Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes

Abstract

Patatin-like phospholipase-domain-containing 2 (PNPLA2; also known as adipose triglyceride lipase, ATGL) and PNPLA3 (also known as adiponutrin) are encoded by close paralogues and appear to have opposite functions on triacylglycerol mobilization and storage. PNPLA2 is a major triglyceride lipase in adipose tissue and liver, whereas a common human variant of PNPLA3, I148M, greatly increases risk of hepatosteatosis. Nonetheless, the function of PNPLA3 and the mechanism by which the I148M variant promotes triacylglycerol accumulation are poorly understood. Here we demonstrate that PNPLA3 strongly interacts with α/β-hydrolase-domain-containing 5 (ABHD5; also known as CGI-58), an essential co-activator of PNPLA2. Molecular imaging experiments demonstrate that PNPLA3 effectively competes with PNPLA2 for ABHD5 and that PNPLA3 I148M competes even more effectively. Inducible overexpression of PNPLA3 I148M greatly suppressed PNPLA2-dependent lipolysis and triggered massive triacylglycerol accumulation in brown adipocytes, with these effects dependent on ABHD5. The interaction of PNPLA3 and ABHD5 can be regulated by fatty acid supplementation and synthetic ABHD5 ligands, raising the possibility that this interaction might be targeted for the treatment of fatty liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ABHD5 and PNPLA3 co-traffic to the ER.
Fig. 2: ABHD5 and PNPLA3 interact on ER structures and LDs.
Fig. 3: The interaction between ABHD5 and PNPLA3 is regulated by endogenous and synthetic ligands of ABHD5.
Fig. 4: PNPLA3 competes for ABHD5 and suppresses PNPLA2-dependent lipolysis.
Fig. 5: The I148M substitution in PNPLA3 enhances the interaction between ABHD5 and PNPLA3 on LDs.
Fig. 6: The I148M variant in PNPLA3 represents a gain-of-function mutation for suppressing ABHD5-dependent lipolysis.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and its supplementary information files or are available from the corresponding authors upon reasonable request.

References

  1. Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    Article  CAS  Google Scholar 

  2. Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin–Dorfman syndrome. Cell Metab. 3, 309–319 (2006).

    Article  CAS  Google Scholar 

  3. Sztalryd, C. & Brasaemle, D. L. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim. Biophys. Acta 1862, 1221–1232 (2017).

    Article  CAS  Google Scholar 

  4. Schweiger, M., Lass, A., Zimmermann, R., Eichmann, T. O. & Zechner, R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297, E289 (2009).

    Article  CAS  Google Scholar 

  5. Lord, C. C. et al. Regulation of hepatic triacylglycerol metabolism by CGI-58 does not require ATGL co-activation. Cell Rep. 16, 939–949 (2016).

    Article  CAS  Google Scholar 

  6. Xie, M. & Roy, R. The causative gene in Chanarian–Dorfman syndrome regulates lipid droplet homeostasis in C. elegans. PLoS Genet. 11, e1005284 (2015).

    Article  Google Scholar 

  7. Holmes, R. Comparative studies of adipose triglyceride lipase genes and proteins: an ancient gene in vertebrate evolution. Open Access Bioinformatics 4, 15–29 (2012).

    Article  CAS  Google Scholar 

  8. Baulande, S., Lasnier, F., Lucas, M. & Pairault, J. Adiponutrin, a transmembrane protein corresponding to a novel dietary- and obesity-linked mRNA specifically expressed in the adipose lineage. J. Biol. Chem. 276, 33336–33344 (2001).

    Article  CAS  Google Scholar 

  9. Kershaw, E. E. et al. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 55, 148–157 (2006).

    Article  CAS  Google Scholar 

  10. He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).

    Article  CAS  Google Scholar 

  11. Huang, Y., Cohen, J. C. & Hobbs, H. H. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J. Biol. Chem. 286, 37085–37093 (2011).

    Article  CAS  Google Scholar 

  12. Kumari, M. et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 15, 691–702 (2012).

    Article  CAS  Google Scholar 

  13. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  Google Scholar 

  14. BasuRay, S., Smagris, E., Cohen, J. C. & Hobbs, H. H. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66, 1111–1124 (2017).

    Article  CAS  Google Scholar 

  15. Smagris, E. et al. Pnpla3 I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61, 108–118 (2015).

    Article  CAS  Google Scholar 

  16. Basantani, M. K. et al. Pnpla3/adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J. Lipid Res. 52, 318–329 (2011).

    Article  CAS  Google Scholar 

  17. Chen, W., Chang, B., Li, L. & Chan, L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 52, 1134–1142 (2010).

    Article  CAS  Google Scholar 

  18. Li, J. Z. et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Invest. 122, 4130–4144 (2012).

    Article  CAS  Google Scholar 

  19. Perttila, J. et al. PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. Am. J. Physiol. Endocrinol. Metab.. 302, E1063–E1069 (2012).

    Article  CAS  Google Scholar 

  20. Patel, S., Yang, W., Kozusko, K., Saudek, V. & Savage, D. B. Perilipins 2 and 3 lack a carboxy-terminal domain present in perilipin 1 involved in sequestering ABHD5 and suppressing basal lipolysis. Proc. Natl Acad. Sci. USA 111, 9163–9168 (2014).

    Article  CAS  Google Scholar 

  21. Granneman, J. G. & Moore, H.-P. H. Location, location: protein trafficking and lipolysis in adipocytes. Trends Endocrinol. Metab. 19, 3–9 (2008).

    Article  CAS  Google Scholar 

  22. Yamaguchi, T., Omatsu, N., Matsushita, S. & Osumi, T. CGI-58 interacts with perilipin and is localized to lipid droplets: possible involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome. J. Biol. Chem. 279, 30490–30497 (2004).

    Article  CAS  Google Scholar 

  23. Granneman, J. G., Moore, H.-P. H., Mottillo, E. P. & Zhu, Z. Functional interactions between Mldp (LSDP5) and Abhd5 in the control of intracellular lipid accumulation. J. Biol. Chem. 284, 3049–3057 (2009).

    Article  CAS  Google Scholar 

  24. Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278–1286 (2006).

    Article  Google Scholar 

  25. Huang, Y. et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc. Natl Acad. Sci. USA 107, 7892–7897 (2010).

    Article  CAS  Google Scholar 

  26. Qiao, A. et al. Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis. Hepatology 54, 509–521 (2011).

    Article  CAS  Google Scholar 

  27. Sanders, M. A. et al. Endogenous and synthetic ABHD5 ligands regulate ABHD5–perilipin interactions and lipolysis in fat and muscle. Cell Metab. 22, 851–860 (2015).

    Article  CAS  Google Scholar 

  28. Rondini, E. A. et al. Novel pharmacological probes reveal ABHD5 as a locus of lipolysis control in white and brown adipocytes. J. Pharmacol. Exp. Ther. 363, 367–376 (2017).

    Article  CAS  Google Scholar 

  29. Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).

    Article  CAS  Google Scholar 

  30. Dongiovanni, P. et al. PNPLA3 I148M polymorphism and progressive liver disease. World J. Gastroenterol. 19, 6969–6978 (2013).

    Article  CAS  Google Scholar 

  31. Ghosh, A. K., Ramakrishnan, G., Chandramohan, C. & Rajasekharan, R. CGI-58, the causative gene for Chanarin–Dorfman syndrome, mediates acylation of lysophosphatidic acid. J. Biol. Chem. 283, 24525–24533 (2008).

    Article  CAS  Google Scholar 

  32. Chakrabarti, P. et al. SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J. Lipid Res. 52, 1693–1701 (2011).

    Article  CAS  Google Scholar 

  33. Dubuquoy, C. et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. J. Hepatol. 55, 145–153 (2011).

    Article  CAS  Google Scholar 

  34. Chamoun, Z., Vacca, F., Parton, R. G. & Gruenberg, J. PNPLA3/adiponutrin functions in lipid droplet formation. Biol. Cell 105, 219–233 (2013).

    Article  CAS  Google Scholar 

  35. Donati, B. et al. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology 63, 787–798 (2016).

    Article  CAS  Google Scholar 

  36. Kumashiro, N. et al. Role of patatin-like phospholipase domain-containing 3 on lipid-induced hepatic steatosis and insulin resistance in rats. Hepatology 57, 1763–1772 (2013).

    Article  CAS  Google Scholar 

  37. Mitsche, M. A., Hobbs, H. H. & Cohen, J. C. Patatin-like phospholipase domain–containing protein 3 promotes transfers of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J. Biol. Chem. 293, 6958–6968 (2018).

    Article  CAS  Google Scholar 

  38. Montero-Moran, G. et al. CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J. Lipid Res. 51, 709–719 (2010).

    Article  CAS  Google Scholar 

  39. Edens, N. K., Leibel, R. L. & Hirsch, J. Mechanism of free fatty acid re-esterification in human adipocytes in vitro. J. Lipid Res. 31, 1423–1431 (1990).

    CAS  PubMed  Google Scholar 

  40. Leibel, R. L., Hirsch, J., Berry, E. M. & Gruen, R. K. Alterations in adipocyte free fatty acid re-esterification associated with obesity and weight reduction in man. Am. J. Clin. Nutr. 42, 198–206 (1985).

    Article  CAS  Google Scholar 

  41. Jenkins, C. M. et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975 (2004).

    Article  CAS  Google Scholar 

  42. Ohno, Y., Nara, A., Nakamichi, S. & Kihara, A. Molecular mechanism of the ichthyosis pathology of Chanarin–Dorfman syndrome: stimulation of PNPLA1-catalyzed ω-O-acylceramide production by ABHD5. J. Dermatol. Sci. 92, 245–253 (2018).

    Article  CAS  Google Scholar 

  43. Kien, B. et al. ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J. Lipid Res. 59, 2360–2367 (2018).

    Article  CAS  Google Scholar 

  44. Stender, S. et al. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat. Genet. 49, 842–847 (2017).

    Article  CAS  Google Scholar 

  45. Schweiger, M. et al. Measurement of lipolysis. Methods Enzymol. 538, 171–193 (2014).

    Article  CAS  Google Scholar 

  46. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Wang and M. Sanders for critical discussions and W. Liu for providing plasmids containing human PNPLA3. This work was supported by National Institutes of Health (NIH) grants, F30-DK116529-01A1 to A.Y., K99-DK114471 to E.P.M., and DK76629 and DK105963 to J.G.G. The Microscopy, Imaging and Cytometry Resources Core is supported, in part, by NIH Center grant P30 CA022453 to the Karmanos Cancer Institute at Wayne State University and the Perinatology Research Branch of the National Institutes of Child Health and Development at Wayne State University. The Lipidomics Core Facility at Wayne State University was supported in part by National Center for Research Resources, National Institutes of Health grant S10RR027926.

Author information

Authors and Affiliations

Authors

Contributions

J.G.G. and E.P.M. conceived the experiments. J.G.G., E.P.M. and A.Y. designed the experiments. A.Y., E.P.M., L.Z. and L.M.L. conducted the experiments. A.Y., E.P.M. and J.G.G. analysed the data and wrote the manuscript. All authors read the manuscript and approved the final version.

Corresponding authors

Correspondence to Emilio P. Mottillo or James G. Granneman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Mottillo, E.P., Mladenovic-Lucas, L. et al. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat Metab 1, 560–569 (2019). https://doi.org/10.1038/s42255-019-0066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0066-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing