Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Translating intersectionality to fair machine learning in health sciences

Fairness approaches in machine learning should involve more than an assessment of performance metrics across groups. Shifting the focus away from model metrics, we reframe fairness through the lens of intersectionality, a Black feminist theoretical framework that contextualizes individuals in interacting systems of power and oppression.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. JAMA Intern. Med. 178, 1544–1547 (2018).

    Article  Google Scholar 

  2. Collins, P. H. & Bilge, S. Intersectionality (John Wiley & Sons, 2020).

  3. Bailey, Z. D. et al. Lancet 389, 1453–1463 (2017).

    Article  Google Scholar 

  4. White Hughto, J. M., Reisner, S. L. & Pachankis, J. E. Soc. Sci. Med. 147, 222–231 (2015).

    Article  Google Scholar 

  5. Morris, A. A. et al. Am. J. Cardiol. 123, 291–296 (2019).

    Article  Google Scholar 

  6. Johnson, J. D. et al. Obstet. Gynecol. 134, 1155–1162 (2019).

    Article  Google Scholar 

  7. Lett, E., Asabor, E. N., Corbin, T. & Boatright, D. J. Epidemiol. Community Health 75, 394–397 (2021).

    Article  Google Scholar 

  8. Bor, J., Venkataramani, A. S., Williams, D. R. & Tsai, A. C. Lancet 392, 302–310 (2018).

    Article  Google Scholar 

  9. Sewell, A. A. et al. Ethn. Racial Stud. 44, 1089–1114 (2021).

    Article  Google Scholar 

  10. Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J. & Weinberger, K. Q. Adv. Neural Inf. Process. Syst. 30, (2017).

  11. del Barrio, E., Gordaliza, P. & Loubes, J.-M. Preprint at https://doi.org/10.48550/arXiv.2005.13755 (2020).

  12. Rodolfa, K. T., Lamba, H. & Ghani, R. Nat. Mach. Intell. 3, 896–904 (2021).

    Article  Google Scholar 

  13. Prabhakaran, V. & Martin, D. Health Hum. Rights 22, 71–74 (2020).

    Google Scholar 

  14. Sloane, M., Moss, E., Awomolo, O. & Forlano, L. P in EAAMO ‘22: Equity and Access in Algorithms, Mechanisms, and Optimization 1–6 (Association for Computing Machinery, 2022).

  15. Siegel, S. D. et al. Breast Cancer Res. 24, 37 (2022).

    Article  Google Scholar 

  16. Huyser, K. R., Horse, A. J. Y., Kuhlemeier, A. A. & Huyser, M. R. Am. J. Public Health 111, S208–S214 (2021).

    Article  Google Scholar 

  17. Hardeman, R. R., Homan, P. A., Chantarat, T., Davis, B. A. & Brown, T. H. Health Aff. 41, 179–186 (2022).

    Article  Google Scholar 

  18. Homan, P., Brown, T. H. & King, B. J. Health Soc. Behav. 62, 350–370 (2021).

    Article  Google Scholar 

  19. Segar, M. W. et al. JAMA Cardiol. 7, 844–854 (2022).

    Article  Google Scholar 

  20. Mhasawade, V. & Chunara, R. C in Proc. 2021 AAAI/ACM Conference on AI, Ethics, and Society 784–794 (Association for Computing Machinery, 2021).

  21. Bellamy, R. K. et al. IBM J. Res. Dev. 63, 4–1 (2019).

    Article  Google Scholar 

  22. Kearns, M., Neel, S., Roth, A. & Wu, Z. S. in Proc. 35th International Conference on Machine Learning 80, 2564–2572 (2018).

  23. Hébert-Johnson, U., Kim, M., Reingold, O. & Rothblum, G. in Proc. 35th International Conference on Machine Learning 80, 1939–1948 (2018).

  24. Foulds, J. R., Islam, R., Keya, K. N. & Pan, S. in Proc. 2020 SIAM International Conference on Data Mining 424–432 (Society for Industrial and Applied Mathematics, 2020).

  25. Sullivan, P. S. et al. Lancet 397, 1095–1106 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

E.L. thanks L. Bowleg and G. Bauer from the Intersectionality Training Institute and the E2 Social Epidemiology Lab for their support of this work. The authors thank M. Roberson and K. Baker for their feedback on the manuscript. E.L. was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) grant 5 T32 HD40128-19. W.G.L. was supported by the National Institutes of Health (NIH) National Library of Medicine grant R00-LM012926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elle Lett.

Ethics declarations

Competing interests

The authors declare no competing financial or non-financial interests.

Peer review

Peer review information

Nature Machine Intelligence thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lett, E., La Cava, W.G. Translating intersectionality to fair machine learning in health sciences. Nat Mach Intell 5, 476–479 (2023). https://doi.org/10.1038/s42256-023-00651-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-023-00651-3

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics