linear elastic under small deformation approximation.

Etalon

A device consisting of two reflecting glass plates, employed for measuring the light spectrum.

Longitudinal modulus

The ratio of axial stress to axial strain under confined uniaxial deformation (the object allowed to deform along one axis only, with possible changes in volume).

Matrix pencil method

A computational technique based on diagonal matrices, particularly useful to estimate parameters of complex exponential signals buried in noise.

Mechanotransduction

The conversion of an external mechanical signal into intracellular biochemical signals.

Micromechanical properties

The elastic and viscous properties of materials at the microscale.

Rayleigh band

Refers to spectral signals at and near the frequency of the laser, including Rayleigh light scattering, quasi-elastic scattering and stray laser light.

Shear modulus

The ratio of shear stress to shear strain, serving as the measure of shear stiffness.

Voxel

A measurement of volume in a structure to be imaged.

Young’s modulus

A measure of the ratio of applied stress to axial strain under unconfined deformation (the object is free to deform in all directions while its volume is conserved).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabakova, I., Zhang, J., Xiang, Y. et al. Brillouin microscopy. Nat Rev Methods Primers 4, 8 (2024). https://doi.org/10.1038/s43586-023-00286-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00286-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing