Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Luciferase- and HaloTag-based reporter assays to measure small-molecule-induced degradation pathway in living cells

Abstract

The rational development of small-molecule degraders (e.g., proteolysis targeting chimeras) remains a challenge as the rate-limiting steps that determine degrader efficiency are largely unknown. Standard methods in the field of targeted protein degradation mostly rely on classical, low-throughput endpoint assays such as western blots or quantitative proteomics. Here we applied NanoLuciferase- and HaloTag-based screening technologies to determine the kinetics and stability of small-molecule-induced ternary complex formation between a protein of interest and a selected E3 ligase. A collection of live-cell assays were designed to probe the most critical steps of the degradation process while minimizing the number of required expression constructs, making the proposed assay pipeline flexible and adaptable to the requirements of the users. This approach evaluates the underlying mechanism of selective target degraders and reveals the exact characteristics of the developed degrader molecules in living cells. The protocol allows scientists trained in basic cell culture and molecular biology to carry out small-molecule proximity-inducer screening via tracking of the ternary complex formation within 2 weeks of establishment, while degrader screening using the HiBiT system requires a CRISPR–Cas9 engineered cell line whose generation can take up to 3 months. After cell-line generation, degrader screening and validation can be carried out in high-throughput manner within days.

Key points

  • This protocol describes the application of NanoLuciferase- and HaloTag-based screening technologies to measure the whole cascade of targeted protein degradation from binary complexes to live-cell target degradation kinetics.

  • Compared with conventional endpoint assays such as western blots or quantitative proteomics, live-cell assays take dynamic cellular processes into account such as the complete degradation machinery, intracellular competitors or posttranslational modifications during time-resolved measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assay strategies based on bioluminescence and BRET.
Fig. 2: Schematic representation of the cloning strategy used for the generation of the NLuc and HaloTag fusion constructs.
Fig. 3: Schematic representation of the different steps for the generation of the endogenously HiBiT-tagged CRISPR cell line.
Fig. 4: Proposed plate layout for dose–response assays and schematic principle of the NanoBRET technology.
Fig. 5: Principle of the HiBiT-CETSA.
Fig. 6: Schematic overview of the ternary complex assay setup and principle.
Fig. 7: Schematic overview of the HiBiT-based protein degradation measurement.

Similar content being viewed by others

Data availability

Any additional information required to reanalyze the data reported in this manuscript is available upon request from the lead contact. Plasmids have been made available on Addgene.

References

  1. Schwalm, M. P. & Knapp, S. BET bromodomain inhibitors. Curr. Opin. Chem. Biol. 68, 102148 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Hu, Z. & Crews, C. M. Recent developments in PROTAC-mediated protein degradation: From bench to clinic. Chembiochem 23, e202100270 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Petrylak, D. P. et al. First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). J. Clin. Oncol. 38, 3500–3500 (2020).

    Article  Google Scholar 

  4. Paiva, S. L. & Crews, C. M. Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol. 50, 111–119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nemec, V., Schwalm, M. P., Muller, S. & Knapp, S. PROTAC degraders as chemical probes for studying target biology and target validation. Chem. Soc. Rev. 51, 7971–7993 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Roy, M. J. et al. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem. Biol. 14, 361–368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Casement, R., Bond, A., Craigon, C. & Ciulli, A. Mechanistic and structural features of PROTAC ternary complexes. Methods Mol. Biol. 2365, 79–113 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Li, K. & Crews, C. M. PROTACs: past, present and future. Chem. Soc. Rev. 51, 5214–5236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto, J., Ito, T., Yamaguchi, Y. & Handa, H. Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders. Chem. Soc. Rev. 51, 6234–6250 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Moehler, T. M., Hillengass, J., Glasmacher, A. & Goldschmidt, H. Thalidomide in multiple myeloma. Curr. Pharm. Biotechnol. 7, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Teo, S. et al. Thalidomide in the treatment of leprosy. Microbes Infect. 4, 1193–1202 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Li, D. et al. Discovery of a dual WDR5 and Ikaros PROTAC degrader as an anti-cancer therapeutic. Oncogene 41, 3328–3340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Domostegui, A., Nieto-Barrado, L., Perez-Lopez, C. & Mayor-Ruiz, C. Chasing molecular glue degraders: screening approaches. Chem. Soc. Rev. 51, 5498–5517 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Che, Y., Gilbert, A. M., Shanmugasundaram, V. & Noe, M. C. Inducing protein–protein interactions with molecular glues. Bioorg. Med. Chem. Lett. 28, 2585–2592 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Schwalm, M. P. et al. Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization. Cell Chem. Biol. 30, 753–765.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Mo, X. L. & Fu, H. BRET: NanoLuc-based bioluminescence resonance energy transfer platform to monitor protein–protein interactions in live cells. Methods Mol. Biol. 1439, 263–271 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Schwalm, M. P. et al. A toolbox for the generation of chemical probes for Baculovirus IAP repeat containing proteins. Front Cell. Dev. Biol 10, 886537 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vasta, J. D. et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol. 25, 206–214 e211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Machleidt, T. et al. NanoBRET—a novel BRET platform for the analysis of protein–protein interactions. ACS Chem. Biol. 10, 1797–1804 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Riching, K. M. et al. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem. Biol. 13, 2758–2770 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Owens, D. D. G. et al. A chemical probe to modulate human GID4 Pro/N-degron interactions. Preprint at bioRxiv https://doi.org/10.1101/2023.01.17.524225 (2023).

  24. Mortison, J. D. et al. Rapid evaluation of small molecule cellular target engagement with a luminescent thermal shift assay. ACS Med. Chem. Lett. 12, 1288–1294 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. RA, M. S. et al. Development of the first covalent monopolar spindle kinase 1 (MPS1/TTK) inhibitor. J. Med. Chem. 65, 3173–3192 (2022).

    Article  Google Scholar 

  26. Moon, S. B., Kim, D. Y., Ko, J. H. & Kim, Y. S. Recent advances in the CRISPR genome editing tool set. Exp. Mol. Med. 51, 1–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Degorce, F. et al. HTRF: a technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr. Chem. Genomics 3, 22–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tolvanen, T. A. Current advances in CETSA. Front. Mol. Biosci. 9, 866764 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shyu, Y. J., Suarez, C. D. & Hu, C. D. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nat. Protoc. 3, 1693–1702 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bielefeld-Sevigny, M. AlphaLISA immunoassay platform—the ‘no-wash’ high-throughput alternative to ELISA. Assay Drug Dev. Technol. 7, 90–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Kowarz, E., Loscher, D. & Marschalek, R. Optimized sleeping beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J 10, 647–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Spitzer, J., Landthaler, M. & Tuschl, T. Rapid creation of stable mammalian cell lines for regulated expression of proteins using the Gateway(R) recombination cloning technology and Flp-In T-REx(R) lines. Methods Enzymol. 529, 99–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, Y. H. et al. Rapid lentiviral vector producer cell line generation using a single DNA construct. Mol. Ther. Methods Clin. Dev. 19, 47–57 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khan, S. H. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol. Ther. Nucleic Acids 16, 326–334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  36. Smith, J. D. et al. Quantitative CRISPR interference screens in yeast identify chemical–genetic interactions and new rules for guide RNA design. Genome Biol. 17, 45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  38. Desjardins, P. & Conklin, D. NanoDrop microvolume quantitation of nucleic acids. J. Vis. Exp. https://doi.org/10.3791/2565 (2010).

  39. Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.P.S., K.S., S.M. and S.K. are grateful for support by the Structural Genomics Consortium, a registered charity (no. 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through Ontario Genomics Institute, EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking (EUbOPEN grant 875510), Janssen, Pfizer and Takeda and by the German Cancer Research Center DKTK and the Frankfurt Cancer Institute. M.P.S. is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation), CRC1430 (project ID 424228829). M.P.S. is thankful for the help of B.-T. Berger during assay establishment.

Author information

Authors and Affiliations

Authors

Contributions

M.P.S. conceived the study and designed experiments. The manuscript and figures were prepared by M.P.S. and edited by K.S., S.M. and S.K.

Corresponding authors

Correspondence to Martin P. Schwalm or Stefan Knapp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Schwalm, M. P. et al. Front. Cell Dev. Biol. 10, 886537 (2022): https://doi.org/10.3389/fcell.2022.886537

Schwalm, M. P. et al. Cell Chem. Biol. 30, 753–765.e8 (2023): https://doi.org/10.1016/j.chembiol.2023.06.002

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwalm, M.P., Saxena, K., Müller, S. et al. Luciferase- and HaloTag-based reporter assays to measure small-molecule-induced degradation pathway in living cells. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00979-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research