Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic susceptibility to diabetic kidney disease is linked to promoter variants of XOR

Abstract

The lifetime risk of kidney disease in people with diabetes is 10–30%, implicating genetic predisposition in the cause of diabetic kidney disease (DKD). Here we identify an expression quantitative trait loci (QTLs) in the cis-acting regulatory region of the xanthine dehydrogenase, or xanthine oxidoreductase (Xor), a binding site for C/EBPβ, to be associated with diabetes-induced podocyte loss in DKD in male mice. We examine mouse inbred strains that are susceptible (DBA/2J) and resistant (C57BL/6J) to DKD, as well as a panel of recombinant inbred BXD mice, to map QTLs. We also uncover promoter XOR orthologue variants in humans associated with high risk of DKD. We introduced the risk variant into the 5′-regulatory region of XOR in DKD-resistant mice, which resulted in increased Xor activity associated with podocyte depletion, albuminuria, oxidative stress and damage restricted to the glomerular endothelium, which increase further with type 1 diabetes, high-fat diet and ageing. Therefore, differential regulation of Xor contributes to phenotypic consequences with diabetes and ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: QTL on chr 17 influences podocyte numbers in long-term diabetes and causative variant points to XOR regulation.
Fig. 2: C/EBPβ binding to risk variants in the Xor promoter upregulates Xor expression in diabetic D2 mice.
Fig. 3: Xor promoter risk variants upregulate Xor activity in diabetic B6-Xorem1 mice.
Fig. 4: Xor promoter risk variants promote podocyte depletion and glomerular injury with diabetes.
Fig. 5: Xor promoter risk variants in B6-XORem1 mice promote DKD following STZ treatment, in genetically induced type 1 diabetes and under a HFD.
Fig. 6: Xor promoter risk variants in B6-Xorem1 mice mediate DKD and promote ageing-related glomerulosclerosis.
Fig. 7: Diabetes increased oxidative stress and mitochondrial damage in GECs of diabetic B6-Xorem1 and D2-WT mice.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files. Source data are provided with this paper.

References

  1. Collins, A. J. et al. Excerpts from the United States Renal Data System 2004 annual data report: atlas of end-stage renal disease in the United States. Am. J. Kidney Dis. 45, A5–A7, S1–280 (2005).

    Article  Google Scholar 

  2. Ogurtsova, K. et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pr. 128, 40–50 (2017).

    Article  CAS  Google Scholar 

  3. The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int. 47, 1703–1720 (1995).

    Article  Google Scholar 

  4. Qi, Z. et al. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54, 2628–2637 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Breyer, M. D. et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 16, 27–45 (2005).

    Article  PubMed  Google Scholar 

  6. Susztak, K., Raff, A. C., Schiffer, M. & Bottinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy 2. Diabetes 55, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Stieger, N. et al. Impact of high glucose and transforming growth factor-beta on bioenergetic profiles in podocytes. Metab. Clin. Exp. 61, 1073–1086 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, X. et al. Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy. PLoS ONE 12, e0185250 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sol, M. et al. Glomerular endothelial cells as instigators of glomerular sclerotic diseases. Front. Pharmacol. 11, 573557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuwabara, A., Satoh, M., Tomita, N., Sasaki, T. & Kashihara, N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia 53, 2056–2065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qi, H. et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes 66, 763–778 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 107, 1058–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dikalov, S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289–1301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Aliciguzel, Y., Ozen, I., Aslan, M. & Karayalcin, U. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J. Lab. Clin. Med. 142, 172–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Inkster, M. E., Cotter, M. A. & Cameron, N. E. Treatment with the xanthine oxidase inhibitor, allopurinol, improves nerve and vascular function in diabetic rats. Eur. J. Pharmacol. 561, 63–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Seaquist, E. R., Goetz, F. C., Rich, S. & Barbosa, J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N. Engl. J. Med. 320, 1161–1165 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Vardarli, I. et al. Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int. 62, 2176–2183 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Moczulski, D. K., Rogus, J. J., Antonellis, A., Warram, J. H. & Krolewski, A. S. Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis. Diabetes 47, 1164–1169 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Schelling, J. R. et al. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: the Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 57, 235–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Pezzolesi, M. G. et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 58, 1403–1410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheehan, S. et al. Genetic analysis of albuminuria in a cross between C57BL/6J and DBA/2J mice. Am. J. Physiol. Ren. Physiol. 293, F1649–F1656 (2007).

    Article  CAS  Google Scholar 

  23. Peirce, J. L., Lu, L., Gu, J., Silver, L. M. & Williams, R. W. A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet. 5, 7 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Clee, S. M. et al. Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat. Genet. 38, 688–693 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Klein, R. F. et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303, 229–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X. et al. Joint mouse–human phenome-wide association to test gene function and disease risk. Nat. Commun. 7, 10464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, X. et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat. Genet. 37, 365–372 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Y. et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158, 1415–1430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andreux, P. A. et al. Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 150, 1287–1299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor, B. A. in Genetic Variants and Strains of the Laboratory Mouse 2nd edn (eds. Lyon, M. L. & Searle, A. G.) 773–796 (Oxford University Press, 1989).

  31. Ohtsubo, T., Rovira, I. I., Starost, M. F., Liu, C. & Finkel, T. Xanthine oxidoreductase is an endogenous regulator of cyclooxygenase-2. Circ. Res. 95, 1118–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Piret, S. E. et al. A mouse model of early-onset renal failure due to a xanthine dehydrogenase nonsense mutation. PLoS ONE 7, e45217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohtsubo, T. et al. Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 54, 868–876 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Kitada, M., Ogura, Y. & Koya, D. Rodent models of diabetic nephropathy: their utility and limitations. Int. J. Nephrol. Renov. 9, 279–290 (2016).

    Article  CAS  Google Scholar 

  35. Spencer, M. W. et al. Hyperglycemia and hyperlipidemia act synergistically to induce renal disease in LDL receptor-deficient BALB mice. Am. J. Nephrol. 24, 20–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ovcharenko, I. et al. Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res. 15, 184–194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomas-Chollier, M. et al. Transcription factor binding predictions using TRAP for the analysis of ChIP–seq data and regulatory SNPs. Nat. Protoc. 6, 1860–1869 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Rops, A. L. et al. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines. Kidney Int. 66, 2193–2201 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics 30, 2375–2376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sander, J. D. & Joung, J. K. CRISPR–Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seruggia, D. & Montoliu, L. The new CRISPR–Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 23, 707–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Leiter, E. H. Multiple low-dose streptozotocin-induced hyperglycemia and insulitis in C57BL mice: influence of inbred background, sex, and thymus. Proc. Natl Acad. Sci. USA 79, 630–634 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clotet, S., Riera, M., Pascual, J. & Soler, M. J. RAS and sex differences in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 310, F945–F957 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Oka, H. et al. Lysophosphatidylcholine induces urokinase-type plasminogen activator and its receptor in human macrophages partly through redox-sensitive pathway. Arterioscler. Thromb. Vasc. Biol. 20, 244–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Rotbain Curovic, V. et al. Soluble urokinase plasminogen activator receptor predicts cardiovascular events, kidney function decline, and mortality in patients with type 1 diabetes. Diabetes Care 42, 1112–1119 (2019).

    Article  PubMed  Google Scholar 

  48. Bouchareb, R., Yu, L., Lassen, E. & Daehn, I. S. Isolation of conditionally immortalized mouse glomerular endothelial cells with fluorescent mitochondria. J. Vis. Exp. https://doi.org/10.3791/64147 (2022).

  49. Susztak, K. et al. Genomic strategies for diabetic nephropathy. J. Am. Soc. Nephrol. 14, S271–S278 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Okamoto, K. et al. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J. Biol. Chem. 278, 1848–1855 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Takano, Y. et al. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci. 76, 1835–1847 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Malik, U. Z. et al. Febuxostat inhibition of endothelial-bound XO: implications for targeting vascular ROS production. Free Radic. Biol. Med 51, 179–184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anderson, S. & Brenner, B. M. The aging kidney: structure, function, mechanisms, and therapeutic implications. J. Am. Geriatr. Soc. 35, 590–593 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Kaplan, C., Pasternack, B., Shah, H. & Gallo, G. Age-related incidence of sclerotic glomeruli in human kidneys. Am. J. Pathol. 80, 227–234 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brandis, A., Bianchi, G., Reale, E., Helmchen, U. & Kuhn, K. Age-dependent glomerulosclerosis and proteinuria occurring in rats of the milan normotensive strain and not in rats of the milan hypertensive strain. Lab. Invest. 55, 234–243 (1986).

    CAS  PubMed  Google Scholar 

  56. McCrimmon, A. et al. Redox phospholipidomics analysis reveals specific oxidized phospholipids and regions in the diabetic mouse kidney. Redox Biol. 58, 102520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kadiiska, M. B. et al. Thiazolidinedione treatment decreases oxidative stress in spontaneously hypertensive heart failure rats through attenuation of inducible nitric oxide synthase-mediated lipid radical formation. Diabetes 61, 586–596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dijkstra, G. et al. Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. J. Pathol. 186, 416–421 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Ebefors, K. et al. Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int. 96, 957–970 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kasai, H. & Nishimura, S. Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucleic Acids Res. 12, 2137–2145 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leiter, E. H. Differential susceptibility of Balb/C sublines to diabetes induction by multi-dose streptozotocin treatment. Curr. Top. Microbiol. Immunol. 122, 78–85 (1985).

    CAS  PubMed  Google Scholar 

  63. Schmitt, R. & Melk, A. Molecular mechanisms of renal aging. Kidney Int. 92, 569–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Millward, C. A. et al. Mice with a deletion in the gene for CCAAT/enhancer-binding protein β are protected against diet-induced obesity. Diabetes 56, 161–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Schroeder-Gloeckler, J. M. et al. CCAAT/enhancer-binding protein deletion reduces adiposity, hepatic steatosis, and diabetes in Leprdb/db mice. J. Biol. Chem. 282, 15717–15729 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Lassen, E. & Daehn, I. S. Molecular mechanisms in early diabetic kidney disease: glomerular endothelial cell dysfunction. Int. J. Mol. Sci. 21, 9456 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hong, Q. et al. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium 51, 402–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. d’Ischia, M., Napolitano, A., Manini, P. & Panzella, L. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications. Chem. Res. Toxicol. 24, 2071–2092 (2011).

    Article  PubMed  Google Scholar 

  69. Tang, C., Livingston, M. J., Liu, Z. & Dong, Z. Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol. 16, 489–508 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lenoir, O. et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11, 1130–1145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tagawa, A. et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65, 755–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Werner, E. R., Blau, N. & Thony, B. Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem. J. 438, 397–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Kuzkaya, N., Weissmann, N., Harrison, D. G. & Dikalov, S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J. Biol. Chem. 278, 22546–22554 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, Y. B. et al. Glomerular endothelial cell injury and damage precedes that of podocytes in adriamycin-induced nephropathy. PLoS ONE 8, e55027 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Casalena, G. A. et al. The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes. Cell Commun. Signal 18, 105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khosla, U. M. et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 67, 1739–1742 (2005).

    Article  PubMed  Google Scholar 

  77. Jalal, D. I., Maahs, D. M., Hovind, P. & Nakagawa, T. Uric acid as a mediator of diabetic nephropathy. Semin. Nephrol. 31, 459–465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Washio, K. et al. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans. Metab. Clin. Exp. 70, 51–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Miric, D. J. et al. Xanthine oxidase activity in type 2 diabetes mellitus patients with and without diabetic peripheral neuropathy. J. Diabetes Res. 2016, 4370490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Furuhashi, M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am. J. Physiol. Endocrinol. Metab. 319, E827–E834 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Dissanayake, L. V. et al. Lack of xanthine dehydrogenase leads to a remarkable renal decline in a novel hypouricemic rat model. iScience 25, 104887 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, J. et al. Associations of hypertension and its complications with variations in the xanthine dehydrogenase gene. Hypertens. Res. 31, 931–940 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Kudo, M., Sasaki, T., Ishikawa, M., Hirasawa, N. & Hiratsuka, M. Functional characterization of genetic polymorphisms identified in the promoter region of the xanthine oxidase gene. Drug Metab. Pharmacokinet 25, 599–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Boban, M. et al. Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease. Ren. Fail. 36, 613–618 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Badve, S. V. et al. Effects of allopurinol on the progression of chronic kidney disease. N. Engl. J. Med. 382, 2504–2513 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Doria, A. et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N. Engl. J. Med. 382, 2493–2503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goldberg, A. et al. Mini review: reappraisal of uric acid in chronic kidney disease. Am. J. Nephrol. 52, 837–844 (2022).

    Article  Google Scholar 

  88. Sanchez-Lozada, L. G. et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp. Nephrol. 121, e71–e78 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Kim, I. Y., Lee, D. W., Lee, S. B. & Kwak, I. S. The role of uric acid in kidney fibrosis: experimental evidences for the causal relationship. Biomed Res. Int. 2014, 638732 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Galbusera, C., Orth, P., Fedida, D. & Spector, T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem. Pharmacol. 71, 1747–1752 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Haberland, A., Luther, H. & Schimke, I. Does allopurinol prevent superoxide radical production by xanthine oxidase (XOD)? Agents Actions 32, 96–97 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Massey, V., Komai, H., Palmer, G. & Elion, G. B. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J. Biol. Chem. 245, 2837–2844 (1970).

    Article  CAS  PubMed  Google Scholar 

  93. Horiuchi, H. et al. Allopurinol induces renal toxicity by impairing pyrimidine metabolism in mice. Life Sci. 66, 2051–2070 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, H. J. et al. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model. Am. J. Nephrol. 40, 56–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gaudet, M., Fara, A.-G., Beritognolo, I. & Sabatti, M. in Single Nucleotide Polymorphisms: Methods and Protocols (ed. Komar, A. A.) 415–424 (Humana Press, 2009).

  97. Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wu, Z. J., Irizarry, R. A., Gentleman, R., Martinez-Murillo, F. & Spencer, F. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 99, 909–917 (2004).

    Article  Google Scholar 

  101. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ma, L. J. & Fogo, A. B. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int. 64, 350–355 (2003).

    Article  PubMed  Google Scholar 

  103. Ohno, M., Oka, S. & Nakabeppu, Y. Quantitative analysis of oxidized guanine, 8-oxoguanine, in mitochondrial DNA by immunofluorescence method. Methods Mol. Biol. 554, 199–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Feenstra, B., Skovgaard, I. M. & Broman, K. W. Mapping quantitative trait loci by an extension of the Haley–Knott regression method using estimating equations. Genetics 173, 2269–2282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakai, K., Kadiiska, M. B., Jiang, J. J., Stadler, K. & Mason, R. P. Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin. Proc. Natl Acad. Sci. USA 103, 4616–4621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stadler, K. et al. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis. Am. J. Physiol. Endocrinol. Metab. 295, E456–E462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Genome Engineering and iPSC Center (GEiC) at Washington University Department of Genetics for providing support in the generation of small guide RNAs. We acknowledge Dr. K Kelly (The Institutional Mouse Genetics and Gene Targeting CoRE at Mount Sinai) for his valuable technical help in generation of B6-Xorem1(rs50771495-A>C/rs50017899-T>A)Isd knock-in mice. We thank A. Bajpai for his assistance with mice genetics. Parts of this research have been conducted using the UK Biobank Resource under application number 53074. This work was supported by grants from National Institutes of Health (NIH) grant R01DK097253 and Department of Defense CDMRP grant E01 W81XWH2010836 to I.D., and Leducq Foundation Award Number 21CVD01 to Y.I.

Author information

Authors and Affiliations

Authors

Contributions

Q.W., H.Q., E.B. and I.D. conceived the idea, designed the research and wrote the first version of the manuscript. Q.W., H.Q., G.C., S.S., R.B., E.L., S.L., I.D. and L.Y. collected samples and performed the in vitro and in vivo experiments and performed the validation experiments. Z.Y. and W.Z. were responsible for the bioinformatic analyses of the microarray data. Y.W. and Y.I. performed human PheWAS. L.L. and R.W.W. performed the mouse QTL and eQTL analysis. J.D. performed in silico assessment of TFBS. K.S. performed and analysed electron paramagnetic resonance spectroscopy experiments. K.E., F.S. and R.G. performed TEM and provided pathology insights. Q.W., H.Q. and I.D. prepared the figures. I.D. developed the experimental strategy, supervised the project and wrote and edited the manuscript, which was then read by, commented on and approved by all authors.

Corresponding author

Correspondence to Ilse Daehn.

Ethics declarations

Competing interests

I.D. has a consultancy agreement with RUMI. J.D. is an executive at Prime Medicine. None of the other authors have competing interests.

Peer review

Peer review information

Nature Metabolism thanks Jochen Reiser, Farhad Danesh, Karin Jandeleit-Dahm and Jason Bubier for their contribution to the peer review of this work. Primary handling editor: Isabella Samuelson, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fasting blood glucose (FBG), body weight (BW), urine albumin:creatinine uACR and podocyte numbers per glomerulus in non-diabetic and diabetic D2 mice + /- XOi.

Bar graph shows the mean + /- SD of fasting blood glucose (FBG; mg/dl) in a) and BW (g) b) of D2-WT control ± allopurinol (XOi; n = 5/group) or STZ treated D2-WT mice ± XOi (n = 8/group) at 6 and 12 weeks of diabetes as indicated. c) uACR (ug/mg) of D2-WT ± XOi (n = 5/group) or STZ treated D2-WT only (n = 5) or + XOi (n = 10) at 6, 12 weeks of diabetes, and d) podocyte number (WT1 + cells) per glomerular section of control D2-WT ± XOi, or STZ treated D2-WT ± XOi at 6, 12 weeks of diabetes in >50 glomerular profiles/mouse (n = 5 mice/group). All data are presented as mean values ±SEM. Statistical significance in was calculated by one-way ANOVA with Tukey’s multiple comparisons test.

Extended Data Fig. 2 Transcription Factor Binding Sites (TFBS) in the promoter of XOR.

Mulan sequence conservation profile for the XOR promoter locus from human, cow and mouse genomes a). CEBP binding sites show high regulatory potential as indicated by a purple block depicted as colored tick marks above the conservation profile. Coding exons are in blue, UTRs in yellow, intergenic elements in red, and intronic in pink. b) multiTF visualization of XOR transcription factor binding site detected in the XOR locus constructed with mouse sequences (black rectangle). Identified TFBSs are depicted as colored blocks above the conservation profile.

Extended Data Fig. 3 Genotyping for XOR variants in mGECs and FACS gating strategy for ROS.

a) Representative agarose gel showing bands for B6-XorWT (top) and D2-WT (bottom) variants. Molecular weight markers in lane 1, lane 2: D2-WT, lane 3: B6-XorWT mice and in lane 4: mGECs. Image is representative of 4 independent tests. b) Genotyping strategy for detecting SNP variant through mismatch with AS primers F1 and F2 using a common R primer as described in Methods. c) FACS gating strategy showing a representative plot of negative unlabeled control mGECs % population of CM-H2-DCFDA, and d) % population of cells positive for CM-H2-DCFDA after 24 hr HG treatment.

Extended Data Fig. 4 Fasting blood glucose, body weights, serum suPAR and triglycerides in mice made diabetic by STZ, or genetic predisposition (Akita), or high fat diet (HFD).

a) Bar graph shows the fasting blood glucose in male B6-XorWT, B6-Xorem1 and D2-WT mice (n = 6/group) and female B6-XorWT (n = 4), B6-Xorem1 (n = 5) and D2-WT mice (n = 6) at 12 weeks of diabetes. b) Serum suPAR levels in diabetic B6-XorWT, B6-Xorem1 (n = 5/group) and D2-WT mice (n = 4). c) Fasting blood glucose and d) body weight (g) of Akita B6 (n = 4) and Akita B6-Xorem1 mice (n = 5) at 12 weeks of diabetes. e) Shows the fasting blood glucose, f) the body weight, g) triglycerides (mg/dL) and h) serum suPAR levels in B6-XorWT and B6-Xorem1 after 16 weeks of high fat diet (HFD, n = 5 mice/group). All data are presented as mean values ±SEM. In a) a two-way analysis of variance and Tukey’s multiple comparisons test was performed (*P < 0.05). In b-h) unpaired two-tailed Student’s t-tests was performed and showed no statistical significance between the groups.

Extended Data Fig. 5 C/EBPβ in high glucose or oxidized LDL treated primary GECs and podocytes.

a) Representative immunofluorescence staining for C/EBPβ (green) and CD31 (magenta) in primary glomerular endothelial cells from B6-XorWT and B6-Xorem1 mice (n = 3), treated with control normal glucose (NG), or high glucose (HG, 30 mM) for 24 hours showing nuclear translocation. Bar=20μm. b) C/EBPβ (green) and synaptopodin (red) in primary podocytes from B6-XorWT and B6-Xorem1 mice (n = 3), treated as in a). Bar=20μm. These are representative images from 3 independent experiments performed in primary cells grown from 3 separate B6-XorWT and 3 separate B6-Xorem1 mice.

Extended Data Table. 1 Candidate genes
Extended Data Table. 2 XOR regulatory variants in participants in the UK Biobank
Extended Data Table. 3 Gene level phenome wide association analyses
Extended Data Table. 4 CRISPR/Cas9 off-target analysis in the B6-XORem1(rs50771495-A>C/rs50017899-T>A)Isd mouse line

Supplementary information

Source data

Source Data Fig. 1

Unprocessed gel for Fig. 2b.

Source Data Fig. 2

Unprocessed western blot for Fig. 2g

Source Data Fig. 3

Unprocessed western blot for Fig. 3e

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Qi, H., Wu, Y. et al. Genetic susceptibility to diabetic kidney disease is linked to promoter variants of XOR. Nat Metab 5, 607–625 (2023). https://doi.org/10.1038/s42255-023-00776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-023-00776-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing