Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pre-Cenozoic cyclostratigraphy and palaeoclimate responses to astronomical forcing

Abstract

Astronomical insolation forcing is well established as the underlying metronome of Quaternary ice ages and Cenozoic climate changes. Yet its effects on earlier eras (Mesozoic, Palaeozoic and pre-Cambrian) are less understood. In this Review, we explore how cyclostratigraphy can help to distinguish climate modes over the pre-Cenozoic era and aid our understanding of climate responses to astronomical forcing over geological time. The growing uncertainties with geologic age mean that pre-Cenozoic astronomical solutions cannot be used as tuning targets. However, they can be used as metronomes to identify the pacing of distinct climate states. Throughout the pre-Cenozoic, global average temperature differences between climate states were even more extreme (5–32 °C) than in the Cenozoic (14–27 °C), and these, combined with an evolving biosphere and changing plate tectonics, led to distinct Earth-system responses to astronomical forcing. The late Palaeozoic icehouse, for example, is characterized by a pronounced response to eccentricity, caused by nonlinear cryosphere and carbon-cycle behaviour. By contrast, the Devonian warmhouse and the Late Cretaceous hothouse featured recurrent episodes of marine anoxia that may have been paced by astronomical forcing. Formally defining 405,000-year eccentricity cycles as chronostratigraphic units (astrochronozones) throughout the Phanerozoic eon will enable a more comprehensive understanding of how astronomical forcing has shaped Earth’s climate over geologic time.

Key points

  • Pre-Cenozoic cyclostratigraphy differs from the Cenozoic owing to its greater uncertainty in astronomical solutions regarding the phase of precession, obliquity and eccentricity. Nevertheless, astronomical solutions do offer precise periodicity estimates for the pre-Cenozoic, enabling the use of astronomical cycles as an astrochronological metronome.

  • Warmer climate states often exhibit an Earth-system response dominated by precession-driven variability in monsoon intensity. Nevertheless, Devonian and Cretaceous anoxia could have been paced by long eccentricity cycles.

  • The stratigraphic record of the early Palaeozoic icehouse often displays dominant precession cycles, whereas the late Palaeozoic icehouse principally features eccentricity cycles. This shift can be attributed to nonlinear carbon-cycle and cryosphere-related mechanisms that have a more prominent role in the later icehouse.

  • The Permian–Triassic extinction is marked by a geologically instantaneous carbon cycle disruption, the timing and pacing of which is constrained by astrochronology, that resembles the Anthropocene δ13C signature. However, recovery after the Permian–Triassic spanned millennia, emphasizing the impact of positive feedback loops and tipping points.

  • To achieve a more comprehensive understanding of how astronomical insolation forcing has shaped the Earth’s climate over geologic time, we advocate the implementation of astrochronozones (cycles formally defined as chronostratigraphic units) to establish a fully astronomically calibrated timescale for the Phanerozoic era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phanerozoic climate and palaeogeographic evolution.
Fig. 2: Proving the primary, environmental character of a limestone–marl alternation.
Fig. 3: Earth-system components sensitive to astronomical forcing.
Fig. 4: The perturbation of the global carbon cycle during the end-Permian and in the Anthropocene.
Fig. 5: Towards a Phanerozoic astronomically calibrated timescale.

Similar content being viewed by others

Data availability

Datasets used in this review are all publicly available and cited throughout the article. A spreadsheet containing links to the datasets used in this Review is provided in the Supplementary Data.

References

  1. Morgan, J. V., Bralower, T. J., Brugger, J. & Wünnemann, K. The Chicxulub impact and its environmental consequences. Nat. Rev. Earth Environ. 3, 338–354 (2022).

    Article  Google Scholar 

  2. Dal Corso, J. et al. Environmental crises at the Permian–Triassic mass extinction. Nat. Rev. Earth Environ. 3, 197–214 (2022).

    Article  Google Scholar 

  3. Reershemius, T. & Planavsky, N. J. What controls the duration and intensity of ocean anoxic events in the Paleozoic and the Mesozoic? Earth Sci. Rev. 221, 103787 (2021).

    Article  Google Scholar 

  4. Servais, T. et al. No (Cambrian) explosion and no (Ordovician) event: a single long-term radiation in the early Palaeozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 623, 111592 (2023).

    Article  Google Scholar 

  5. Algeo, T. J. & Scheckler, S. E. Terrestrial–marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Phil. Trans. R. Soc. Lond. B 353, 113–130 (1998).

    Article  Google Scholar 

  6. Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C. & vonRaumer, J. The formation of Pangea. Tectonophysics 593, 1–19 (2013).

    Article  Google Scholar 

  7. Milankovitch, M. Kanon der Erdebestrahlung und seine Anwendung auf das Eiszeitenproblem 629 (Königlich Serbische Akademie, 1941).

  8. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  Google Scholar 

  9. Kutzbach, J. E. Monsoon climate of the early holocene: climate experiment with the Earth’s orbital parameters for 9000 years ago. Science 214, 59–61 (1981).

    Article  Google Scholar 

  10. Cheng, H. et al. Milankovitch theory and monsoon. Innovation 3, 100338 (2022).

    Google Scholar 

  11. Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. (eds) The Geologic Time Scale 2012 Vols. 1, 2 (Elsevier, 2012).

  12. Hilgen, F., Lourens, L. & Palike, H. Should unit-stratotypes and astrochronozones be formally defined? A dual proposal (including postscriptum). Newsl. Stratigr. 53, 19 (2020).

    Article  Google Scholar 

  13. Hilgen, F. J., Kuiper, K. F. & Lourens, L. J. Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth Planet. Sci. Lett. 300, 139–151 (2010).

    Article  Google Scholar 

  14. Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 532, A89 (2011).

    Article  Google Scholar 

  15. Laskar, J., Gastineau, M., Delisle, J.-B., Farrés, A. & Fienga, A. Strong chaos induced by close encounters with Ceres and Vesta. Astron. Astrophys. 532, L4 (2011).

    Article  Google Scholar 

  16. Laskar, J., Joutel, F. & Boudin, F. Orbital, precessional, and insolation quantities for the Earth from –20 Myr to +10 Myr. Astron. Astrophys. 270, 522–533 (1993).

    Google Scholar 

  17. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  18. Zeebe, R. E. Numerical solutions for the orbital motion of the solar system over the past 100 Myr: limits and new results. Astronomical J. 154, 193 (2017).

    Article  Google Scholar 

  19. Zeebe, R. E. & Lourens, L. J. Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science 365, 926–929 (2019).

    Article  Google Scholar 

  20. Zeebe, R. E. & Lourens, L. J. Geologically constrained astronomical solutions for the Cenozoic era. Earth Planet. Sci. Lett. 592, 117595 (2022).

    Article  Google Scholar 

  21. Obreht, I. et al. Last Interglacial decadal sea surface temperature variability in the eastern mediterranean. Nat. Geosci. 15, 812–818 (2022).

    Article  Google Scholar 

  22. Obreht, I. et al. An annually resolved record of Western European vegetation response to Younger Dryas cooling. Quat. Sci. Rev. 231, 106198 (2020).

    Article  Google Scholar 

  23. Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article  Google Scholar 

  24. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  Google Scholar 

  25. Gingerich, P. D. Temporal scaling of carbon emission and accumulation rates: modern anthropogenic emissions compared to estimates of PETM onset accumulation. Paleoceanogr. Paleoclimatol. 34, 329–335 (2019).

    Article  Google Scholar 

  26. Zeebe, R. E., Ridgwell, A. & Zachos, J. C. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9, 325 (2016).

    Article  Google Scholar 

  27. Auer, G., Piller, W. E. & Harzhauser, M. High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene. Mar. Micropaleontol. 111, 53–65 (2014).

    Article  Google Scholar 

  28. Reuning, L., Reijmer, J. J. G., Betzler, C., Timmermann, A. & Steph, S. Sub-Milankovitch cycles in periplatform carbonates from the early Pliocene Great Bahama Bank. Paleoceanography https://doi.org/10.1029/2004PA001075 (2006).

  29. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  Google Scholar 

  30. De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M. & Pälike, H. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 my. Geology 45, 375–378 (2017).

    Article  Google Scholar 

  31. De Vleeschouwer, D. et al. High-latitude biomes and rock weathering mediate climate–carbon cycle feedbacks on eccentricity timescales. Nat. Commun. 11, 5013 (2020).

    Article  Google Scholar 

  32. Hilgen, F. J. et al. Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. Geol. Soc. Lond. Spec. Publ. 404, 157–197 (2015).

    Article  Google Scholar 

  33. Gilbert, G. K. Sedimentary measurement of Cretaceous time. J. Geol. 3, 121–127 (1895).

    Article  Google Scholar 

  34. Mutterlose, J. & Ruffell, A. Milankovitch-scale palaeoclimate changes in pale–dark bedding rhythms from the Early Cretaceous (Hauterivian and Barremian) of eastern England and northern Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 133–160 (1999).

    Article  Google Scholar 

  35. Martinez, M. in Stratigraphy & Timescales Vol. 3 (ed. Michael, M.) 189–218 (Academic Press, 2018).

  36. Schwarzacher, W. in Developments in Sedimentology Vol. 52 (ed. W. Schwarzacher) 197–207 (Elsevier, 1993).

  37. Fischer, A. G., Herbert, T. D., Napoleone, G., Premoli Silva, I. & Ripepe, M. Albian pelagic rhythms (Piobbico Core). J. Sediment. Res. 61, 1164–1172 (1991).

    Google Scholar 

  38. Galeotti, S. et al. Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth Planet. Sci. Lett. 290, 192–200 (2010).

    Article  Google Scholar 

  39. Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005).

    Article  Google Scholar 

  40. Kochhann, K. G. D. et al. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum. Paleoceanography 31, 1176–1192 (2016).

    Article  Google Scholar 

  41. Jones, M. M. et al. Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism. Nat. Geosci. 16, 169–174 (2023).

    Article  Google Scholar 

  42. Westphal, H., Hilgen, F. & Munnecke, A. An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth Sci. Rev. 99, 19–30 (2010).

    Article  Google Scholar 

  43. Munnecke, A. & Samtleben, C. The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies 34, 159–176 (1996).

    Article  Google Scholar 

  44. Munnecke, A., Wright, V. P. & Nohl, T. The origins and transformation of carbonate mud during early marine burial diagenesis and the fate of aragonite: a stratigraphic sedimentological perspective. Earth Sci. Rev. 239, 104366 (2023).

    Article  Google Scholar 

  45. Nohl, T., Jarochowska, E. & Munnecke, A. Revealing the genesis of limestone–marl alternations: a taphonomic approach. Palaios 34, 15–31 (2019).

    Article  Google Scholar 

  46. Westphal, H. Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review. Int. J. Earth Sci. 95, 947–961 (2006).

    Article  Google Scholar 

  47. Westphal, H., Munnecke, A., Böhm, F. & Bornholdt, S. Limestone-marl alternations in epeiric sea settings–witnesses of environmental changes or diagenesis? In Dynamics of Epeiric Seas (eds Pratt, B. R. & Holmden, C.) Spec. Pap. 48 (Geological Association of Canada, 2008).

  48. Hartenfels, S. et al. The Devonian–Carboniferous transition at Borkewehr near Wocklum (northern Rhenish Massif, Germany) — a potential GSSP section. Palaeobiodivers. Palaeoenviron. 102, 763–829 (2022).

    Article  Google Scholar 

  49. Nohl, T., Steinbauer, M. J., Sinnesael, M. & Jarochowska, E. Detecting initial aragonite and calcite variations in limestone–marl alternations. Sedimentology 68, 3102–3115 (2021).

    Article  Google Scholar 

  50. Ma, C. et al. A method to decipher the time distribution in astronomically forced sedimentary couplets. Mar. Petrol. Geol. 118, 104399 (2020).

    Article  Google Scholar 

  51. De Vleeschouwer, D. et al. North Atlantic drift sediments constrain eocene tidal dissipation and the evolution of the Earth–Moon system. Paleoceanogr. Paleoclimatol. 38, e2022PA004555 (2023).

    Article  Google Scholar 

  52. Strasser, A. Hiatuses and condensation: an estimation of time lost on a shallow carbonate platform. Depos. Rec. 1, 91–117 (2015).

    Article  Google Scholar 

  53. Strasser, A., Pittet, B., Hillgärtner, H. & Pasquier, J.-B. Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts for a high-resolution analysis. Sediment. Geol. 128, 201–221 (1999).

    Article  Google Scholar 

  54. Sadler, P. M. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569–584 (1981).

    Article  Google Scholar 

  55. Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article  Google Scholar 

  56. Dahl, T. W. & Arens, S. K. M. The impacts of land plant evolution on Earth’s climate and oxygenation state — an interdisciplinary review. Chem. Geol. 547, 119665 (2020).

    Article  Google Scholar 

  57. Boyce, C. K. & Lee, J.-E. Plant evolution and climate over geological timescales. Annu. Rev. Earth Planet. Sci. 45, 61–87 (2017).

    Article  Google Scholar 

  58. Berner, R. A. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 56, 3225–3231 (1992).

    Article  Google Scholar 

  59. Shaviv, N. J., Svensmark, H. & Veizer, J. The Phanerozoic climate. Ann. NY Acad. Sci. 1519, 7–19 (2023).

    Article  Google Scholar 

  60. Hearing, T. W. et al. An early Cambrian greenhouse climate. Sci. Adv. 4, eaar5690 (2018).

    Article  Google Scholar 

  61. Goldberg, S. L., Present, T. M., Finnegan, S. & Bergmann, K. D. A high-resolution record of early Paleozoic climate. Proc. Natl Acad. Sci. USA 118, e2013083118 (2021).

    Article  Google Scholar 

  62. Grossman, E. L. & Joachimski, M. M. Ocean temperatures through the Phanerozoic reassessed. Sci. Rep. 12, 8938 (2022).

    Article  Google Scholar 

  63. Bond, G. C., Devlin, W. J., Kominz, M. A., Beavan, J. & McManus, J. Evidence of astronomical forcing of the Earth’s climate in Cretaceous and Cambrian times. Tectonophysics 222, 295–315 (1993).

    Article  Google Scholar 

  64. Sørensen, A. L. et al. Astronomically forced climate change in the late Cambrian. Earth Planet. Sci. Lett. 548, 116475 (2020).

    Article  Google Scholar 

  65. Fang, J. et al. Cyclostratigraphy of the global stratotype section and point (GSSP) of the basal Guzhangian Stage of the Cambrian Period. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540, 109530 (2020).

    Article  Google Scholar 

  66. Zhang, T. et al. Orbital forcing of tropical climate dynamics in the Early Cambrian. Glob. Planet. Change 219, 103985 (2022).

    Article  Google Scholar 

  67. Zhao, Z. et al. Synchronizing rock clocks in the late Cambrian. Nat. Commun. 13, 1990 (2022).

    Article  Google Scholar 

  68. Liu, S., Jin, S., Liu, Y. & Chen, A. Astronomical forced sequence infill of Early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin, South China. Sediment. Geol. 440, 106261 (2022).

    Article  Google Scholar 

  69. Zhang, T. et al. Orbitally-paced climate change in the early Cambrian and its implications for the history of the solar system. Earth Planet. Sci. Lett. 583, 117420 (2022).

    Article  Google Scholar 

  70. Williams, G. E. History of the Earth’s obliquity. Earth Sci. Rev. 34, 1–45 (1993).

    Article  Google Scholar 

  71. Sinnesael, M. Ordovician cyclostratigraphy and astrochronology. Geol. Soc. Lond. Spec. Publ. 532, 2022–2031 (2023).

    Article  Google Scholar 

  72. Herrmann, A. D., Patzkowsky, M. E. & Pollard, D. Obliquity forcing with 8–12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation. Geology 31, 485–488 (2003).

    Article  Google Scholar 

  73. Zhong, Y. et al. Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 540, 109520 (2020).

    Article  Google Scholar 

  74. Sinnesael, M. et al. Precession-driven climate cycles and time scale prior to the Hirnantian glacial maximum. Geology 49, 1295–1300 (2021).

    Article  Google Scholar 

  75. Williams, G. E. Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician–Early Silurian glaciation, Canning Basin, Western Australia. Earth Planet. Sci. Lett. 103, 143–155 (1991).

    Article  Google Scholar 

  76. Sproson, A. D. et al. Osmium and lithium isotope evidence for weathering feedbacks linked to orbitally paced organic carbon burial and Silurian glaciations. Earth Planet. Sci. Lett. 577, 117260 (2022).

    Article  Google Scholar 

  77. Rasmussen, J. A., Thibault, N. & Mac Ørum Rasmussen, C. Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations. Nat. Commun. 12, 6430 (2021).

    Article  Google Scholar 

  78. Farhat, M., Auclair-Desrotour, P., Boué, G. & Laskar, J. The resonant tidal evolution of the Earth–Moon distance. Astron. Astrophys. 665, 1–20 (2022).

    Article  Google Scholar 

  79. Joachimski, M. M. et al. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet. Sci. Lett. 284, 599–609 (2009).

    Article  Google Scholar 

  80. De Vleeschouwer, D., Crucifix, M., Bounceur, N. & Claeys, P. The impact of astronomical forcing on the Late Devonian greenhouse climate. Glob. Planet. Change 120, 65–80 (2014).

    Article  Google Scholar 

  81. Streel, M., Caputo, M. V., Loboziak, S. & Melo, J. H. G. Late Frasnian–Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Eart Sci. Rev. 52, 121–173 (2000).

    Article  Google Scholar 

  82. Caputo, M. V. Late Devonian glaciation in South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 51, 291–317 (1985).

    Article  Google Scholar 

  83. Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34–48 (2016).

    Article  Google Scholar 

  84. Elrick, M. et al. Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early–Middle Devonian greenhouse world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 170–181 (2009).

    Article  Google Scholar 

  85. Elrick, M. & Witzke, B. Orbital-scale glacio-eustasy in the Middle Devonian detected using oxygen isotopes of conodont apatite: implications for long-term greenhouse–icehouse climatic transitions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 445, 50–59 (2016).

    Article  Google Scholar 

  86. De Vleeschouwer, D. et al. The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium). Geol. Soc. London Spec. Publ. 414, 245–256 (2015).

    Article  Google Scholar 

  87. Chen, B. et al. Devonian paleoclimate and its drivers: a reassessment based on a new conodont δ18O record from South China. Earth Sci. Rev. 222, 103814 (2021).

    Article  Google Scholar 

  88. Harrigan, C. O., Schmitz, M. D., Over, D. J., Trayler, R. B. & Davydov, V. I. Recalibrating the Devonian time scale: a new method for integrating radioisotopic and astrochronologic ages in a Bayesian framework. GSA Bull. 134, 1931–1948 (2021).

    Article  Google Scholar 

  89. Becker, R. et al. in Geologic Time Scale 2020 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 733–810 (Elsevier, 2020).

  90. Lu, M. et al. Periodic oceanic euxinia and terrestrial fluxes linked to astronomical forcing during the Late Devonian Frasnian–Famennian mass extinction. Earth Planet. Sci. Lett. 562, 116839 (2021).

    Article  Google Scholar 

  91. De Vleeschouwer, D., Da Silva, A.-C., Boulvain, F., Crucifix, M. & Claeys, P. Precessional and half-precessional climate forcing of Mid-Devonian monsoon-like dynamics. Clim. Past. 8, 337–351 (2012).

    Article  Google Scholar 

  92. Kaiho, K. et al. A forest fire and soil erosion event during the late devonian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 272–280 (2013).

    Article  Google Scholar 

  93. Lu, M., Ikejiri, T. & Lu, Y. A synthesis of the Devonian wildfire record: implications for paleogeography, fossil flora, and paleoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 571, 110321 (2021).

    Article  Google Scholar 

  94. Liu, Z., Selby, D., Hackley, P. C. & Over, D. J. Evidence of wildfires and elevated atmospheric oxygen at the Frasnian–Famennian boundary in New York (USA): implications for the Late Devonian mass extinction. GSA Bull. 132, 2043–2054 (2020).

    Article  Google Scholar 

  95. Marynowski, L. & Racki, G. Comment on the Kaiho et al. paper “A forest fire and soil erosion event during the Late Devonian mass extinction” [Palaeogeogr. Palaeoclimatol. Palaeoecol. 392 (2013): 272–280]. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 569–572 (2015).

    Article  Google Scholar 

  96. Brugger, J., Hofmann, M., Petri, S. & Feulner, G. On the sensitivity of the Devonian climate to continental configuration, vegetation cover, orbital configuration, CO2 concentration, and insolation. Paleoceanogr. Paleoclimatol. 34, 1375–1398 (2019).

    Article  Google Scholar 

  97. De Vleeschouwer, D. et al. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Commun. 8, 2268 (2017).

    Article  Google Scholar 

  98. Gong, Y., Xu, R., Tang, Z. & Li, B. The Upper Devonian orbital cyclostratigraphy and numerical dating conodont zones from Guangxi, South China. Sci. China Ser. D 48, 32–41 (2005).

    Article  Google Scholar 

  99. Da Silva, A.-C. et al. Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating. Sci. Rep. 10, 12940 (2020).

    Article  Google Scholar 

  100. Heckel, P. H. Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets. In Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, C. R., Frank, T. D. & Isbell, J. L.) (Geological Society of America, 2008).

  101. Wright, V. P. Speculations on the controls on cyclic peritidal carbonates: ice-house versus greenhouse eustatic controls. Sedim. Geol. 76, 1–5 (1992).

    Article  Google Scholar 

  102. Fischer, A. G. Climatic rhythms recorded in strata. Annu. Rev. Earth Planet. Sci. 14, 351–376 (1986).

    Article  Google Scholar 

  103. Peyser, C. E. & Poulsen, C. J. Controls on Permo-Carboniferous precipitation over tropical Pangaea: a GCM sensitivity study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 181–192 (2008).

    Article  Google Scholar 

  104. Macarewich, S. I. & Poulsen, C. J. Glacial–interglacial controls on ocean circulation and temperature during the Permo-Carboniferous. Paleoceanogr. Paleoclimatol. 37, e2022PA004417 (2022).

    Article  Google Scholar 

  105. Horton, D. E., Poulsen, C. J., Montañez, I. P. & DiMichele, W. A. Eccentricity-paced late Paleozoic climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 331–332, 150–161 (2012).

    Article  Google Scholar 

  106. Blaine Cecil, C., DiMichele, W. A. & Elrick, S. D. Middle and Late Pennsylvanian cyclothems, American Midcontinent: ice-age environmental changes and terrestrial biotic dynamics. CR Geosci. 346, 159–168 (2014).

    Article  Google Scholar 

  107. Cecil, C. B. An overview and interpretation of autocyclic and allocyclic processes and the accumulation of strata during the Pennsylvanian–Permian transition in the central Appalachian Basin, USA. Int. J. Coal Geol. 119, 21–31 (2013).

    Article  Google Scholar 

  108. Scott, A. C. Charcoalified vegetation from the Pennsylvanian of Yorkshire, England: implications for the interpretation of Carboniferous wildfires. Rev. Palaeobot. Palynol. 296, 104540 (2022).

    Article  Google Scholar 

  109. Montañez Isabel, P. Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record. Geol. Soc. Lond. Spec. Publ. 512, 213–245 (2022).

    Article  Google Scholar 

  110. Wei, R., Zhang, R., Li, M., Wang, X. & Jin, Z. Obliquity forcing of lake-level changes and organic carbon burial during the Late Paleozoic Ice Age. Glob. Planet. Change 223, 104092 (2023).

    Article  Google Scholar 

  111. Fang, Q. et al. Astronomically paced climate evolution during the Late Paleozoic icehouse-to-greenhouse transition. Glob. Planet. Change 213, 103822 (2022).

    Article  Google Scholar 

  112. Huang, H. et al. Astronomical constraints on the development of alkaline lake during the Carboniferous–Permian Period in North Pangea. Glob. Planet. Change 207, 103681 (2021).

    Article  Google Scholar 

  113. Adhémar, J. Révolutions de la Mer (Carilian-Goeury et Vr Dalmont, 1842).

  114. Croll, J. On the physical cause of the change of climate during geological epochs. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 28, 121–137 (1864).

    Article  Google Scholar 

  115. Gale, A. S. A Milankovitch scale for Cenomanian time. Terra Nova 1, 420–425 (1989).

    Article  Google Scholar 

  116. Olsen, P. E. A 40-million-year lake record of early Mesozoic orbital climatic forcing. Science 234, 842–848 (1986).

    Article  Google Scholar 

  117. WEEDON, G. P. & JENKYNS, H. C. Regular and irregular climatic cycles and the Belemnite Marls (Pliensbachian, Lower Jurassic, Wessex Basin). J. Geol. Soc. 147, 915–918 (1990).

    Article  Google Scholar 

  118. GOLDHAMMER, R. K., DUNN, P. A. & HARDIE, L. A. Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. GSA Bull. 102, 535–562 (1990).

    Article  Google Scholar 

  119. STRASSER, A. Shallowing-upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains). Sedimentology 35, 369–383 (1988).

    Article  Google Scholar 

  120. Schwarzacher, W. The analysis and interpretation of stratification cycles. Paleoceanography 2, 79–95 (1987).

    Article  Google Scholar 

  121. Goldhammer, R. K., Dunn, P. A. & Hardie, L. A. High frequency glacio-eustatic sealevel oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in northern Italy. Am. J. Sci. 287, 853–892 (1987).

    Article  Google Scholar 

  122. Kutzbach, J. E. & Gallimore, R. G. Pangaean climates: megamonsoons of the megacontinent. J. Geophys. Res. Atmos. 94, 3341–3357 (1989).

    Article  Google Scholar 

  123. Bahr, A. et al. Mega-monsoon variability during the late Triassic: re-assessing the role of orbital forcing in the deposition of playa sediments in the Germanic basin. Sedimentology 67, 951–970 (2020).

    Article  Google Scholar 

  124. Ohba, M. & Ueda, H. A GCM study on effects of continental drift on tropical climate at the Early and Late Cretaceous. J. Meteorol. Soc. Jpn Ser. II 88, 869–881 (2010).

    Article  Google Scholar 

  125. Ikeda, M., Ozaki, K. & Legrand, J. Impact of 10-Myr scale monsoon dynamics on Mesozoic climate and ecosystems. Sci. Rep. 10, 11984 (2020).

    Article  Google Scholar 

  126. Hollaar, T. P. et al. Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic. Commun. Earth Environ. 2, 247 (2021).

    Article  Google Scholar 

  127. Bonis, N. R., Ruhl, M. & Kürschner, W. M. Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St Audrie’s Bay, SW UK. J. Geol. Soc. 167, 877–888 (2010).

    Article  Google Scholar 

  128. Qiu, R. et al. Long eccentricity forcing of the Late Pliensbachian to Early Toarcian (Jurassic) terrestrial wildfire activities in the Tarim basin, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 613, 111408 (2023).

    Article  Google Scholar 

  129. Charbonnier, G. et al. Eccentricity paced monsoon-like system along the northwestern Tethyan margin during the Valanginian (Early Cretaceous): new insights from detrital and nutrient fluxes into the Vocontian basin (SE France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 145–155 (2016).

    Article  Google Scholar 

  130. Oglesby, R. & Park, J. Effect of precessional insolation changes on Cretaceous climate and cyclic sedimentation. J. Geophys. Res. Atmos. 94, 14793–14816 (1989).

    Article  Google Scholar 

  131. Landwehrs, J. et al. Modes of Pangean lake level cyclicity driven by astronomical climate pacing modulated by continental position and pCO2. Proc. Natl Acad. Sci. USA 119, e2203818119 (2022).

    Article  Google Scholar 

  132. Beckmann, B., Flögel, S., Hofmann, P., Schulz, M. & Wagner, T. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response. Nature 437, 241–244 (2005).

    Article  Google Scholar 

  133. Zhang, J., Liu, Y., Fang, X., Wang, C. & Yang, Y. Large dry–humid fluctuations in Asia during the Late Cretaceous due to orbital forcing: a modeling study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109230 (2019).

    Article  Google Scholar 

  134. Valdes, P. J., Sellwood, B. W. & Price, G. D. Modelling Late Jurassic Milankovitch climate variations. Geol. Soc. Lond. Spec. Publ. 85, 115–132 (1995).

    Article  Google Scholar 

  135. Martinez, M. & Dera, G. Orbital pacing of carbon fluxes by a 9-My eccentricity cycle during the Mesozoic. Proc. Natl Acad. Sci. USA 112, 12604–12609 (2015).

    Article  Google Scholar 

  136. Batenburg, S. J. et al. Orbital control on the timing of oceanic anoxia in the Late Cretaceous. Clim. Past. 12, 1995–2009 (2016).

    Article  Google Scholar 

  137. Meyers, S. R., Sageman, B. B. & Arthur, M. A. Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2012pa002286 (2012).

  138. Ruhl, M. et al. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK). Earth Planet. Sci. Lett. 295, 262–276 (2010).

    Article  Google Scholar 

  139. Martinez, M. et al. Synchrony of carbon cycle fluctuations, volcanism and orbital forcing during the Early Cretaceous. Earth Sci. Rev. 239, 104356 (2023).

    Article  Google Scholar 

  140. Storm, M. S. et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle. Proc. Natl Acad. Sci. USA 117, 3974–3982 (2020).

    Article  Google Scholar 

  141. Matsumoto, H., Coccioni, R., Frontalini, F., Shirai, K. & Kuroda, J. Osmium isotopic evidence for eccentricity-paced increases in continental weathering during the latest Hauterivian, Early Cretaceous. Geochem. Geophys. Geosyst. 22, e2021GC009789 (2021).

    Article  Google Scholar 

  142. Giorgioni, M. et al. Orbital control on carbon cycle and oceanography in the mid-Cretaceous greenhouse. Paleoceanography https://doi.org/10.1029/2011PA002163 (2012).

  143. Ikeda, M., Tada, R. & Ozaki, K. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts. Nat. Commun. 8, 15532 (2017).

    Article  Google Scholar 

  144. Jones, M. M., Sageman, B. B. & Meyers, S. R. Turonian sea level and paleoclimatic events in astronomically tuned records from the Tropical North Atlantic and Western Interior Seaway. Paleoceanogr. Paleoclimatol. 33, 470–492 (2018).

    Article  Google Scholar 

  145. Boulila, S. et al. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci. Rev. 109, 94–112 (2011).

    Article  Google Scholar 

  146. Gambacorta, G., Menichetti, E., Trincianti, E. & Torricelli, S. Orbital control on cyclical primary productivity and benthic anoxia: astronomical tuning of the Telychian Stage (Early Silurian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 495, 152–162 (2018).

    Article  Google Scholar 

  147. Ikeda, M. et al. Carbon cycle dynamics linked with Karoo–Ferrar volcanism and astronomical cycles during Pliensbachian–Toarcian (Early Jurassic). Glob. Planet. Change 170, 163–171 (2018).

    Article  Google Scholar 

  148. Li, Y.-X., Montañez, I. P., Liu, Z. & Ma, L. Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2). Earth Planet. Sci. Lett. 462, 35–46 (2017).

    Article  Google Scholar 

  149. Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2009GC002788 (2010).

  150. Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 3–29 (2017).

    Article  Google Scholar 

  151. Sarr, A. C. et al. Ventilation changes drive orbital-scale deoxygenation trends in the Late Cretaceous ocean. Geophys. Res. Lett. 49, e2022GL099830 (2022).

    Article  Google Scholar 

  152. Snow, L. J., Duncan, R. A. & Bralower, T. J. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and Oxygen Anoxic Event 2. Paleoceanography https://doi.org/10.1029/2004PA001093 (2005).

  153. Erba, E. et al. Environmental consequences of Ontong Java Plateau and Kerguelen plateau volcanism. Geol. Soc. Am. Spec. Pap. 511, 271–303 (2015).

    Google Scholar 

  154. Racki, G. A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: more answers than questions? Glob. Planet. Change 189, 103174 (2020).

    Article  Google Scholar 

  155. Mitchell, R. N. et al. Oceanic anoxic cycles? Orbital prelude to the Bonarelli Level (OAE 2). Earth Planet. Sci. Lett. 267, 1–16 (2008).

    Article  Google Scholar 

  156. Laurin, J., Meyers, S. R., Galeotti, S. & Lanci, L. Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals. Earth Planet. Sci. Lett. 442, 143–156 (2016).

    Article  Google Scholar 

  157. Jones, C. E. & Jenkyns, H. C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 301, 112–149 (2001).

    Article  Google Scholar 

  158. Turgeon, S. C. & Creaser, R. A. Cretaceous Oceanic Anoxic Event 2 triggered by a massive magmatic episode. Nature 454, 323–326 (2008).

    Article  Google Scholar 

  159. Du Vivier, A. D. C. et al. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth Planet. Sci. Lett. 389, 23–33 (2014).

    Article  Google Scholar 

  160. Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma). Sci. Adv. 3, e1701020 (2017).

    Article  Google Scholar 

  161. Courtillot, V., Kravchinsky, V. A., Quidelleur, X., Renne, P. R. & Gladkochub, D. P. Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events? Earth Planet. Sci. Lett. 300, 239–245 (2010).

    Article  Google Scholar 

  162. Ricci, J. et al. New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): further evidence for a relationship with the Frasnian–Famennian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 531–540 (2013).

    Article  Google Scholar 

  163. Percival, L. M. E. et al. Precisely dating the Frasnian–Famennian boundary: implications for the cause of the Late Devonian mass extinction. Sci. Rep. 8, 9578 (2018).

    Article  Google Scholar 

  164. Percival, L. M. E. et al. Phosphorus-cycle disturbances during the Late Devonian anoxic events. Glob. Planet. Change 184, 103070 (2020).

    Article  Google Scholar 

  165. Percival, L. M. E. et al. Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: evidence from osmium-isotope compositions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 240–249 (2019).

    Article  Google Scholar 

  166. Wichern, N.M.A. et al. Astronomically-paced climate and carbon-cycle feedbacks in the lead-up to the Late Devonian Kellwasser Crisis. Clim. Past Discuss. https://doi.org/10.5194/cp-2023-58 (2023).

  167. Li, Y.-X. et al. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma). Earth Planet. Sci. Lett. 271, 88–100 (2008).

    Article  Google Scholar 

  168. Jones, M. M. et al. Regional chronostratigraphic synthesis of the Cenomanian–Turonian Oceanic Anoxic Event 2 (OAE2) interval, Western Interior Basin (USA): new Re–Os chemostratigraphy and 40Ar/39Ar geochronology. GSA Bull. 133, 1090–1104 (2020).

    Article  Google Scholar 

  169. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Article  Google Scholar 

  170. Filippelli, G. M. The global phosphorus cycle: past, present, and future. Elements 4, 89–95 (2008).

    Article  Google Scholar 

  171. Mort, H. P. et al. Phosphorus and the roles of productivity and nutrient recycling during Oceanic Anoxic Event 2. Geology 35, 483–486, (2007).

    Article  Google Scholar 

  172. Schobben, M. et al. A nutrient control on marine anoxia during the end-Permian mass extinction. Nat. Geosci. 13, 640–646 (2020).

    Article  Google Scholar 

  173. Smart, M. S., Filippelli, G., Gilhooly III, W. P., Marshall, J. E. A. & Whiteside, J. H. Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: evidence from lacustrine phosphorus and geochemical records. Geol. Soc. Am. Bull. 10.1130/b36384.1 (2022).

  174. Sahoo, S. K. et al. Basin-scale reconstruction of euxinia and Late Devonian mass extinctions. Nature 615, 640–645 (2023).

    Article  Google Scholar 

  175. McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., Li, Q. & Howarth, R. J. Basinal restriction, black shales, Re–Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography https://doi.org/10.1029/2008PA001607 (2008).

  176. Jenkyns, H. C. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. 137, 171–188 (1980).

    Article  Google Scholar 

  177. Laurin, J. I. & Sageman, B. B. Cenomanian–Turonian coastal record in SW Utah, U.S.A.: orbital-scale transgressive–regressive events during Oceanic Anoxic Event II. J. Sediment. Res. 77, 731–756 (2007).

    Article  Google Scholar 

  178. Rampino, M. R. et al. Abruptness of the end-Permian mass extinction as determined from biostratigraphic and cyclostratigraphic analyses of European western Tethyan sections. In Catastrophic events and mass extinctions: impacts and beyond Vol. 356 (eds Christian Koeberl & Kenneth G. MacLeod) 415–427 (Geological Society of America, 2002).

  179. Rampino, M. R., Prokoph, A. & Adler, A. Tempo of the end-Permian event: high-resolution cyclostratigraphy at the Permian–Triassic boundary. Geology 28, 643–646 (2000).

    Article  Google Scholar 

  180. Hansen, H. J. et al. In Developments in Palaeontology and Stratigraphy Vol. 18 (eds Yin, H., Dickins, J. M., Shi, G. R. & Tong, J.) 271–289 (Elsevier, 2000).

  181. Algeo, T. J. et al. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38, 187–190 (2010).

    Article  Google Scholar 

  182. Yin, H., Zhang, K., Tong, J., Yang, Z. & Wu, S. The Global Stratotype Section and Point (GSSP) of the Permian–Triassic Boundary. Int. Union Geol. Sci. 24, 102–114 (2001).

    Google Scholar 

  183. Huang, C., Tong, J., Hinnov, L. & Chen, Z. Q. Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian–Triassic boundary interval. Geology 39, 779–782 (2011).

    Article  Google Scholar 

  184. Wang, Y. et al. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40, 113–129 (2013).

    Article  Google Scholar 

  185. Shen, S.-Z. et al. A sudden end-Permian mass extinction in South China. GSA Bull. 131, 205–223 (2018).

    Article  Google Scholar 

  186. Cui, Y., Li, M., van Soelen, E. E., Peterse, F. & Kürschner, W. M. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction. Proc. Natl Acad. Sci. 118, e2014701118 (2021).

    Article  Google Scholar 

  187. Li, M. et al. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth Planet. Sci. Lett. 441, 10–25 (2016).

    Article  Google Scholar 

  188. Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).

    Article  Google Scholar 

  189. Wu, H. et al. Time-calibrated Milankovitch cycles for the late Permian. Nat. Commun. 4, 2452 (2013).

    Article  Google Scholar 

  190. Peng, X., Feng, Q., Li, Z. & Meng, Y. High-resolution cyclostratigraphy of geochemical records from Permo–Triassic boundary section of Dongpan, southwestern Guangxi, South China. Sci. China Ser. D 51, 187–193 (2008).

    Article  Google Scholar 

  191. Kent, D. V., Olsen, P. E. & Witte, W. K. Late Triassic–earliest Jurassic geomagnetic polarity sequence and paleolatitudes from drill cores in the Newark rift basin, eastern North America. J. Geophys. Res. Solid. Earth 100, 14965–14998 (1995).

    Article  Google Scholar 

  192. Kent, D. V., Olsen, P. E. & Muttoni, G. Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages. Earth Sci. Rev. 166, 153–180 (2017).

    Article  Google Scholar 

  193. Fowell, S. J. & Olsen, P. E. Time calibration of Triassic/Jurassic microfloral turnover, eastern North America. Tectonophysics 222, 361–369 (1993).

    Article  Google Scholar 

  194. Whiteside, J. H., Olsen, P. E., Kent, D. V., Fowell, S. J. & Et-Touhami, M. Synchrony between the Central Atlantic magmatic province and the Triassic–Jurassic mass-extinction event? Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 345–367 (2007).

    Article  Google Scholar 

  195. Olsen, P. et al. Continental Triassic-Jurassic boundary in central Pangea: Recent progress and discussion of an Ir anomaly. In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & MacLeod, K. G.) Vol. 356 (Geological Society of America, 2002).

  196. Ruhl, M., Bonis, N. R., Reichart, G.-J., Damsté, J. S. S. & Kürschner, W. M. Atmospheric carbon injection linked to end-triassic mass extinction. Science 333, 430–434 (2011).

    Article  Google Scholar 

  197. Olsen, P. E. et al. Mapping solar system chaos with the geological orrery. Proc. Natl Acad. Sci. USA 116, 10664 (2019).

    Article  Google Scholar 

  198. Gallet, Y., Krystyn, L., Marcoux, J. & Besse, J. New constraints on the End-Triassic (Upper Norian–Rhaetian) magnetostratigraphy. Earth Planet. Sci. Lett. 255, 458–470 (2007).

    Article  Google Scholar 

  199. Tanner, L. H. & Lucas, S. G. The Triassic–Jurassic strata of the Newark Basin, USA: a complete and accurate astronomically-tuned timescale. Stratigraphy 12, 47–65 (2015).

    Article  Google Scholar 

  200. Galbrun, B. et al. “Short” or “long” Rhaetian ? Astronomical calibration of Austrian key sections. Glob. Planet. Change 192, 103253 (2020).

    Article  Google Scholar 

  201. Li, M. et al. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: implications for the Late Triassic time scale. Earth Planet. Sci. Lett. 475, 207–223 (2017).

    Article  Google Scholar 

  202. Huang, C. In Stratigraphy and Timescales Vol. 3 (ed. Montenari, M.) 81–150 (Academic Press, 2018).

  203. Wotzlaw, J.-F. et al. Towards accurate numerical calibration of the Late Triassic: high-precision U–Pb geochronology constraints on the duration of the Rhaetian. Geology 42, 571–574 (2014).

    Article  Google Scholar 

  204. Deenen, M. H. L. et al. A new chronology for the end-Triassic mass extinction. Earth Planet. Sci. Lett. 291, 113–125 (2010).

    Article  Google Scholar 

  205. Weedon, G. P., Jenkyns, H. C., Coe, A. L. & Hesselbo, S. P. Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. In Discussion Meeting Issue ‘Astronomical (Milankovitch) Calibration of the Geological Time-Scale’ (eds Shackleton, N. J., McCave, I. N. & Weedon, G. P.) Phil. Trans. R. Soc. A 357, 1787–1813 (1999).

  206. Hüsing, S. K. et al. Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie’s Bay and East Quantoxhead (Hettangian–Sinemurian; Somerset, UK). Palaeogeogr. Palaeoclimatol. Palaeoecol. 403, 43–56 (2014).

    Article  Google Scholar 

  207. Simms, M. J. & Ruffell, A. H. Synchroneity of climatic change and extinctions in the Late Triassic. Geology 17, 265–268 (1989).

    Article  Google Scholar 

  208. Hesselbo, S. P. et al. Initial results of coring at Prees, Cheshire Basin, UK (ICDP JET project): towards an integrated stratigraphy, timescale, and Earth system understanding for the Early Jurassic. Sci. Dril. 32, 1–25 (2023).

    Article  Google Scholar 

  209. Bowring, S. A. et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280, 1039–1045 (1998).

    Article  Google Scholar 

  210. Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009).

    Article  Google Scholar 

  211. Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    Article  Google Scholar 

  212. Davies, J. H. F. L. et al. End-Triassic mass extinction started by intrusive CAMP activity. Nat. Commun. 8, 15596 (2017).

    Article  Google Scholar 

  213. Heimdal, T. H. et al. Evidence for magma–evaporite interactions during the emplacement of the Central Atlantic Magmatic Province (CAMP) in Brazil. Earth Planet. Sci. Lett. 506, 476–492 (2019).

    Article  Google Scholar 

  214. Weedon, G. P. Problems with the current practice of spectral analysis in cyclostratigraphy: avoiding false detection of regular cyclicity. Earth Sci. Rev. 235, 104261 (2022).

    Article  Google Scholar 

  215. Zhou, M. et al. Empirical reconstruction of Earth–Moon and Solar System dynamical parameters for the past 2.5 billion years from cyclostratigraphy. Geophys. Res. Lett. 49, e2022GL098304 (2022).

    Article  Google Scholar 

  216. Meyers, S. R. & Malinverno, A. Proterozoic Milankovitch cycles and the history of the Solar System. Proc. Natl Acad. Sci. 115, 6363 (2018).

    Article  Google Scholar 

  217. Lantink, M. L., Davies, J. H. F. L., Ovtcharova, M. & Hilgen, F. J. Milankovitch cycles in banded iron formations constrain the Earth–Moon system 2.46 billion years ago. Proc. Natl Acad. Sci. 119, e2117146119 (2022).

    Article  Google Scholar 

  218. Liu, G. et al. Cyclostratigraphic calibration of the ca. 1.56 Ga carbon isotope excursion and oxygenation event recorded in the Gaoyuzhuang Formation, north China. Glob. Planet. Change 216, 103916 (2022).

    Article  Google Scholar 

  219. Lantink, M. L., Davies, J. H. F. L., Mason, P. R. D., Schaltegger, U. & Hilgen, F. J. Climate control on banded iron formations linked to orbital eccentricity. Nat. Geosci. 12, 369–374 (2019).

    Article  Google Scholar 

  220. Mitchell, R. N., Kirscher, U., Kunzmann, M., Liu, Y. & Cox, G. M. Gulf of Nuna: astrochronologic correlation of a Mesoproterozoic oceanic euxinic event. Geology 49, 25–29 (2020).

    Article  Google Scholar 

  221. Lantink, M. L. et al. Precessional pacing of early Proterozoic redox cycles. Earth Planet. Sci. Lett. 610, 118117 (2023).

    Article  Google Scholar 

  222. Wu, H. et al. Astronomical time scale for the Paleozoic Era. Earth Sci. Rev. 244, 104510 (2023).

    Article  Google Scholar 

  223. Westerhold, T., Röhl, U., Frederichs, T., Bohaty, S. M. & Zachos, J. C. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past. 11, 1181–1195 (2015).

    Article  Google Scholar 

  224. Boulila, S. et al. Towards a robust and consistent middle Eocene astronomical timescale. Earth Planet. Sci. Lett. 486, 94–107 (2018).

    Article  Google Scholar 

  225. Dinarès-Turell, J., Martínez-Braceras, N. & Payros, A. High-resolution integrated cyclostratigraphy from the Oyambre section (Cantabria, N Iberian Peninsula): constraints for orbital tuning and correlation of middle Eocene Atlantic Deep-Sea records. Geochem. Geophys. Geosyst. 19, 787–806 (2018).

    Article  Google Scholar 

  226. Vahlenkamp, M. et al. A lower to middle Eocene astrochronology for the Mentelle basin (Australia) and its implications for the geologic time scale. Earth Planet. Sci. Lett. 529, 115865 (2020).

    Article  Google Scholar 

  227. Sinnesael, M. et al. The Cyclostratigraphy Intercomparison Project (CIP): consistency, merits and pitfalls. Earth Sci. Rev. 199, 102965 (2019).

    Article  Google Scholar 

  228. Chen, D. & Tucker, M. E. The Frasnian–Famennian mass extinction: insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 87–111 (2003).

    Article  Google Scholar 

  229. Gong, Y.-M., Li, B.-H., Wang, C.-Y. & Wu, Y. Orbital cyclostratigraphy of the Devonian Frasnian–Famennian transition in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 168, 237–248 (2001).

    Article  Google Scholar 

  230. Ma, K., Hinnov, L., Zhang, X. & Gong, Y. Astronomical climate changes trigger Late Devonian bio- and environmental events in South China. Glob. Planet. Change 215, 103874 (2022).

  231. Whalen, M. T. et al. Pattern and timing of the Late Devonian biotic crisis in Western Canada: insights from carbon isotopes and astronomical calibration of magnetic susceptibility data. In New Advances in Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigraphy Vol. 107 (eds Playton, T. et al.) (SEPM, 2017).

  232. Kocsis, Á. T. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth Sci. Rev. 213, 103463 (2021).

    Article  Google Scholar 

  233. Kocsis, Á. T. & Scotese, C. R. PaleoMAP PaleoCoastlines Data Version 7.3 10.5281/zenodo.7994000 (2023).

  234. Scotese, C. R. An atlas of Phanerozoic paleogeographic maps: the seas come in and the seas go out. Annu. Rev. Earth Planet. Sci. 49, 679–728 (2021).

    Article  Google Scholar 

  235. Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    Article  Google Scholar 

  236. Nakicenovic, N. et al. Special Report on Emissions Scenarios (SRES). A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2000).

  237. Batenburg, S. J. et al. Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country, Northern Spain). Earth Planet. Sci. Lett. 359360, 264–278 (2012).

    Article  Google Scholar 

  238. Imbrie, J. & Imbrie, J. Z. Modeling the climatic response to orbital variations. Science 207, 943–953 (1980).

    Article  Google Scholar 

  239. Berger, A., Loutre, M. F. & Laskar, J. Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies. Science 255, 560–566 (1992).

    Article  Google Scholar 

  240. Waltham, D. Milankovitch period uncertainties and their impact on cyclostratigraphy. J. Sediment. Res. 85, 990–998 (2015).

    Article  Google Scholar 

  241. Meyers, S. R. & Sageman, B. B. Quantification of deep-time orbital forcing by average spectral misfit. Am. J. Sci. 307, 773–792 (2007).

    Article  Google Scholar 

  242. Meyers, S. R. Cyclostratigraphy and the problem of astrochronologic testing. Earth Sci. Rev. 190, 190–223 (2019).

    Article  Google Scholar 

  243. Pas, D. et al. Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA). Earth Planet. Sci. Lett. 488, 102–114 (2018).

    Article  Google Scholar 

  244. Ma, K., Hinnov, L. A., Zhang, X. & Gong, Y. Astronomical time calibration of the Upper Devonian Lali section, South China. Glob. Planet. Change 193, 103267 (2020).

    Article  Google Scholar 

  245. Gale, A. S. et al. In Geologic Time Scale 2020 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 1023–1086 (Elsevier, 2020).

  246. Hesselbo, S. P., Ogg, J. G., Ruhl, M., Hinnov, L. A. & Huang, C. J. In Geologic Time Scale 2020 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 955–1021 (Elsevier, 2020).

  247. Ogg, J. G., Chen, Z. Q., Orchard, M. J. & Jiang, H. S. In Geologic Time Scale 2020 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 903–953 (Elsevier, 2020).

  248. Hinnov, L. A. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences. Geol. Soc. Am. Bull. 125, 1703–1734 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Claeys for his role in igniting the ideas and concepts behind this Review. The authors acknowledge the support of the CycloNet project, funded by the Research Foundation Flanders (FWO, grant W000522N). L.M.E.P. thanks the FWO (grant 12P4522N) for financial support. The German Research Foundation (DFG) supported N.W. through project 451461400 (VL96/4–1). This project is part of IGCP-652 “Reading time in Paleozoic sedimentary rocks”.

Author information

Authors and Affiliations

Authors

Contributions

D.D.V. led the development of the article. N.W. compiled Table 1. All authors contributed to the planning and writing of the manuscript, as well as to the design of the figures.

Corresponding author

Correspondence to David De Vleeschouwer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks N. Thibault, A. Strasser, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Vleeschouwer, D., Percival, L.M.E., Wichern, N.M.A. et al. Pre-Cenozoic cyclostratigraphy and palaeoclimate responses to astronomical forcing. Nat Rev Earth Environ 5, 59–74 (2024). https://doi.org/10.1038/s43017-023-00505-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00505-x

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology