Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis

Abstract

CO electrolysis (COE) has emerged as an important alternative technology to couple with other sustainable techniques for transitioning towards a carbon-neutral future. A large challenge for the deployment of high-rate COE is the limited durability of membrane-electrode assembly (MEA) devices. Here, by using an operando wide-angle X-ray scattering technique and monitoring the change of electrolyte, we identified several degradation mechanisms of the MEA during high-rate COE. Cathodic gas-diffusion electrode (GDE) flooding and Ir contaminants (crossover from anode) are two main issues causing excessive hydrogen evolution, which can be partly alleviated by increasing the polytetrafluoroethylene content in GDEs and using an alkaline stable Ni-based anode. During long-term stability, the dynamic evolution of anolyte became the main issue: the pH would continuously drop due to cathodic acetate formation and anodic ethanol oxidation. By compensating for this issue, we maintained a Faradaic efficiency of C2+ products at more than 70% for 136 hours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synchrotron cell and the MEA configuration.
Fig. 2: Identifying the MEA degradation behaviour of high-rate COE.
Fig. 3: Strategies to alleviate the MEA degradation during high-rate COE.
Fig. 4: Electrolyte and products change during the long-term COE.
Fig. 5: Long-term stability of high-rate COE.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information. Raw X-ray data generated at the ESRF large-scale facility are available at https://doi.org/10.15151/ESRF-ES-703258873 from 2025. Alternatively, this data can be available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  PubMed  Google Scholar 

  2. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  3. Molitor, B. et al. Carbon recovery by fermentation of CO-rich off gases—turning steel mills into biorefineries. Bioresour. Technol. 215, 386–396 (2016).

  4. Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain. 5, 563–573 (2022).

    Article  Google Scholar 

  5. Ma, M. et al. Local reaction environment for selective electroreduction of carbon monoxide. Energy Environ. Sci. 15, 2470–2478 (2022).

    Article  CAS  Google Scholar 

  6. Xu, Q. et al. Enriching surface-accessible CO2 in the zero-gap anion-exchange-membrane-based CO2 electrolyzer. Angew. Chem. Int. Ed. 62, e202214383 (2022).

    Article  Google Scholar 

  7. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  CAS  Google Scholar 

  8. Song, Y., Zhang, X., Xie, K., Wang, G. & Bao, X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects. Adv. Mater. 31, 1902033 (2019).

    Article  CAS  Google Scholar 

  9. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, L. et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2, 702–708 (2019).

    Article  CAS  Google Scholar 

  11. Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    Article  CAS  Google Scholar 

  12. Rabiee, H. et al. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ. Sci. 14, 1959–2008 (2021).

    Article  CAS  Google Scholar 

  13. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  14. Overa, S. et al. Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction. Nat. Catal. 5, 738–745 (2022).

    Article  CAS  Google Scholar 

  15. Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    Article  CAS  Google Scholar 

  16. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  17. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Article  CAS  Google Scholar 

  19. Li, J. et al. Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts. ACS Catal. 9, 4709–4718 (2019).

    Article  CAS  Google Scholar 

  20. Sullivan, I. et al. A hybrid catalyst-bonded membrane device for electrochemical carbon monoxide reduction at different relative humidities. ACS Sustain. Chem. Eng. 7, 16964–16970 (2019).

    Article  CAS  Google Scholar 

  21. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

  22. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  23. Pang, Y. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).

    Article  CAS  Google Scholar 

  24. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Porc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  Google Scholar 

  25. Yadegari, H. et al. Glycerol oxidation pairs with carbon monoxide reduction for low-voltage generation of C2 and C3 product streams. ACS Energy Lett. 6, 3538–3544 (2021).

    Article  CAS  Google Scholar 

  26. Zhou, Y., Ganganahalli, R., Verma, S., Tan, H. R. & Yeo, B. S. Production of C3–C6 acetate esters via CO electroreduction in a membrane electrode assembly cell. Angew. Chem. Int. Ed. 61, e202202859 (2022).

    Article  CAS  Google Scholar 

  27. Yan, Y. et al. Interface regulation promoting carbon monoxide gas diffusion electrolysis towards C2+ products. Chem. Commun. 58, 3645–3648 (2022).

    Article  CAS  Google Scholar 

  28. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  Google Scholar 

  29. Ji, Y., Guan, A. & Zheng, G. Copper-based catalysts for electrochemical carbon monoxide reduction. Cell Rep. Phys. Sci. 3, 101072 (2022).

    Article  CAS  Google Scholar 

  30. Kastlunger, G. et al. Using pH dependence to understand mechanisms in electrochemical CO reduction. ACS Catal. 12, 4344–4357 (2022).

    Article  CAS  Google Scholar 

  31. Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    Article  CAS  Google Scholar 

  32. Heenen, H. H. et al. The mechanism for acetate formation in electrochemical CO(2) reduction on Cu: selectivity with potential, pH, and nanostructuring. Energy Environ. Sci. 15, 3978–3990 (2022).

    Article  CAS  Google Scholar 

  33. Li, D. et al. Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 14, 3393–3419 (2021).

    Article  CAS  Google Scholar 

  34. Xu, Q. et al. Anion exchange membrane water electrolyzer: electrode design, lab-scaled testing system and performance evaluation. EnergyChem. 4, 100087 (2022).

    Article  CAS  Google Scholar 

  35. Moss, A. B. et al. Versatile high energy X-ray transparent electrolysis cell for operando measurements. J. Power Sources 562, 232754 (2023).

    Article  CAS  Google Scholar 

  36. Moss, A. B. et al. In operando investigations of oscillatory water and carbonate effects in MEA-based CO2 electrolysis devices. Joule 7, 350–365 (2023).

    Article  CAS  Google Scholar 

  37. Yang, K., Kas, R., Smith, W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021).

    Article  CAS  Google Scholar 

  38. Wang, Z., Guo, X., Montoya, J. & Nørskov, J. K. Predicting aqueous stability of solid with computed Pourbaix diagram using SCAN functional. NPJ Comput. Mater. 6, 160 (2020).

    Article  Google Scholar 

  39. Disch, J. et al. High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. Nat. Commun. 13, 6099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, Y. et al. Mitigating electrolyte flooding for electrochemical CO2 reduction via infiltration of hydrophobic particles in a gas diffusion layer. ACS Energy Lett. 7, 2884–2892 (2022).

    Article  CAS  Google Scholar 

  42. Garg, S., Giron Rodriguez, C. A., Rufford, T. E., Varcoe, J. R. & Seger, B. How membrane characteristics influence the performance of CO2 and CO electrolysis. Energy Environ. Sci. 15, 4440–4469 (2022).

    Article  CAS  Google Scholar 

  43. Vass, Á., Kormányos, A., Kószó, Z., Endrődi, B. & Janáky, C. Anode catalysts in CO2 electrolysis: challenges and untapped opportunities. ACS Catal. 12, 1037–1051 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, Q. et al. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 21, 492–499 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Lai, S. C. S. et al. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal. Today 154, 92–104 (2010).

    Article  CAS  Google Scholar 

  46. Monyoncho, E. A., Woo, T. K. & Baranova, E. A. in Electrochemistry Vol. 15 (eds Banks, C. & McIntosh, S.) 1–57 (The Royal Society of Chemistry, 2019).

  47. Guo, J., Chen, R., Zhu, F.-C., Sun, S.-G. & Villullas, H. M. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells. Appl. Catal. B 224, 602–611 (2018).

    Article  CAS  Google Scholar 

  48. Hasa, B. et al. Benchmarking anion-exchange membranes for electrocatalytic carbon monoxide reduction. Chem. Catal. 3, 100450 (2023).

    Article  CAS  Google Scholar 

  49. Larrazábal, G. O., Okatenko, V., Chorkendorff, I., Buonsanti, R. & Seger, B. Investigation of ethylene and propylene production from CO2 reduction over copper nanocubes in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 14, 7779–7787 (2022).

    Article  PubMed  Google Scholar 

  50. Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the ECOEthylene project from Innovation Fund Denmark (grant no. 8057-00018B), and the Villum Center for the Science of Sustainable Fuels and Chemicals grant no. 9455. We thank the ESRF for providing the high-energy X-ray beam and ID31 beamline staff for experimental support.

Author information

Authors and Affiliations

Authors

Contributions

Q.X. and S.G. are the lead authors. Q.X. wrote the manuscript with input from all coauthors. S.G. helped revise the manuscript and participated in all results discussions. Q.X., S.G. and A.B.M. carried out beamline electrochemical measurements and conducted X-ray data analysis. M.M. and J.D. assisted in performing in operando experiments at ESRF. J.D., I.C. and B.S. guided the project and oversaw its development. B.S. set the overall direction of the project and helped edit the overall manuscript.

Corresponding author

Correspondence to Brian Seger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Note 1 and Tables 1 and 2.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Garg, S., Moss, A.B. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat Catal 6, 1042–1051 (2023). https://doi.org/10.1038/s41929-023-01034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01034-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing