Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Visual anemometry for physics-informed inference of wind

Abstract

Accurate measurements of atmospheric flows at metre-scale resolution are essential for many sustainability applications, including optimal design of wind and solar farms, navigation and control of air flows in the built environment, monitoring of environmental phenomena such as wildfires and air pollution dispersal, and data assimilation into weather and climate models. Measurement of the relevant multiscale wind flows is inherently challenged by the optical transparency of the wind. This Perspective article explores new ways in which physics can be leveraged to ‘see’ environmental flows non-intrusively, that is, without the need to place measurement instruments directly in the flows of interest. Specifically, although wind itself is transparent, its effect can be seen in the motion of objects embedded in the environment and subjected to wind — swaying trees and flapping flags are commonly encountered examples. We survey emerging efforts to accomplish visual anemometry, the task of quantitatively inferring local wind conditions on the basis of the physics of observed flow–structure interactions. Approaches based on first-principles physics as well as data-driven, machine learning methods will be described, and remaining obstacles to fully generalizable visual anemometry are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physics of flow–structure interactions.
Fig. 2: Data-driven implementation of visual anemometry based on measurements collected at a research field site and in a laboratory wind tunnel.
Fig. 3: Large-scale wind tunnel measurements of vegetation under controlled wind conditions.
Fig. 4: Compilation of visual anemometry measurements of eight vegetation species.

Similar content being viewed by others

References

  1. Wanninkhof, R. & McGillis, W. R. A cubic relationship between air–sea CO2 exchange and wind speed. Geophys. Res. Lett. 26, 1889–1892 (1999).

    ADS  Google Scholar 

  2. King, A. W. et al. North America’s net terrestrial CO2 exchange with the atmosphere 1990–2009. Biogeosciences 12, 399–414 (2015).

    ADS  Google Scholar 

  3. Casas-Ruiz, J. P. et al. Integrating terrestrial and aquatic ecosystems to constrain estimates of land–atmosphere carbon exchange. Nat. Commun. 14, 1571 (2023).

    ADS  Google Scholar 

  4. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373 (1992).

    ADS  Google Scholar 

  5. Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J. D. & Upstill-Goddard, R. C. Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological surfactants. Nat. Geosci. 11, 492–496 (2018).

    ADS  Google Scholar 

  6. Upstill-Goddard, R. C. Air–sea gas exchange in the coastal zone. Estuar. Coast. Shelf Sci. 70, 388–404 (2006).

    ADS  Google Scholar 

  7. Pithan, F. et al. Role of air–mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci. 11, 805–812 (2018).

    ADS  Google Scholar 

  8. Siegenthaler, U. & Sarmiento, J. L. Atmospheric carbon dioxide and the ocean. Nature 365, 119–125 (1993).

    ADS  Google Scholar 

  9. Huffman, J. A. et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13, 6151–6164 (2013).

    ADS  Google Scholar 

  10. Burrows, F. M. Wind-borne seed and fruit movement. N. Phytol. 75, 405–418 (1975).

    Google Scholar 

  11. Horn, H. S., Nathan, R. A. N. & Kaplan, S. R. Long-distance dispersal of tree seeds by wind. Ecol. Res. 16, 877–885 (2001).

    Google Scholar 

  12. Okubo, A. & Levin, S. A. A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70, 329–338 (1989).

    Google Scholar 

  13. de Langre, E. Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141–168 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  14. Nathan, R. et al. Mechanisms of long-distance dispersal of seeds by wind. Nature 418, 409–413 (2002).

    ADS  Google Scholar 

  15. Butler, R. W., Williams, T. D., Warnock, N. & Bishop, M. A. Wind assistance: a requirement for migration of shorebirds? Auk 114, 456–466 (1997).

    Google Scholar 

  16. Canham, R., Flemming, S. A., Hope, D. D. & Drever, M. C. Sandpipers go with the flow: correlations between estuarine conditions and shorebird abundance at an important stopover on the Pacific Flyway. Ecol. Evol. 11, 2828–2841 (2021).

    Google Scholar 

  17. Drake, V. A. & Farrow, R. A. The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol. 33, 183–210 (1988).

    Google Scholar 

  18. Burton, T., Jenkins, N., Sharpe, D. & Bossanyi, E. Wind energy handbook. Wind. Eng. 25, 197–199 (2011).

    Google Scholar 

  19. Veers, P. et al. Grand challenges in the science of wind energy. Science 366, eaau2027 (2019).

    ADS  Google Scholar 

  20. Clifton, A., Barber, S., Stökl, A., Frank, H. & Karlsson, T. Research challenges and needs for the deployment of wind energy in hilly and mountainous regions. Wind. Energy Sci. 7, 2231–2254 (2022).

    ADS  Google Scholar 

  21. Stanislawski, B. J., Harman, T., Silverman, T. J., Cal, R. B. & Calaf, M. Row spacing as a controller of solar module temperature and power output in solar farms. J. Renew. Sustain. Energy 14, 063702 (2022).

    Google Scholar 

  22. Smith, S. E. et al. Viewing convection as a solar farm phenomenon broadens modern power predictions for solar photovoltaics. J. Renew. Sustain. Energy 14, 063502 (2022).

    Google Scholar 

  23. Hart, C. Mediaeval kites and windsocks. Aeronaut. J. 73, 1019–1026 (1969).

    Google Scholar 

  24. Kaimal, J. C. & Finnigan, J. J. Atmospheric boundary layer flows: their structure and measurement. Book 72, 289 (1994).

    Google Scholar 

  25. Zhang, Y., Yuan, J., Wu, Y., Dong, J. & Xia, H. Sub-meter wind detection with pulsed coherent Doppler lidar. Phys. Rev. Fluids 8, L022701 (2023).

    ADS  Google Scholar 

  26. Baker, R. C. Flow measurement handbook: industrial designs, operating principles, performance, and applications. Flow Measurement Handbook https://doi.org/10.1017/CBO9780511471100 (Cambridge Univ. Press, 2000).

  27. Goymer, P. A trillion trees. Nat. Ecol. Evol. 2, 208–209 (2018).

    Google Scholar 

  28. Parkinson, G. V. Wind-induced instability of structures. Philos. Trans. R. Soc. A. 269, 395–413 (1971).

    ADS  Google Scholar 

  29. Simpson, G. C. The Velocity Equivalents of the Beaufort Scale (HM Stationery Office, 1926).

  30. Jemison, G. Beaufort scale of wind force as adapted for use on forested area of the northern Rocky Mountains. J. Sci. 49, 77–82 (1934).

    Google Scholar 

  31. Doswell, C. A., Brooks, H. E. & Dotzek, N. On the implementation of the enhanced Fujita scale in the USA. Atmos. Res. 93, 554–563 (2009).

    Google Scholar 

  32. Wade, J. E. & Hewson, E. W. Trees as a local climatic wind indicator. J. Appl. Meteorol. 18, 1182–1187 (1979).

    ADS  Google Scholar 

  33. Tropea, C., Yarin, A. L. & Foss, J. F. Springer Handbook of Experimental Fluid Mechanics (Springer Science+Business Media, 2007).

  34. Britter, R. E. & Hanna, S. R. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 35, 469–496 (2003).

    ADS  MATH  Google Scholar 

  35. Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571 (2000).

    ADS  MATH  Google Scholar 

  36. Belcher, S. E., Harman, I. N. & Finnigan, J. J. The wind in the willows: flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech. 44, 479–504 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  37. Nepf, H. M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123–142 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  38. Gunn, D. J. & Malik, A. A. Wind forces and the proximity of cooling towers to each other. Nature 210, 1142–1143 (1966).

    ADS  Google Scholar 

  39. McCroskey, W. J. Unsteady airfoils. Annu. Rev. Fluid Mech. 14, 285–311 (1982).

    ADS  MATH  Google Scholar 

  40. Hartog, J. P. D. Transmission line vibration due to sleet. Trans. Am. Inst. Electr. Eng. 51, 1074–1076 (1932).

    Google Scholar 

  41. Nikitas, N. & Macdonald, J. H. G. Misconceptions and generalizations of the Den Hartog galloping criterion. J. Eng. Mech. 140, 04013005 (2014).

    Google Scholar 

  42. Gosselin, F. P. Mechanics of a plant in fluid flow. J. Exp. Bot. 70, 3533–3548 (2019).

    Google Scholar 

  43. Alben, S., Shelley, M. & Zhang, J. Drag reduction through self-similar bending of a flexible body. Nature 420, 479–481 (2002).

    ADS  Google Scholar 

  44. Gosselin, F., de Langre, E. & Machado-Almeida, B. A. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319–341 (2010).

    ADS  MATH  Google Scholar 

  45. Vogel, S. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40, 941–948 (1989).

    Google Scholar 

  46. Vogel, S. Life in Moving Fluids: The Physical Biology of Flow (Princeton Univ. Press, 1994).

  47. Tadrist, L. et al. Foliage motion under wind, from leaf flutter to branch buffeting. J. R. Soc. Interface 15, 20180010 (2018).

    Google Scholar 

  48. Koehl, M. A. R. Effects of sea anemones on the flow forces they encounter. J. Exp. Biol. 69, 87–105 (1977).

    Google Scholar 

  49. Vogel, S. Drag and flexibility in sessile organisms. Am. Zool. 24, 37–44 (1984).

    Google Scholar 

  50. Gardiner, B., Berry, P. & Moulia, B. Review: wind impacts on plant growth, mechanics and damage. Plant. Sci. 245, 94–118 (2016).

    Google Scholar 

  51. Niklas, K. Differences between Acer saccharum leaves from open and wind-protected sites. Ann. Bot. 78, 61–66 (1996).

    Google Scholar 

  52. Jaffe, M. J. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta 114, 143–157 (1973).

    Google Scholar 

  53. Gipe, P. Wind Power. Wind. Eng. 28, 629–631 (2004).

    Google Scholar 

  54. Cardona, J. L., Bouman, K. L. & Dabiri, J. O. Wind speed inference from environmental flow–structure interactions. Flow 1, E4 (2021).

    Google Scholar 

  55. Bouman, K. L., Xiao, B., Battaglia, P. & Freeman, W. T. Estimating the material properties of fabric from video. 2013 IEEE International Conference on Computer Vision 1984–1991 (IEEE, 2013); https://doi.org/10.1109/ICCV.2013.455.

  56. Runia, T. F. H., Gavrilyuk, K., Snoek, C. G. M. & Smeulders, A. W. M. Cloth in the wind: a case study of physical measurement through simulation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 10498–10507 (IEEE, 2020).

  57. de Langre, E. Plant vibrations at all scales: a review. J. Exp. Bot. 70, 3521–3531 (2019).

    Google Scholar 

  58. Cardona, J. L. & Dabiri, J. O. Wind speed inference from environmental flow–structure interactions, part 2: leveraging unsteady kinematics. Preprint at https://doi.org/10.48550/arXiv.2107.09784 (2021).

  59. Shao, C.-P., Chen, Y.-J. & Lin, J.-Z. Wind induced deformation and vibration of a Platanus acerifolia leaf. Acta Mech. Sin. 28, 583–594 (2012).

    ADS  Google Scholar 

  60. Sun, J. J. et al. Self-supervised keypoint discovery in behavioral videos. 2022 IEEE/CVF Conference on Computer Vision and Pattern secognition (CVPR) 2161–2170 (IEEE, 2022).

  61. Betz, A. Das maximum der theoretisch moglichen auswendung des windes durch windmotoren. Z. gesamte Turbinewesen 26, 307–309 (1920).

    Google Scholar 

  62. Dabiri, J. O. Theoretical framework to surpass the Betz limit using unsteady fluid mechanics. Phys. Rev. Fluids 5, 022501 (2020).

    ADS  Google Scholar 

  63. Lu, S. S. & Willmarth, W. W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481–511 (1973).

    ADS  Google Scholar 

  64. Stull, R. B. An Introduction to Boundary Layer Meteorology Book 13 (Springer Netherlands, 1988).

  65. Bossuyt, J., Howland, M. F., Meneveau, C. & Meyers, J. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel. Exp. Fluids 58, 1 (2017).

    Google Scholar 

  66. Py, C., de Langre, E., Moulia, B. & Hémon, P. Measurement of wind-induced motion of crop canopies from digital video images. Agric. For. Meteorol. 130, 223–236 (2005).

    ADS  Google Scholar 

  67. Py, C., De Langre, E. & Moulia, B. A frequency lock-in mechanism in the interaction between wind and crop canopies. J. Fluid Mech. 568, 425 (2006).

    ADS  MATH  Google Scholar 

  68. Rodriguez, M., Ploquin, S., Moulia, B. & de Langre, E. The multimodal dynamics of a walnut tree: experiments and models. J. Appl. Mech. 79, 044505 (2012).

    ADS  Google Scholar 

  69. Barbacci, A. et al. A robust videogrametric method for the velocimetry of wind-induced motion in trees. Agric. For. Meteorol. 184, 220–229 (2014).

    ADS  Google Scholar 

  70. Tadrist, L., Julio, K., Saudreau, M. & de Langre, E. Leaf flutter by torsional galloping: experiments and model. J. Fluids Struct. 56, 1–10 (2015).

    ADS  Google Scholar 

  71. DGS. California Building Standards Commission. https://www.dgs.ca.gov/BSC/Codes (2022).

  72. Ching, F. D. K. & Winkel, S. R. Building Codes Illustrated: A Guide to Understanding the 2018 International Building Code (International Code Council, 2018).

  73. Gönen, T. Electrical Power Transmission System Engineering: Analysis and Design 1066 (John Wiley & Sons, 2009).

  74. Metwally, I. High-voltage power cables plug into the future. IEEE Potentials 27, 18–25 (2008).

    Google Scholar 

  75. Springer Handbook of Power Systems (Springer Singapore, 2021).

  76. Gockenbach, E. High voltage engineering. In Springer Handbooks 131–182 (Springer Science and Business Media Deutschland GmbH, 2021).

  77. Cardona, J. L., Howland, M. F. & Dabiri, J. O. Seeing the wind: visual wind speed prediction with a coupled convolutional and recurrent neural network. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) (eds Wallach, H. et al.) (Curran Associates, Inc., 2019).

  78. Zhang, Q., Xu, J., Crane, M. & Luo, C. See the wind: wind scale estimation with optical flow and VisualWind dataset. Sci. Total. Environ. 846, 157204 (2022).

    ADS  Google Scholar 

  79. Zhang, Q., Xu, J., Crane, M. & Luo, C. Visualwind: a novel video dataset for cameras to sense the wind. In IGARSS 2022 — 2022 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2022).

  80. Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

  81. Lin, T.-Y. et al. Microsoft COCO: common objects in context. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8693 LNCS, 740–755 (Springer Verlag, 2014).

  82. Goldshmid, R. H. & Dabiri, J. O. Visual anemometry measurements of eight vegetation species. CaltechDATA https://doi.org/10.22002/crb7k-1gj48 (2023).

    Article  Google Scholar 

  83. Tuller, S. E. & Brett, A. C. The characteristics of wind velocity that favor the fitting of a Weibull distribution in wind speed analysis. J. Clim. Appl. Meteorol. 23, 124–134 (1984).

    ADS  Google Scholar 

  84. Wilk, M. B. & Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 55, 1 (1968).

    Google Scholar 

  85. Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. J. Open. Res. Softw. 9, 12 (2021).

    Google Scholar 

  86. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Google Scholar 

  87. Beyer, R. A., Alexandrov, O. & McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 5, 537–548 (2018).

    ADS  Google Scholar 

  88. Beery, S. et al. The Auto Arborist Dataset: a large-scale benchmark for multiview urban forest monitoring under domain shift. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 21262–21275 (IEEE, 2022).

  89. Harris, G., Thompson, R., Childs, J. L. & Sanderson, J. G. Automatic storage and analysis of camera trap data. Bull. Ecol. Soc. Am. 91, 352–360 (2010).

    Google Scholar 

  90. Newey, S. et al. Limitations of recreational camera traps for wildlife management and conservation research: a practitioner’s perspective. Ambio 44, 624–635 (2015).

    Google Scholar 

  91. Hamel, S. et al. Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods Ecol. Evol. 4, 105–113 (2013).

    Google Scholar 

  92. Hentati‐Sundberg, J. et al. Seabird surveillance: combining CCTV and artificial intelligence for monitoring and research. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.329 (2023).

    Article  Google Scholar 

  93. Chen, R., Little, R., Mihaylova, L., Delahay, R. & Cox, R. Wildlife surveillance using deep learning methods. Ecol. Evol. 9, 9453–9466 (2019).

    Google Scholar 

  94. Gupta, V., Roy, S., Jaiswal, V., Bhardwaj, K. & Rana, P. S. Drone assisted deep learning based wildfire detection system. In 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC) 162–166 (IEEE, 2022).

  95. Çetin, A. E. et al. Video fire detection — review. Digit. Signal Process. 23, 1827–1843 (2013).

    Google Scholar 

  96. Agirman, A. K. & Tasdemir, K. BLSTM based night-time wildfire detection from video. PLoS ONE 17, e0269161 (2022).

    Google Scholar 

  97. Shamsoshoara, A. et al. Aerial imagery pile burn detection using deep learning: the FLAME dataset. Computer Netw. 193, 108001 (2021).

    Google Scholar 

  98. Saponara, S., Elhanashi, A. & Gagliardi, A. Real-time video fire/smoke detection based on CNN in antifire surveillance systems. J. Real. Time Image Process. 18, 889–900 (2021).

    Google Scholar 

  99. de Almeida Pereira, G. H., Fusioka, A. M., Nassu, B. T. & Minetto, R. Active fire detection in Landsat-8 imagery: a large-scale dataset and a deep-learning study. ISPRS J. Photogramm. Remote. Sens. 178, 171–186 (2021).

    ADS  Google Scholar 

  100. Zhang, G., Wang, M. & Liu, K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China. Int. J. Disaster Risk Sci. 10, 386–403 (2019).

    Google Scholar 

  101. Zhang, Q., Xu, J., Xu, L. & Guo, H. Deep convolutional neural networks for forest fire detection. In Proceedings of the 2016 International Forum on Management, Education and Information Technology Application https://doi.org/10.2991/ifmeita-16.2016.105 (Atlantis Press, 2016).

  102. Mahdi, A. S. & Mahmood, S. A. Analysis of deep learning methods for early wildfire detection systems: review. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA) 271–276 (IEEE, 2022).

  103. Eamthanakul, B., Ketcham, M. & Chumuang, N. The traffic congestion investigating system by image processing from CCTV camera. In 2017 International Conference on Digital Arts, Media and Technology (ICDAMT) 240–245 (IEEE, 2017).

  104. Shah, A. P., Lamare, J.-B., Nguyen-Anh, T. & Hauptmann, A. CADP: a novel dataset for CCTV traffic camera based accident analysis. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) 1–9 (IEEE, 2018).

  105. Fernando, H. J. S. et al. The MATERHORN: unraveling the intricacies of mountain weather. Bull. Am. Meteorol. Soc. 96, 1945–1967 (2015).

    ADS  Google Scholar 

  106. Goldshmid, R. H. & Liberzon, D. Obtaining turbulence statistics of thermally driven anabatic flow by sonic-hot-film combo anemometer. Environ. Fluid Mech. 20, 1221–1249 (2018).

    Google Scholar 

  107. Stull, R. B. & Eloranta, E. W. Boundary layer experiment — 1983. Bull. Am. Meteorol. Soc. 65, 450–456 (1984).

    ADS  Google Scholar 

  108. Holtslag, B. GEWEX atmospheric boundary-layer study (GABLS) on stable boundary layers. Bound. Layer Meteorol. 118, 243–246 (2006).

    ADS  Google Scholar 

  109. Rajewski, D. A. et al. Crop wind energy experiment (CWEX): observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Am. Meteorol. Soc. 94, 655–672 (2013).

    ADS  Google Scholar 

  110. Wilczak, J. et al. The wind forecast improvement project (WFIP): a public–private partnership addressing wind energy forecast needs. Bull. Am. Meteorol. Soc. 96, 1699–1718 (2015).

    ADS  Google Scholar 

  111. Shaw, W. J. et al. The Second Wind Forecast Improvement Project (WFIP2): general overview. Bull. Am. Meteorol. Soc. 100, 1687–1699 (2019).

    ADS  Google Scholar 

  112. Allwine, K. J. & Flaherty, J. E. Joint Urban 2003: Study Overview and Instrument Locations. http://www.osti.gov/servlets/purl/890732-i6tMLl/https://doi.org/10.2172/890732 (2006).

  113. Moriarty, P. et al. American WAKE ExperimeNt (AWAKEN). https://www.osti.gov/servlets/purl/1659798/https://doi.org/10.2172/1659798 (2020).

  114. Fernando, H. J. S. et al. The Perdigão: peering into microscale details of mountain winds. Bull. Am. Meteorol. Soc. 100, 799–819 (2019).

    ADS  Google Scholar 

  115. Poulos, G. S. et al. CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull. Am. Meteorol. Soc. 83, 555–581 (2002).

    ADS  Google Scholar 

  116. Alkhatib, A. A. A. A review on forest fire detection techniques. Int. J. Distrib. Sens. Netw. 10, 597368 (2014).

    Google Scholar 

  117. Ignatov, A. et al. Real-time video super-resolution on smartphones with deep learning, mobile AI 2021 challenge: report. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2535–2544 (IEEE, 2021).

  118. Disney, M., Lewis, P. & Saich, P. 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens. Environ. 100, 114–132 (2006).

    ADS  Google Scholar 

  119. Quigley, E., Yu, Y., Huang, J., Lin, W. & Fedkiw, R. Real-time interactive tree animation. IEEE Trans. Vis. Comput. Graph. 24, 1717–1727 (2018).

    Google Scholar 

  120. Pirk, S., Niese, T., Hädrich, T., Benes, B. & Deussen, O. Windy trees: computing stress response for developmental tree models. ACM Trans. Graph. 33, 204 (2014).

    Google Scholar 

  121. He, S., Liu, H. & Shen, L. Simulation-based study of turbulent aquatic canopy flows with flexible stems. J. Fluid Mech. 947, A33 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  122. Dowell, E. H. & Hall, K. C. Modeling of fluid–structure interaction. Annu. Rev. Fluid Mech. 33, 445–490 (2001).

    ADS  MATH  Google Scholar 

  123. Parameshwaran, R., Dhulipalla, S. J. & Yendluri, D. R. Fluid–structure interactions and flow induced vibrations: a review. Procedia Eng. 144, 1286–1293 (2016).

    Google Scholar 

  124. Mossa, M. et al. Quasi-geostrophic jet-like flow with obstructions. J. Fluid Mech. 921, A12 (2021).

    MathSciNet  MATH  Google Scholar 

  125. De Serio, F. et al. Turbulent jet through porous obstructions under Coriolis effect: an experimental investigation. Exp. Fluids 62, 218 (2021).

    Google Scholar 

  126. Lowe, R. J., Koseff, J. R. & Monismith, S. G. Oscillatory flow through submerged canopies: 1. Velocity structure. J. Geophys. Res. Ocean. 110, 1–17 (2005).

    Google Scholar 

  127. Lowe, R. J., Shavit, U., Falter, J. L., Koseff, J. R. & Monismith, S. G. Modeling flow in coral communities with and without waves: a synthesis of porous media and canopy flow approaches. Limnol. Oceanogr. 53, 2668–2680 (2008).

    ADS  Google Scholar 

  128. van Hout, R., Hershkovitz, A., Elsinga, G. E. & Westerweel, J. Combined three-dimensional flow field measurements and motion tracking of freely moving spheres in a turbulent boundary layer. J. Fluid Mech. 944, A12 (2022).

    MathSciNet  MATH  Google Scholar 

  129. Bearman, P. W. Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195–222 (1984).

    ADS  MATH  Google Scholar 

  130. Lanchester, F. W. Aerodynamics: Constituting the First Volume of a Complete Work on Aerial Flight (Constable, 1907).

  131. Fage, A. The Aeroplane: A Concise Scientific Study (C. Brissin, 1917).

  132. Lynch, K. & Scarano, F. A high-order time-accurate interrogation method for time-resolved PIV. Meas. Sci. Technol. 24, 035305 (2013).

    ADS  Google Scholar 

  133. Taylor, Z. J., Gurka, R., Kopp, G. A. & Liberzon, A. Long-duration time-resolved PIV to study unsteady aerodynamics. IEEE Trans. Instrum. Meas. 59, 3262–3269 (2010).

    ADS  Google Scholar 

  134. Elsinga, G. E., Scarano, F., Wieneke, B. & van Oudheusden, B. W. Tomographic particle image velocimetry. Exp. Fluids 41, 933–947 (2006).

    Google Scholar 

  135. Liu, X. & Katz, J. Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. Fluids 41, 227–240 (2006).

    Google Scholar 

  136. Dabiri, J. O., Bose, S., Gemmell, B. J., Colin, S. P. & Costello, J. H. An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements. J. Exp. Biol. 217, 331–336 (2014).

    Google Scholar 

  137. Jin, Y., Kim, J.-T., Fu, S. & Chamorro, L. P. Flow-induced motions of flexible plates: fluttering, twisting and orbital modes. J. Fluid Mech. 864, 273–285 (2019).

    ADS  MATH  Google Scholar 

  138. Kaheman, K., Kutz, J. N. & Brunton, S. L. SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proc. R. Soc. A. 476, 20200279 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  139. Baddoo, P. J., Herrmann, B., McKeon, B. J., Nathan Kutz, J. & Brunton, S. L. Physics-informed dynamic mode decomposition. Proc. R. Soc. A. 479, 20220576 (2023).

    ADS  MathSciNet  Google Scholar 

  140. Baddoo, P. J., Herrmann, B., McKeon, B. J. & Brunton, S. L. Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization. Proc. R. Soc. A. 478, 20210830 (2022).

    ADS  MathSciNet  Google Scholar 

  141. Racette, P. et al. An airborne millimeter-wave imaging radiometer for cloud, precipitation, and atmospheric water vapor studies. J. Atmos. Ocean. Technol. 13, 610–619 (1996).

    ADS  Google Scholar 

  142. Mirbeik, A., Ashinoff, R., Jong, T., Aued, A. & Tavassolian, N. Real-time high-resolution millimeter-wave imaging for in-vivo skin cancer diagnosis. Sci. Rep. 12, 4971 (2022).

    ADS  Google Scholar 

  143. Yujiri, L., Shoucri, M. & Moffa, P. Passive millimeter wave imaging. IEEE Microw. Mag. 4, 39–50 (2003).

    Google Scholar 

  144. Ginio, N., Liberzon, D., Lindenbaum, M. & Fishbain, B. Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images. Meas. Sci. Technol. 34, 055801 (2023).

    ADS  Google Scholar 

  145. Liberzon, D. & Shemer, L. Experimental study of the initial stages of wind waves’ spatial evolution. J. Fluid Mech. 681, 462–498 (2011).

    ADS  MATH  Google Scholar 

  146. Buckley, M. P. & Veron, F. Structure of the airflow above surface waves. J. Phys. Oceanogr. 46, 1377–1397 (2016).

    ADS  Google Scholar 

  147. Buckley, M. P. & Veron, F. The turbulent airflow over wind generated surface waves. Eur. J. Mech. B/Fluids 73, 132–143 (2019).

    ADS  Google Scholar 

  148. Veron, F. Ocean spray. Annu. Rev. Fluid Mech. 47, 507–538 (2015).

    ADS  MathSciNet  Google Scholar 

  149. Monismith, S. G. Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech. 39, 37–55 (2007).

    ADS  MATH  Google Scholar 

  150. Larson, E. et al. Net-zero America: Potential Pathways, Infrastructure, and Impacts (Princeton Univ., 2020).

  151. Sivaram, V., Dabiri, J. O. & Hart, D. M. The need for continued innovation in solar, wind, and energy storage. Joule 2, 1639–1642 (2018).

    Google Scholar 

  152. Chow, F. et al. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere 10, 274 (2019).

    ADS  Google Scholar 

  153. Hilel Goldshmid, R. et al. Separation of upslope flow over a plateau. Atmosphere 9, 165 (2018).

    ADS  Google Scholar 

  154. Skamarock, W. C. et al. A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA. https://opensky.ucar.edu/islandora/object/technotes:576/datastream/PDF/download/citation.pdf (2019).

  155. Bodini, N., Hu, W., Optis, M., Cervone, G. & Alessandrini, S. Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble. Wind. Energy Sci. 6, 1363–1377 (2021).

    ADS  Google Scholar 

  156. Kit, E., Cherkassky, A., Sant, T. & Fernando, H. J. S. In situ calibration of hot-film probes using a collocated sonic anemometer: implementation of a neural network. J. Atmos. Ocean. Technol. 27, 23–41 (2010).

    ADS  Google Scholar 

  157. Goldshmid, R. H., Winiarska, E. & Liberzon, D. Next generation combined sonic-hotfilm anemometer: wind alignment and automated calibration procedure using deep learning. Exp. Fluids 63, 30 (2022).

    Google Scholar 

  158. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability (Cambridge Univ., 2003).

  159. Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    ADS  Google Scholar 

  160. Cheng, W. Y. Y., Liu, Y., Bourgeois, A. J., Wu, Y. & Haupt, S. E. Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation. Renew. Energy 107, 340–351 (2017).

    Google Scholar 

  161. Wei, N. J., Brownstein, I. D., Cardona, J. L., Howland, M. F. & Dabiri, J. O. Near-wake structure of full-scale vertical-axis wind turbines. J. Fluid Mech. 914, A17 (2021).

    ADS  Google Scholar 

  162. Optis, M., Bodini, N., Debnath, M. & Doubrawa, P. New methods to improve the vertical extrapolation of near-surface offshore wind speeds. Wind. Energy Sci. 6, 935–948 (2021).

    ADS  Google Scholar 

  163. Kleissl, J. Solar Energy Forecasting and Resource Assessment (Academic Press, 2013).

  164. Masters, G. Renewable and Efficient Electric Power Systems (John Wiley & Sons, 2013).

  165. Dupré, O., Vaillon, R. & Green, M. A. Thermal Behavior of Photovoltaic Devices. https://doi.org/10.1007/978-3-319-49457-9 (Springer International Publishing, 2017).

  166. Koehl, M., Heck, M., Wiesmeier, S. & Wirth, J. Modeling of the nominal operating cell temperature based on outdoor weathering. Sol. Energy Mater. Sol. Cell 95, 1638–1646 (2011).

    Google Scholar 

  167. Schwingshackl, C. et al. Wind effect on PV module temperature: analysis of different techniques for an accurate estimation. Energy Procedia 40, 77–86 (2013).

    Google Scholar 

  168. Vaillon, R., Dupré, O., Cal, R. B. & Calaf, M. Pathways for mitigating thermal losses in solar photovoltaics. Sci. Rep. 8, 13163 (2018).

    ADS  Google Scholar 

  169. Dauxois, T. et al. Confronting grand challenges in environmental fluid mechanics. Phys. Rev. Fluids 6, 020501 (2021).

    ADS  Google Scholar 

  170. Kareem, A. & Zhou, Y. Gust loading factor — past, present and future. J. Wind. Eng. Ind. Aerodyn. 91, 1301–1328 (2003).

    Google Scholar 

  171. Song, J. et al. Natural ventilation in cities: the implications of fluid mechanics. Build. Res. Inf. 46, 809–828 (2018).

    Google Scholar 

  172. Bauranov, A. & Rakas, J. Designing airspace for urban air mobility: a review of concepts and approaches. Prog. Aerosp. Sci. 125, 100726 (2021).

    Google Scholar 

  173. Cole, K. Reactive Trajectory Generation and Formation Control for Groups of UAVs in Windy Environments (George Washington Univ., 2018).

  174. García-Sánchez, C., van Beeck, J. & Gorlé, C. Predictive large eddy simulations for urban flows: challenges and opportunities. Build. Env. 139, 146–156 (2018).

    Google Scholar 

  175. Howland, M. F., Dunbar, O. R. A. & Schneider, T. Parameter uncertainty quantification in an idealized GCM with a seasonal cycle. J. Adv. Model. Earth Syst. 14, e2021MS002735 (2022).

    ADS  Google Scholar 

  176. Sousa, J., García-Sánchez, C. & Gorlé, C. Improving urban flow predictions through data assimilation. Build. Env. 132, 282–290 (2018).

    Google Scholar 

  177. Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2020).

    Google Scholar 

  178. NOAA National Centers for Environmental Information (NCEI). U.S. billion-dollar weather and climate disasters. National Centers for Environmental Information https://accession.nodc.noaa.gov/0209268https://doi.org/10.25921/STKW-7W73 (2023).

  179. Turco, M. et al. Exacerbated fires in mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).

    ADS  Google Scholar 

  180. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006).

    ADS  Google Scholar 

  181. Pimont, F., Dupuy, J.-L., Linn, R. R., Parsons, R. & Martin-St Paul, N. Representativeness of wind measurements in fire experiments: lessons learned from large-eddy simulations in a homogeneous forest. Agric. For. Meteorol. 232, 479–488 (2017).

    ADS  Google Scholar 

  182. Cheney, N., Gould, J. & Catchpole, W. Prediction of fire spread in grasslands. Int. J. Wildland Fire 8, 1 (1998).

    Google Scholar 

  183. Beer, T. The interaction of wind and fire. Bound. Layer Meteorol. 54, 287–308 (1991).

    ADS  Google Scholar 

  184. Moritz, M. A., Moody, T. J., Krawchuk, M. A., Hughes, M. & Hall, A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett. 37, 4801 (2010).

    ADS  Google Scholar 

  185. Rolinski, T. et al. The Santa Ana wildfire threat index: methodology and operational implementation. Weather Forecast. 31, 1881–1897 (2016).

    ADS  Google Scholar 

  186. Aylor, D. E. The role of intermittent wind in the dispersal of fungal pathogens. Annu. Rev. Phytopathol. 28, 73–92 (1990).

    Google Scholar 

  187. Robledo‐Arnuncio, J. J. Wind pollination over mesoscale distances: an investigation with Scots pine. N. Phytol. 190, 222–233 (2011).

    Google Scholar 

  188. Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).

    ADS  Google Scholar 

  189. Brown, J. K. M. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).

    ADS  Google Scholar 

  190. Ahmed, S., Compton, S. G., Butlin, R. K. & Gilmartin, P. M. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc. Natl Acad. Sci. USA 106, 20342–20347 (2009).

    ADS  Google Scholar 

  191. Muñoz, J., Felicísimo, A. M., Cabezas, F., Burgaz, A. R. & Martínez, I. Wind as a long-distance dispersal vehicle in the southern hemisphere. Science 304, 1144–1147 (2004).

    ADS  Google Scholar 

  192. Goodwin, M. Pollination of crops in Australia and New Zealand. (2012).

  193. Watrud, L. S. et al. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl Acad. Sci. USA 101, 14533–14538 (2004).

    ADS  Google Scholar 

  194. Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 37, 187–214 (2006).

    Google Scholar 

  195. Birk, J. H. A broad-spectrum corn herbicide, in a safened formulation, specifically designed for use alone or with glyphosate combinations. EPA https://www3.epa.gov/pesticides/chem_search/ppls/007969-00242-20210402.pdf (2015).

  196. Nowatzki, J. Understanding air temperature inversions relating to pesticide drift. NDSU https://www.ndsu.edu/agriculture/extension/publications/understanding-air-temperature-inversions-relating-pesticide-drift (2022).

  197. Beckman, B. Pesticide particles can drift afar through inversion phenomenon. University of Nebraska–Lincoln https://cropwatch.unl.edu/2016/pesticide-particles-can-drift-afar-through-inversion-phenomenon (2016).

  198. Beckman, B. Wind speed and herbicide application: integrated crop management. UNL https://crops.extension.iastate.edu/cropnews/2017/01/wind-speed-and-herbicide-application (2016).

  199. Nicolai, D. & Stahl, L. Avoiding herbicide drift. University of Minnesota https://extension.umn.edu/herbicides/too-windy-to-spray#buffer-zones-1040817 (2020).

  200. Punia, A. Role of temperature, wind, and precipitation in heavy metal contamination at copper mines: a review. Environ. Sci. Pollut. Res. 28, 4056–4072 (2021).

    Google Scholar 

  201. Jiang, Y. & Chen, Q. Study of natural ventilation in buildings by large eddy simulation. J. Wind. Eng. Ind. Aerodyn. 89, 1155–1178 (2001).

    Google Scholar 

  202. Chew, L. W., Chen, C. & Gorlé, C. Improving thermal model predictions for naturally ventilated buildings using large eddy simulations. Build. Env. 220, 109241 (2022).

    Google Scholar 

  203. US Energy Information Administration. Commercial Buildings Energy Consumption Survey, Consumption and Expenditures Highlights. (2018).

  204. Linden, P. F. The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201–238 (1999).

    ADS  Google Scholar 

  205. Gorlé, C. Improving predictions of the urban wind environment using data. Technology|Architecture+Design 3, 137–141 (2019).

    Google Scholar 

  206. Aynsley, R. Natural ventilation in passive design. Environment Design Guide 1–16 https://www.jstor.org/stable/26151921 (2014).

  207. Gough, H. L. et al. Field measurement of natural ventilation rate in an idealised full-scale building located in a staggered urban array: comparison between tracer gas and pressure-based methods. Build. Env. 137, 246–256 (2018).

    Google Scholar 

  208. Chen, C. & Gorlé, C. Optimal temperature sensor placement in buildings with buoyancy-driven natural ventilation using computational fluid dynamics and uncertainty quantification. Build. Env. 207, 108496 (2022).

    Google Scholar 

  209. Zhong, H.-Y. et al. Single-sided natural ventilation in buildings: a critical literature review. Build. Env. 212, 108797 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge seminal contributions from J.L. Cardona in development of several of the concepts presented in this Perspective article, as well as discussions with K. Bouman, J. Sun, Y. Yue and P. Perona at Caltech. Additional helpful discussions occurred in the CV4Ecology Summer Workshop, supported by the Caltech Resnick Sustainability Institute. Constructive feedback from the anonymous reviewers led to meaningful improvements to the presentation of the material in this manuscript. Funding was generously provided by the National Science Foundation (Grant CBET-2019712) and the Center for Autonomous Systems and Technologies at Caltech. Additional support from Heliogen is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding authors

Correspondence to John O. Dabiri or Roni H. Goldshmid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Loïc Tadrist and Chunbo Luo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabiri, J.O., Howland, M.F., Fu, M.K. et al. Visual anemometry for physics-informed inference of wind. Nat Rev Phys 5, 597–611 (2023). https://doi.org/10.1038/s42254-023-00626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00626-8

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics