Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Causal machine learning for predicting treatment outcomes

Abstract

Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating individualized treatment effects, so that clinical decision-making can be personalized to individual patient profiles. Causal ML can be used in combination with both clinical trial data and real-world data, such as clinical registries and electronic health records, but caution is needed to avoid biased or incorrect predictions. In this Perspective, we discuss the benefits of causal ML (relative to traditional statistical or ML approaches) and outline the key components and steps. Finally, we provide recommendations for the reliable use of causal ML and effective translation into the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Causal ML for predicting treatment outcomes.
Fig. 2: Workflow for causal ML in medicine.
Fig. 3: Formalizing tasks for causal ML.

Similar content being viewed by others

References

  1. Kaddour, J., Lynch, A., Liu, Q., Kusner, M. J. & Silva, R. Causal machine learning: a survey and open problems. Preprint at arXiv https://doi.org/10.48550/arXiv.2206.15475 (2022).

  2. Yoon, J., Jordon, J. & van der Schaar, M. GANITE: estimation of individualized treatment effects using generative adversarial nets. In Proc. 6th International Conference on Learning Representations (ICLR, 2018).

  3. Evans, W. E. & Relling, M. V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Kopitar, L., Kocbek, P., Cilar, L., Sheikh, A. & Stiglic, G. Early detection of type 2 diabetes mellitus using machine learning-based prediction models. Sci. Rep. 10, 11981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H. & van der Schaar, M. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS ONE 14, e0213653 (2019).

  7. Cahn, A. et al. Prediction of progression from pre-diabetes to diabetes: development and validation of a machine learning model. Diabetes/Metab. Res. Rev. 36, e3252 (2020).

    Article  PubMed  Google Scholar 

  8. Zueger, T. et al. Machine learning for predicting the risk of transition from prediabetes to diabetes. Diabetes Technol. Ther. 24, 842–847 (2022).

    Article  PubMed  Google Scholar 

  9. Krittanawong, C. et al. Machine learning prediction in cardiovascular diseases: a metaanalysis. Sci. Rep. 10, 16057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie, Y. et al. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of major adverse cardiovascular events: Emulation of a randomised target trial using electronic health records. Lancet Diabetes Endocrinol. 11, 644–656 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Deng, Y. et al. Comparative effectiveness of second line glucose lowering drug treatments using real world data: emulation of a target trial. BMJ Med. 2, e000419 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kalia, S. et al. Emulating a target trial using primary-care electronic health records: sodium glucose cotransporter 2 inhibitor medications and hemoglobin A1c. Am. J. Epidemiol. 192, 782–789 (2023).

    Article  PubMed  Google Scholar 

  13. Petito, L. C. et al. Estimates of overall survival in patients with cancer receiving different treatment regimens: emulating hypothetical target trials in the Surveillance, Epidemiology, and End Results (SEER)–Medicare linked database. JAMA Netw. Open 3, e200452 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974).

    Article  Google Scholar 

  15. Rubin, D. B. Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc. 100, 322–331 (2005).

    Article  CAS  Google Scholar 

  16. Robins, J. M. Correcting for non-compliance in randomized trials using structural nested mean models. Commun. Stat. 23, 2379–2412 (1994).

    Article  Google Scholar 

  17. Robins, J. M. Robust estimation in sequentially ignorable missing data and causal inference models. In 1999 Proceedings of the American Statistical Association on Bayesian Statistical Science 6–10 (2000).

  18. Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).

    Article  Google Scholar 

  19. Pearl, J. Causality: Models, Reasoning, and Inference (Cambridge University Press, 2009).

  20. Hemkens, L. G. et al. Interpretation of epidemiologic studies very often lacked adequate consideration of confounding. J. Clin. Epidemiol. 93, 94–102 (2018).

    Article  PubMed  Google Scholar 

  21. Dang, L. E. et al. A causal roadmap for generating high-quality real-world evidence. J. Clin. Transl. Sci. 7, e212 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Petersen, M. L. & van der Laan, M. J. Causal models and learning from data: integrating causal modeling and statistical estimation. Epidemiology 25, 418–426 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. van der Laan, M. J. & Rubin, D. Targeted maximum likelihood learning. Int. J. Biostatistics 2, 11 (2006).

    Article  Google Scholar 

  24. Hirano, K. & Imbens, G. W. in Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives: An Essential Journey with Donald Rubin’s Statistical Family (eds Gelman, A. & Meng, X.-L.) Ch. 7 (John Wiley & Sons, 2004).

  25. Specht, L. et al. Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int. J. Radiat. Oncol. Biol. Phys. 89, 854–862 (2014).

    Article  PubMed  Google Scholar 

  26. van Geloven, N. et al. Prediction meets causal inference: the role of treatment in clinical prediction models. Eur. J. Epidemiol. 35, 619–630 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kennedy, E. H. Towards optimal doubly robust estimation of heterogeneous causal effects. Electron. J. Stat. 17, 3008–3049 (2023).

    Article  Google Scholar 

  28. Imbens, G. W. & Rubin, D. B. Causal Inference in Statistics, Social, and Biomedical Sciences (Cambridge University Press, 2015).

    Book  Google Scholar 

  29. Chen, J., Vargas-Bustamante, A., Mortensen, K. & Ortega, A. N. Racial and ethnic disparities in health care access and utilization under the Affordable Care Act. Med. Care 54, 140–146 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cinelli, C., Forney, A. & Pearl, J. A crash course in good and bad controls. Sociol. Methods Res. https://doi.org/10.1177/00491241221099552 (2022).

  31. Laffers, L. & Mellace, G. Identification of the average treatment effect when SUTVA is violated. Department of Economics SDU. Discussion Papers on Business and Economics No. 3 (University of Southern Denmark, 2020).

  32. Huber, M. & Steinmayr, A. A framework for separating individual-level treatment effects from spillover effects. J. Bus. Econ. Stat. 39, 422–436 (2021).

  33. Syrgkanis, V. et al. Machine learning estimation of heterogeneous treatment effects with instruments. In Proc. 33rd International Conference on Neural Information Processing Systems (eds Wallach, H. M. & Larochelle, H.) 15193–15202 (NeurIPS, 2019).

  34. Frauen, D. & Feuerriegel, S. Estimating individual treatment effects under unobserved confounding using binary instruments. In Proc. 11th International Conference on Learning Representations (ICLR, 2023).

  35. Lim, B. Forecasting treatment responses over time using recurrent marginal structural networks. In Proc. Advances in Neural Information Processing Systems 31 (eds Bengio, H. et al.) (NeurIPS, 2018).

  36. Liu, R., Yin, C. & Zhang, P. Estimating individual treatment effects with time-varying confounders. In Proc. IEEE International Conference on Data Mining (ICDM) 382–391 (IEEE, 2020).

  37. Li, R. et al. G-Net: a deep learning approach to G-computation for counterfactual outcome prediction under dynamic treatment regimes. In Proc. Machine Learning for Health (eds Roy, S. et al.) 282–299 (PMLR, 2021).

  38. Bica, I., Alaa, A. M., Jordon, J. & van der Schaar, M. Estimating counterfactual treatment outcomes over time through adversarially balanced representations. In Proc. 8th International Conference on Learning Representations 11790–11817 (ICLR, 2020).

  39. Liu, R., Hunold, K. M., Caterino, J. M. & Zhang, P. Estimating treatment effects for time-to-treatment antibiotic stewardship in sepsis. Nat. Mach. Intell. 5, 421–431 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Melnychuk, V., Frauen, D. & Feuerriegel, S. Causal transformer for estimating counterfactual outcomes. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 15293–15329 (PMLR, 2022).

  41. Schulam, P. & Saria, S. Reliable decision support using counterfactual models. In Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 1696–1706 (NeurIPS, 2017).

  42. Vanderschueren, T., Curth, A., Verbeke, W. & van der Schaar, M. Accounting for informative sampling when learning to forecast treatment outcomes over time. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 34855–34874 (PMLR, 2023).

  43. Seedat, N., Imrie, F., Bellot, A., Qian, Z. & van der Schaar, M. Continuous-time modeling of counterfactual outcomes using neural controlled differential equations. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 19497–19521 (PMLR, 2022).

  44. Hess, K., Melnychuk, V., Frauen, D. & Feuerriegel, S. Bayesian neural controlled differential equations for treatment effect estimation. In Proc. 12th International Conference on Learning Representations (ICLR, 2024).

  45. Hatt, T., Berrevoets, J., Curth, A., Feuerriegel, S. & van der Schaar, M. Combining observational and randomized data for estimating heterogeneous treatment effects. Preprint at arXiv https://doi.org/10.48550/arXiv.2202.12891 (2022).

  46. Colnet, B. et al. Causal inference methods for combining randomized trials and observational studies: a review. Stat. Sci. 39, 165–191 (2024).

    Article  Google Scholar 

  47. Kallus, N., Puli, A. M. & Shalit, U. Removing hidden confounding by experimental grounding. In Proc. 32nd Conference on Neural Information Processing Systems (eds Bengio, S. et al.) 10888–10897 (NeurIPS, 2018).

  48. van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super learner. Stat. Appl. Genet. Mol. Biol. 6, 25 (2007).

    Google Scholar 

  49. van der Laan, M. J. & Rose, S. Targeted Learning: Causal Inference for Observational and Experimental Data 1st edn (Springer, 2011).

  50. Zheng, W. & van der Laan, M. J. in Targeted Learning: Causal Inference for Observational and Experimental Data 1st edn, 459–474 (Springer, 2011).

  51. Díaz, I. & van der Laan, M. J. Targeted data adaptive estimation of the causal dose–response curve. J. Causal Inference 1, 171–192 (2013).

    Article  Google Scholar 

  52. Luedtke, A. R. & van der Laan, M. J. Super-learning of an optimal dynamic treatment rule. Int. J. Biostatistics 12, 305–332 (2016).

    Article  Google Scholar 

  53. Künzel, S. R., Sekhon, J. S., Bickel, P. J. & Yu, B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proc. Natl Acad. Sci. USA 116, 4156–4165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Curth, A. & van der Schaar, M. Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms. In Proc. 24th International Conference on Artificial Intelligence and Statistics (eds Banerjee, A. & Fukumizu, K.) 1810–1818 (PMLR, 2021).

  55. Athey, S. & Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl Acad. Sci. USA 113, 7353–7360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wager, S. & Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113, 1228–1242 (2018).

    Article  CAS  Google Scholar 

  57. Athey, S., Tibshirani, J. & Wager, S. Generalized random forests. Ann. Stat. 47, 1148–1178 (2019).

    Article  Google Scholar 

  58. Shalit, U., Johansson, F. D. & Sontag, D. Estimating individual treatment effect: generalization bounds and algorithms. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 3076–3085 (PMLR, 2017).

  59. Shi, C., Blei, D. & Veitch, V. Adapting neural networks for the estimation of treatment effects. In Proc. 33rd International Conference on Neural Information Processing Systems (eds Wallach, H. M. et al.) 2496–2506 (NeurIPS, 2019).

  60. Bach, P., Chernozhukov, V., Kurz, M. S. & Spindler, M. DoubleML: an object-oriented implementation of double machine learning in Python. J. Mach. Learn. Res. 23, 2469–2474 (2022).

    Google Scholar 

  61. Foster, D. J. & Syrgkanis, V. Orthogonal statistical learning. Ann. Stat. 51, 879–908 (2023).

    Article  Google Scholar 

  62. Kennedy, E. H., Ma, Z., McHugh, M. D. & Small, D. S. Nonparametric methods for doubly robust estimation of continuous treatment effects. J. R. Stat. Soc. Series B Stat. Methodol. 79, 1229–1245 (2017).

    Article  PubMed  Google Scholar 

  63. Nie, L., Ye, M., Liu, Q. & Nicolae, D. VCNet and functional targeted regularization for learning causal effects of continuous treatments. In Proc. 9th International Conference on Learning Representations (ICLR, 2021).

  64. Bica, I., Jordon, J. & van der Schaar, M. Estimating the effects of continuous-valued interventions using generative adversarial networks. In Proc. 34th Annual Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) (NeurIPS, 2020).

  65. Hill, J. L. Bayesian nonparametric modeling for causal inference. J. Computational Graph. Stat. 20, 217–240 (2011).

    Article  Google Scholar 

  66. Schwab, P., Linhardt, L., Bauer, S., Buhmann, J. M. & Karlen, W. Learning counterfactual representations for estimating individual dose-response curves. In Proc. 34th AAAI Conference on Artificial Intelligence 5612–5619 (AAAI, 2020).

  67. Schweisthal, J., Frauen, D., Melnychuk, V. & Feuerriegel, S. Reliable off-policy learning for dosage combinations. In Proc. 37th Annual Conference on Neural Information Processing Systems (NeurIPS, 2023).

  68. Melnychuk, V., Frauen, D. & Feuerriegel, S. Normalizing flows for interventional density estimation. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 24361–24397 (PMLR, 2023).

  69. Banerji, C. R., Chakraborti, T., Harbron, C. & MacArthur, B. D. Clinical AI tools must convey predictive uncertainty for each individual patient. Nat. Med. 29, 2996–2998 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Alaa, A. M. & van der Schaar, M. Bayesian inference of individualized treatment effects using multi-task Gaussian processes. In Proc. 31st Annual Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 3425–3433 (NeurIPS, 2017).

  71. Alaa, A., Ahmad, Z. & van der Laan, M. Conformal meta-learners for predictive inference of individual treatment effects. In Proc. 37th Annual Conference on Neural Information Processing Systems (eds Oh, A. et al.) (NeurIPS, 2023).

  72. Curth, A., Svensson, D., Weatherall, J. & van der Schaar, M. Really doing great at estimating CATE? A critical look at ML benchmarking practices in treatment effect estimation. In Proc. 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (eds Vanschoren, J. & Yeung, S.-K.) (NeurIPS, 2021).

  73. Boyer, C. B., Dahabreh, I. J. & Steingrimsson, J. A. Assessing model performance for counterfactual predictions. Preprint at arXiv https://doi.org/10.48550/arXiv.2308.13026 (2023).

  74. Keogh, R. H. & van Geloven, N. Prediction under interventions: evaluation of counterfactual performance using longitudinal observational data. Preprint at arXiv https://doi.org/10.48550/arXiv.2304.10005 (2023).

  75. Curth, A. & van der Schaar, M. In search of insights, not magic bullets: towards demystification of the model selection dilemma in heterogeneous treatment effect estimation. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 6623–6642 (PMLR, 2023).

  76. Sharma, A., Syrgkanis, V., Zhang, C. & Kıcıman, E. DoWhy: addressing challenges in expressing and validating causal assumptions. Preprint at arXiv https://doi.org/10.48550/arXiv.2108.13518 (2021).

  77. Vokinger, K. N., Feuerriegel, S. & Kesselheim, A. S. Mitigating bias in machine learning for medicine. Commun. Med. 1, 25 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Petersen, M. L., Porter, K. E., Gruber, S., Wang, Y. & van der Laan, M. J. Diagnosing and responding to violations in the positivity assumption. Stat. Methods Med. Res. 21, 31–54 (2012).

  79. Jesson, A., Mindermann, S., Shalit, U. & Gal, Y. Identifying causal-effect inference failure with uncertainty-aware models. In Proc. 34th Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 11637–11649 (NeurIPS, 2020).

  80. Rudolph, K. E. et al. When effects cannot be estimated: redefining estimands to understand the effects of naloxone access laws. Epidemiology 33, 689–698 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cornfield, J. et al. Smoking and lung cancer: recent evidence and a discussion of some questions. J. Natl Cancer Inst. 22, 173–203 (1959).

    CAS  PubMed  Google Scholar 

  82. Frauen, D., Melnychuk, V. & Feuerriegel, S. Sharp bounds for generalized causal sensitivity analysis. In Proc. 37th Annual Conference on Neural Information Processing Systems (eds Oh, A. et al.) (NeurIPS, 2023).

  83. Kallus, N., Mao, X. & Zhou, A. Interval estimation of individual-level causal effects under unobserved confounding. In Proc. 22nd International Conference on Artificial Intelligence and Statistics (eds Chaudhuri, K. & Sugiyama, M.) 2281–2290 (PMLR, 2019).

  84. Jin, Y., Ren, Z. & Candès, E. J. Sensitivity analysis of individual treatment effects: a robust conformal inference approach. Proc. Natl Acad. Sci. USA 120, e2214889120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dorn, J. & Guo, K. Sharp sensitivity analysis for inverse propensity weighting via quantile balancing. J. Am. Stat. Assoc. 118, 2645–2657 (2023).

    Article  CAS  Google Scholar 

  86. Oprescu, M. et al. B-learner: quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 26599–26618 (PMLR, 2023).

  87. Hernán, M. A. & Robins, J. M. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 183, 758–764 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xu, J. et al. Protocol for the development of a reporting guideline for causal and counterfactual prediction models in biomedicine. BMJ Open 12, e059715 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fournier, J. C. et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA 303, 47–53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Booth, C. M., Karim, S. & Mackillop, W. J. Real-world data: towards achieving the achievable in cancer care. Nat. Rev. Clin. Oncol. 16, 312–325 (2019).

    Article  PubMed  Google Scholar 

  91. Chien, I. et al. Multi-disciplinary fairness considerations in machine learning for clinical trials. In Proc. 2022 ACM Conference on Fairness, Accountability, and Transparency (FACCT '22) 906–924 (ACM, 2022).

  92. Ross, E. L. et al. Estimated average treatment effect of psychiatric hospitalization in patients with suicidal behaviors: a precision treatment analysis. JAMA Psychiatry 81, 135–143 (2023).

    Article  Google Scholar 

  93. Cole, S. R. & Stuart, E. A. Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 trial. Am. J. Epidemiol. 172, 107–115 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hatt, T., Tschernutter, D. & Feuerriegel, S. Generalizing off-policy learning under sample selection bias. In Proc. 38th Conference on Uncertainty in Artificial Intelligence (eds Cussens, J. & Zhang, K.) 769–779 (PMLR, 2022).

  95. Sherman, R. E. et al. Real-world evidence—what is it and what can it tell us. N. Engl. J. Med. 375, 2293–2297 (2016).

    Article  PubMed  Google Scholar 

  96. Norgeot, B. et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat. Med. 26, 1320–1324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 370, 1453–1457 (2007).

    Article  Google Scholar 

  98. Nie, X. & Wager, S. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika 108, 299–319 (2021).

    Article  Google Scholar 

  99. Chernozhukov, V. et al. Double/debiased machine learning for treatment and structural parameters. Econom. J. 21, C1–C68 (2018).

    Article  Google Scholar 

  100. Morzywołek, P., Decruyenaere, J. & Vansteelandt, S. On a general class of orthogonal learners for the estimation of heterogeneous treatment effects. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.12687 (2023).

Download references

Acknowledgements

S.F. acknowledges funding via Swiss National Science Foundation Grant 186932.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualization, manuscript writing and approval of the manuscript.

Corresponding author

Correspondence to Stefan Feuerriegel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Matthew Sperrin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feuerriegel, S., Frauen, D., Melnychuk, V. et al. Causal machine learning for predicting treatment outcomes. Nat Med 30, 958–968 (2024). https://doi.org/10.1038/s41591-024-02902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-02902-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing