Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Full-length circular RNA profiling by nanopore sequencing with CIRI-long

Abstract

Circular RNAs (circRNAs) have important roles in regulating developmental processes and disease progression. As most circRNA sequences are highly similar to their cognate linear transcripts, the current short-read sequencing-based methods rely on the back-spliced junction signal for distinguishing circular and linear reads, which does not allow circRNAs’ full-length structure to be effectively reconstructed. Here we describe a long-read sequencing-based protocol, CIRI-long, for the detection of full-length circular RNAs. The CIRI-long protocol combines rolling circular reverse transcription and nanopore sequencing to capture full-length circRNA sequences. After poly(A) tailing, RNase R treatment, and size selection of polymerase chain reaction products, CIRI-long achieves an increased percentage (6%) of circular reads in the constructed library, which is 20-fold higher compared with previous Illumina-based strategies. This method can be applied in cell lines or tissue samples, enabling accurate detection of full-length circRNAs in the range of 100–3,000 bp. The entire protocol can be completed in 1 d, and can be scaled up for large-scale analysis using the nanopore barcoding kit and PromethION sequencing device. CIRI-long can serve as an effective and user-friendly protocol for characterizing full-length circRNAs, generating direct and convincing evidence for the existence of detected circRNAs. The analytical pipeline offers convenient functions for identification of full-length circRNA isoforms and integration of multiple datasets. The assembled full-length transcripts and their splicing patterns provide indispensable information to explore the biological function of circRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the CIRI-long protocol.
Fig. 2: Applications of the CIRI-long protocol.
Fig. 3: RNA hydrolysis and TS during circular RT.
Fig. 4: Overview of the CIRI-long data analysis workflow.
Fig. 5: Anticipated library size after beads selection.

Similar content being viewed by others

Data availability

The CIRI-long dataset used in this manuscript can be downloaded from the National Genomics Data Center46 (China National Center for Bioinformation: https://bigd.big.ac.cn/gsa) with accession number CRR194209.

Code availability

The CIRI-long software can be downloaded from GitHub at https://github.com/bioinfo-biols/CIRI-long47.

References

  1. Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, C.-X. & Chen, L.-L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

  3. Wu, W., Ji, P. & Zhao, F. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 21, 101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao, Y., Wang, J. & Zhao, F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 4 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, J., Chen, S., Yang, J. & Zhao, F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat. Commun. 11, 90 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu, W., Zhang, J., Cao, X., Cai, Z. & Zhao, F. Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing. Nat. Commun. 13, 3242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460 e3445 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Dong, R., Ma, X. K., Li, G. W. & Yang, L. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genom. Proteom. Bioinform. 16, 226–233 (2018).

    Article  Google Scholar 

  9. Gan, X. et al. CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol. Cancer 19, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kristensen, L. S. et al. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun. 11, 4551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, S. et al. circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c-Myc translation. Adv. Sci. 9, e2103817 (2022).

    Article  Google Scholar 

  12. Liu, C. X. et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell. 82, 420–434 e426 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, S., Zhang, J. & Zhao, F. Screening linear and circular RNA transcripts from stress granules. Genom. Proteom. Bioinform. https://doi.org/10.1016/j.gpb.2022.01.003 (2022).

    Article  Google Scholar 

  14. Yang, Y. et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y. et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv. Sci. 8, 2001701 (2021).

    Article  CAS  Google Scholar 

  16. Zhang, M. et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9, 4475 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dal Molin, A. et al. CRAFT: a bioinformatics software for custom prediction of circular RNA functions. Brief. Bioinform. https://doi.org/10.1093/bib/bbab601 (2022).

  18. Gao, Y., Zhang, J. & Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinform. 19, 803–810 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, Y. et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 7, 12060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, X. O. et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021).

    Article  PubMed  Google Scholar 

  23. Zhang, J. et al. Evaluation of circRNA sequence assembly methods using long reads. Front. Genet. 13, 816825 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soutschek, M., Gross, F., Schratt, G. & Germain, P.-L. scanMiR: a biochemically based toolkit for versatile and efficient microRNA target prediction. Bioinformatics 38, 2466–2473 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, J. et al. CircAST: full-length assembly and quantification of alternatively spliced isoforms in circular RNAs. Genom. Proteom. Bioinform. 17, 522–534 (2019).

    Article  Google Scholar 

  26. Ye, C. Y. et al. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol. 14, 1055–1063 (2017).

    Article  PubMed  Google Scholar 

  27. Metge, F., Czaja-Hasse, L. F., Reinhardt, R. & Dieterich, C. FUCHS-towards full circular RNA characterization using RNAseq. PeerJ 5, e2934 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hossain, M. T., Peng, Y., Feng, S. & Wei, Y. FcircSEC: an R package for full length circRNA sequence extraction and classification. Int. J. Genom. 2020, 9084901 (2020).

    Google Scholar 

  29. Qin, Y. et al. Reference-free and de novo identification of circular RNAs. Preprint at bioRxiv https://doi.org/10.1101/2020.04.21.050617 (2020).

  30. Zheng, Y. & Zhao, F. Visualization of circular RNAs and their internal splicing events from transcriptomic data. Bioinformatics 36, 2934–2935 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, J. & Zhao, F. Reconstruction of circular RNAs using Illumina and Nanopore RNA-seq datasets. Methods 196, 17–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, J. & Zhao, F. Characterizing circular RNAs using Nanopore sequencing. Trends Biochem. Sci. 46, 785–786 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pandey, P. R., Rout, P. K., Das, A., Gorospe, M. & Panda, A. C. RPAD (RNase R treatment, polyadenylation, and poly(A)+ RNA depletion) method to isolate highly pure circular RNA. Methods 155, 41–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Panda, A. C. et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 45, e116 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Z. & Han, L. Circular RNAs sequenced at last. Nat. Biotechnol. 39, 811–812 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881 e813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xin, R. et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat. Commun. 12, 266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Z. et al. circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing. eLife https://doi.org/10.7554/eLife.69457 (2021).

  40. Rahimi, K., Veno, M. T., Dupont, D. M. & Kjems, J. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat. Commun. 12, 4825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeck, W. R. & Sharpless, N. E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 32, 453–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vincent, H. A. & Deutscher, M. P. Substrate recognition and catalysis by the exoribonuclease RNase R. J. Biol. Chem. 281, 29769–29775 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Xiao, M. S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fukasawa, Y., Ermini, L., Wang, H., Carty, K. & Cheung, M. S. LongQC: a quality control tool for third generation sequencing long read data. G3 (Bethesda) 10, 1193–1196 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).

  46. Wang, Y. et al. GSA: Genome Sequence Archive. Genom. Proteom. Bioinform. 15, 14–18 (2017).

    Article  Google Scholar 

  47. Zhang, J. Full-length circular RNA profiling by nannopore sequencing with CIRI-long. https://github.com/bioinfo-biols/CIRI-long, https://doi.org/10.5281/zenodo.7399826 (2022).

  48. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Diesh, C. et al. JBrowse 2: a modular genome browser with views of synteny and structural variation. Preprint at https://doi.org/10.1101/2022.07.28.501447 (2022).

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (32130020, 32025009, 91940306, 32200530) and the National Key R&D Project (2021YFA1300500, 2021YFA1302000).

Author information

Authors and Affiliations

Authors

Contributions

L.H. and J.Z. developed the experimental protocol for CIRI-long. L.H., J.Z. and F.Z. wrote the manuscript. F.Z. conceived the study.

Corresponding authors

Correspondence to Jinyang Zhang or Fangqing Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Michael Clark and Leng Han for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Zhang, J. et al. Nat. Biotechnol. 39, 836–845 (2021): https://doi.org/10.1038/s41587-021-00842-6

Supplementary information

Supplementary Code 1

Code used in the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhang, J. & Zhao, F. Full-length circular RNA profiling by nanopore sequencing with CIRI-long. Nat Protoc 18, 1795–1813 (2023). https://doi.org/10.1038/s41596-023-00815-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00815-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing