Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS)

Abstract

Genome-scale stoichiometric modeling of metabolism has become a standard systems biology tool for modeling cellular physiology and growth. Extensions of this approach are emerging as a valuable avenue for predicting, understanding and designing microbial communities. Computation of microbial ecosystems in time and space (COMETS) extends dynamic flux balance analysis to generate simulations of multiple microbial species in molecularly complex and spatially structured environments. Here we describe how to best use and apply the most recent version of COMETS, which incorporates a more accurate biophysical model of microbial biomass expansion upon growth, evolutionary dynamics and extracellular enzyme activity modules. In addition to a command-line option, COMETS includes user-friendly Python and MATLAB interfaces compatible with the well-established COBRA models and methods, as well as comprehensive documentation and tutorials. This protocol provides a detailed guideline for installing, testing and applying COMETS to different scenarios, generating simulations that take from a few minutes to several days to run, with broad applicability to microbial communities across biomes and scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the COMETS platform.
Fig. 2: Basic workflows.
Fig. 3: Growth of E. coli (core model) batch culture in minimal medium, with glucose as the only carbon source.
Fig. 4: Chemostat simulation of cross-feeding E. coli strains grown on lactose.
Fig. 5: Simulations of the diurnal cycle of the marine photoautotrophic bacteria Prochlorococcus.
Fig. 6: Media concentrations over time during simulations demonstrating extracellular reactions.
Fig. 7: Simulation of evolutionary processes.
Fig. 8: Soil–air interface simulation.
Fig. 9: A variety of morphologies simulated by COMETS.

Similar content being viewed by others

Data availability

The COMETS Protocols GitHub repository (https://github.com/segrelab/COMETS_Protocols) contains all input files and jupyter notebooks from which one can reproduce the results presented in this protocol. The data are distributed under the Creative Commons CC0 1.0 Universal license.

Code availability

COMETS (https://www.runcomets.org) is an open-source code, and it is available at https://github.com/segrelab/comets. The code is distributed under the GNU General Public License Version 3. The documentation is available at https://segrelab.github.io/comets-manual/, which is structured as a tutorial and contains additional examples not shown in this protocol. The MATLAB toolbox is available at https://github.com/segrelab/comets-toolbox, distributed under the GNU General Public License Version 3. The COMETS Python toolbox is available at https://github.com/segrelab/cometspy, distributed under the GNU General Public License Version 3. The code in this protocol has been peer-reviewed.

References

  1. Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Johns, N. I., Blazejewski, T., Gomes, A. L. & Wang, H. H. Principles for designing synthetic microbial communities. Curr. Opin. Microbiol. 31, 146–153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grosskopf, T. & Soyer, O. S. Synthetic microbial communities. Curr. Opin. Microbiol. 18, 72–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andreote, F. D. & de Cássia Pereira e Silva, M. Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr. Opin. Microbiol. 37, 29–34 (2017).

    Article  PubMed  Google Scholar 

  9. Moran, M. A. The global ocean microbiome. Science 350, aac8455 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).

    Article  CAS  Google Scholar 

  11. Friedman, J. & Gore, J. Ecological systems biology: the dynamics of interacting populations. Curr. Opin. Syst. Biol. 1, 114–121 (2017).

    Article  Google Scholar 

  12. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  14. Noronha, A. et al. The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 47, D614–D624 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saifuddin, M., Bhatnagar, J. M., Segrè, D. & Finzi, A. C. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat. Commun. 10, 3568 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gilbert, J. A., Jansson, J. K. & Knight, R. Earth Microbiome Project and Global Systems Biology. mSystems 3, e00217–17 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ko, Y.-S. et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem. Soc. Rev. 49, 4615–4636 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Keasling, J. D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Germerodt, S. et al. Pervasive selection for cooperative cross-feeding in bacterial communities. PLoS Comput. Biol. 12, e1004986 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Widder, S. et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 10, 2557–2568 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magnúsdóttir, S. & Thiele, I. Modeling metabolism of the human gut microbiome. Curr. Opin. Biotechnol. 51, 90–96 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. 20, 1085–1093 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. King, Z. A. et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Willi, G., Olivier Brett, G., Bruggeman Frank, J. & Bas, T. Constraint-based stoichiometric modelling from single organisms to microbial communities. J. R. Soc. Interface 13, 20160627 (2016).

    Article  Google Scholar 

  39. Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khandelwal, R. A., Olivier, B. G., Röling, W. F. M., Teusink, B. & Bruggeman, F. J. Community flux balance analysis for microbial consortia at balanced growth. PLoS One 8, e64567 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen, J. et al. Spatiotemporal modeling of microbial metabolism. BMC Syst. Biol. 10, 21 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mahadevan, R., Edwards, J. S. & Doyle, F. J. 3rd Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Höffner, K., Harwood, S. M. & Barton, P. I. A reliable simulator for dynamic flux balance analysis. Biotechnol. Bioeng. 110, 792–802 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Henson, M. A. & Hanly, T. J. Dynamic flux balance analysis for synthetic microbial communities. IET Syst. Biol. 8, 214–229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhuang, K. et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316 (2011).

    Article  PubMed  Google Scholar 

  47. Tzamali, E., Poirazi, P., Tollis, I. G. & Reczko, M. A computational exploration of bacterial metabolic diversity identifying metabolic interactions and growth-efficient strain communities. BMC Syst. Biol. 5, 167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hanly, T. J. & Henson, M. A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 108, 376–385 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rocha, I., Förster, J. & Nielsen, J. Design and application of genome-scale reconstructed metabolic models. Methods Mol. Biol. 416, 409–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Chacón, J. M., Möbius, W. & Harcombe, W. R. The spatial and metabolic basis of colony size variation. ISME J. 12, 669–680 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hynes, W. F. et al. Bioprinting microbial communities to examine interspecies interactions in time and space. Biomed. Phys. Eng. Express 4, 055010 (2018).

    Article  Google Scholar 

  54. DiMucci, D., Kon, M. & Segrè, D. Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks. mSystems 3, e00181–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hammarlund, S. P., Chacón, J. M. & Harcombe, W. R. A shared limiting resource leads to competitive exclusion in a cross-feeding system. Environ. Microbiol. 21, 759–771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bajić, D., Vila, J. C. C., Blount, Z. D. & Sánchez, A. On the deformability of an empirical fitness landscape by microbial evolution. Proc. Natl Acad. Sci. USA 115, 11286–11291 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. García-Jiménez, B., García, J. L. & Nogales, J. FLYCOP: metabolic modeling-based analysis and engineering microbial communities. Bioinformatics 34, i954–i963 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yu, B. et al. Experiments and simulations on short chain fatty acid production in a colonic bacterial community. Preprint at bioRxiv https://doi.org/10.1101/444760 (2018)

  60. Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feist, A. M. & Palsson, B. O. The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Fong, S. S. & Palsson, B. Ø. Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wintermute, E. H., Lieberman, T. D. & Silver, P. A. An objective function exploiting suboptimal solutions in metabolic networks. BMC Syst. Biol. 7, 98 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Matsushita, M. et al. Interface growth and pattern formation in bacterial colonies. Phys. A Stat. Mech. Appl. 249, 517–524 (1998).

    Article  Google Scholar 

  68. Farrell, F. D. C., Hallatschek, O., Marenduzzo, D. & Waclaw, B. Mechanically driven growth of quasi-two-dimensional microbial colonies. Phys. Rev. Lett. 111, 168101 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Tronnolone, H. et al. Diffusion-limited growth of microbial colonies. Sci. Rep. 8, 5992 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lacasta, A. M., Cantalapiedra, I. R., Auguet, C. E., Peñaranda, A. & Ramírez-Piscina, L. Modeling of spatiotemporal patterns in bacterial colonies. Phys. Rev. E 59, 7036–7041 (1999).

    Article  CAS  Google Scholar 

  71. Kozlovsky, Y., Cohen, I., Golding, I. & Ben-Jacob, E. Lubricating bacteria model for branching growth of bacterial colonies. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59, 7025–7035 (1999).

    CAS  PubMed  Google Scholar 

  72. Giverso, C., Verani, M. & Ciarletta, P. Branching instability in expanding bacterial colonies. J. R. Soc. Interface 12, 20141290 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Henrichsen, J. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36, 478–503 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vassallo, L., Hansmann, D. & Braunstein, L. A. On the growth of non-motile bacteria colonies: an agent-based model for pattern formation. Eur. Phys. J. B 92, 216 (2019).

    Article  CAS  Google Scholar 

  75. Ben-Jacob, E. et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46–49 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Dornic, I., Chaté, H. & Muñoz, M. A. Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions. Phys. Rev. Lett. 94, 100601 (2005).

    Article  PubMed  CAS  Google Scholar 

  77. Press, W. H. Numerical Recipes in C: The Art of Scientific Computing 2nd edn (Cambridge University Press, 1992).

  78. LeVeque, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (SIAM, 2007).

  79. Varma, A. & Palsson, B. O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Orth, J. D., Palsson, B. Ø. & Fleming, R. M. T. Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus 4 (2010).

  81. Zeng, H. & Yang, A. Bridging substrate intake kinetics and bacterial growth phenotypes with flux balance analysis incorporating proteome allocation. Sci. Rep. 10, 4283 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Sauro, H. M. Enzyme Kinetics for Systems Biology (Ambrosius Publishing, 2012).

  83. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ofaim, S., Sulheim, S., Almaas, E., Sher, D. & Segrè, D. Dynamic allocation of carbon storage and nutrient-dependent exudation in a revised genome-scale model of Prochlorococcus. Front. Genet. 12, 586293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cezairliyan, B. & Ausubel, F. M. Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl Acad. Sci. USA 114, E7796–E7802 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. van Zyl, W. H., Lynd, L. R., den Haan, R. & McBride, J. E. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108, 205–235 (2007).

    PubMed  Google Scholar 

  88. Traving, S. J., Thygesen, U. H., Riemann, L. & Stedmon, C. A. A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl. Environ. Microbiol. 81, 7385–7393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, X.-F. et al. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92, 267–275 (2014).

    Article  Google Scholar 

  90. Nunan, N. The microbial habitat in soil: scale, heterogeneity and functional consequences. J. Plant Nutr. Soil Sci. 180, 425–429 (2017).

    Article  CAS  Google Scholar 

  91. Müller, J. & Van Saarloos, W. Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 061111 (2002).

    Article  PubMed  CAS  Google Scholar 

  92. Korolev, K. S., Avlund, M., Hallatschek, O. & Nelson, D. R. Genetic demixing and evolution in linear stepping stone models. Rev. Mod. Phys. 82, 1691–1718 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Covert, M. W., Schilling, C. H. & Palsson, B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Covert, M. W. & Palsson, B. O. Constraints-based models: regulation of gene expression reduces the steady-state solution space. J. Theoret. Biol. 221, 309–325 (2003).

    Article  CAS  Google Scholar 

  95. Asenjo, J. A., Diaz, H., Cintolesi, A., Rapaport, I. & Andrews, B. A. Metabolomics of recombinant yeast: Gene expression, flux analysis and a mathematical model for gene regulation of metabolism. J. Biotechnol. 136, S19 (2008).

    Article  Google Scholar 

  96. Thanamit, K., Hoerhold, F., Oswald, M. & Koenig, R. Gene expression profiles based flux balance model to predict the carbon source for Bacillus subtilis. Preprint at bioRxiv https://doi.org/10.1101/842518 (2020).

  97. Goelzer, A., Fromion, V. & Scorletti, G. Cell design in bacteria as a convex optimization problem. Automatica 47, 1210–1218 (2011).

    Article  Google Scholar 

  98. Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E. Constrained allocation flux balance analysis. PLoS Comput. Biol. 12, e1004913 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Becker, S. A. & Palsson, B. O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4, e1000082 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gutiérrez, M. et al. A new improved and extended version of the multicell bacterial simulator gro. ACS Synth. Biol. 6, 1496–1508 (2017).

    Article  PubMed  CAS  Google Scholar 

  101. Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial community responses to environmental complexity. Nat. Commun. 12, 2365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pacheco, A. R. & Segrè, D. Pacheco A. R. An evolutionary algorithm for designing microbial communities via environmental modification. J. R. Soc. Interface 18, 20210348 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. J. Geophys. Res. 109, C11010 (2004).

    Article  CAS  Google Scholar 

  107. Partensky, F., Hoepffner, N., Li, W., Ulloa, O. & Vaulot, D. Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiol. 101, 285–296 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Casey, J. R., Mardinoglu, A., Nielsen, J. & Karl, D. M. Adaptive evolution of phosphorus metabolism in Prochlorococcus. mSystems 1, e00065–16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stramski, D., Bricaud, A. & Morel, A. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. Appl. Opt. 40, 2929–2945 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Morel, A., Ahn, Y.-H., Partensky, F., Vaulot, D. & Claustre, H. Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation. J. Marine Res. 51, 617–649 (1993).

    Article  CAS  Google Scholar 

  111. Pope, R. M. & Fry, E. S. Absorption spectrum (380–700 nm) of pure water II Integrating cavity measurements. Appl. Optics 36, 8710 (1997).

    Article  CAS  Google Scholar 

  112. Morel, A. & Bricaud, A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res. A 28, 1375–1393 (1981).

    Article  Google Scholar 

  113. Zomorrodi, A. R. & Maranas, C. D. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst. Biol. 4, 178 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Biggs, M. B. & Papin, J. A. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation. PLoS One 8, e78011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cole, J. A. et al. Spatially-resolved metabolic cooperativity within dense bacterial colonies. BMC Syst. Biol. 9, 15 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Borer, B., Ataman, M., Hatzimanikatis, V. & Or, D. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Comput. Biol. 15, e1007127 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Segrè, Sanchez and Harcombe labs for helpful inputs and discussions at multiple stages of the development of COMETS. We also thank M. Hasson for his contribution to the development of the code. The development of COMETS was initially supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research, grant DE-SC0004962 to D.S. D.S. also acknowledges funding from the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research through the Microbial Community Analysis and Functional Evaluation in Soils SFA Program (m-CAFEs) under contract number DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory; the NIH (T32GM100842, 5R01DE024468, R01GM121950), the National Science Foundation (1457695 and NSFOCE-BSF 1635070), the Human Frontiers Science Program (RGP0020/2016) and the Boston University Interdisciplinary Biomedical Research Office. A.R.P. was supported by a Howard Hughes Medical Institute Gilliam Fellowship and a National Academies of Sciences, Engineering, and Medicine Ford Foundation Predoctoral Fellowship. S.S. was funded by SINTEF, the Norwegian graduate research school in bioinformatics, biostatistics and systems biology (NORBIS) and by the INBioPharm project of the Centre for Digital Life Norway (Research Council of Norway grant no. 248885). W.R.H. acknowledges funding from RO1GM121498. Work by A.S., D.B. and J.C.C.V. was supported by a young investigator award from the Human Frontier Science Program (RGY0077/2016), by a Packard Fellowship from the David and Lucile Packard foundation, and by the National Institutes of Health through grant 1R35 GM133467-01 to A.S. K.S.K. was supported by Simons Foundation Grants #409704 and by the Research Corporation for Science Advancement through Cottrell Scholar Award #24010.

Author information

Authors and Affiliations

Authors

Contributions

Overall management of COMETS platform: D.S., I.D. Conceptualization of COMETS capabilities: D.S., I.D., A.S., W.H., K.K. Writing and maintenance of initial COMETS code: I.D., W.J.R. Development of current COMETS software and capabilities: I.D., D.B., J.C., M.Q. Writing of specific modules: W.J.R., I.D., J.C., D.B., M.Q., S.S. Preparing and implementing protocols: I.D., J.C., D.B., M.Q., A.R.P., S.S., J.V. Conceptualization and preparation of the manuscript: I.D., D.B., J.C., M.Q., J.V., S.S., A.R.P., D.B.B., K.K., A.S., W.H., D.S.

Corresponding author

Correspondence to Daniel Segrè.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Harcombe, W. R. et al. Cell Rep. 7, 1104–1115 (2104): https://doi.org/10.1016/j.celrep.2014.03.070

Chacón, J. M., Möbius, W. & Harcombe, W. R. ISME J. 12, 669–680 (2018): https://doi.org/10.1038/s41396-017-0038-0

Bajić, D. et al. Proc. Natl Acad. Sci. USA 115, 11286–11291 (2018): https://doi.org/10.1073/pnas.1808485115

Extended data

Extended Data Fig. 1 Sensitivity of the simulation results depending on the value of the finite time step.

Starting with a simulation identical to the one in Procedure 7, we repeated it with four different values of the time step: a, images of the final colony morphologies; b, plot of the total biomass change with time, illustrating the magnitude of the error due to the finite time step size. The simulation time step size should be chosen such that final simulation result is within the tolerated error.

Extended Data Fig. 2 Sensitivity of the simulation results depending on the value of the finite spatial grid size.

Starting with a simulation identical to the one in Procedure 7, we repeated it with four different values of the grid size: a, images of the final colony morphologies; b, plot of the total biomass change with time, illustrating the magnitude of the error due to the finite grid size. The simulation finite spatial grid size should be chosen such that the final simulation result is within the tolerated error.

Extended Data Fig. 3 Sensitivity of the simulation results depending on the value of the amplitude of the demographic noise.

Starting with a simulation identical to the one in Procedure 7, we repeated it with two different magnitudes of the noise amplitude σ: a,b, images of three replicas of a colony simulation (a), and plot of the total biomass change with time of the three replicas simulations with σ = 0.01 (b); c,d, Images of three replicas of a colony simulation (c), and plot of the total biomass change with time of the three replicas simulations with σ = 0.001 (d). A finalized result of a simulation study in presence of noise should be averaged over several replicas of the stochastic simulation. The change of the noise amplitude, however, may have a substantial effect of the growth rate and the final morphology. The value of the noise amplitude should be chosen to best represent an experimental result.

Extended Data Fig. 4 COMETS simulations time benchmarking.

In order to benchmark the performance of COMETS with increasing complexity of the simulated system, we performed a 24 h batch culture run similar to that in Procedure 1, with either 1, 10 or 100 models (the E. coli model iJO1366 was used in all instances). The settings were identical to Procedure 1 in the main text. We tested three timesteps, 0.01 h (circles), 0.1 h (triangles) and 0.5 h. (squares). The x-axis shows simulated time (i.e., number of simulation steps × timeStep, in h); the y-axis shows elapsed simulation time (the time taken by the computer to run the program), in min. Simulations were performed in Python using cometspy in a personal laptop running linux (Intel Core i7-10610U CPU at 1.80 GHz × 4 cores, 15.3 GiB memory).

Extended Data Fig. 5 The GUI of COMETS.

COMETS simulations can be started from the GUI by loading a previously prepared layout, models and parameters files. It is meant mostly as a training tool with limited functionality. Future development of COMETS will focus on the development of a comprehensive GUI.

Supplementary information

Supplementary Information

Supplementary Discussions 1–5, Supplementary Table 1 and References.

Reporting Summary

Extended Data Video 1

Branching colony of two identical strains of E. coli. Procedure 7, option A: growth regime without genetic demixing.

Extended Data Video 2

Branching colony of two identical strains of E. coli. Procedure 7, option B: growth regime with genetic demixing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dukovski, I., Bajić, D., Chacón, J.M. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat Protoc 16, 5030–5082 (2021). https://doi.org/10.1038/s41596-021-00593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00593-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics