Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response

Abstract

Here, we report that genome editing by CRISPR–Cas9 induces a p53-mediated DNA damage response and cell cycle arrest in immortalized human retinal pigment epithelial cells, leading to a selection against cells with a functional p53 pathway. Inhibition of p53 prevents the damage response and increases the rate of homologous recombination from a donor template. These results suggest that p53 inhibition may improve the efficiency of genome editing of untransformed cells and that p53 function should be monitored when developing cell-based therapies utilizing CRISPR–Cas9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unbiased CRISPR screening identifies activation of the p53–p21–RB axis.
Fig. 2: Cas9 gRNA RNP delivery triggers a p53-dependent DNA damage response that suppresses gene correction.

Similar content being viewed by others

References

  1. Hustedt, N. & Durocher, D. Nat. Cell Biol. 19, 1–9 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Hohmann, S. & Gozalbo, D. Mol. Gen. Genet. 211, 446–454 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Nat. Biotechnol. 34, 339–344 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. DeWitt, M. A. et al. Sci. Transl. Med. 8, 360ra134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yin, H. et al. Nat. Biotechnol. 32, 551–553 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dever, D. P. et al. Nature 539, 384–389 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lee, K. et al. eLife 6, e25312 (2017).

  8. Maruyama, T. et al. Nat. Biotechnol. 33, 538–542 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schmierer, B. et al. Mol. Syst. Biol. 13, 945 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luo, M. & Chen, Y. Int. J. Ophthalmol. 11, 150–159 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Otto, T. & Sicinski, P. Nat. Rev. Cancer 17, 93–115 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sokolova, M. et al. Cell Cycle 16, 189–199 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Doench, J. G. et al. Nat. Biotechnol. 34, 184–191 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. Nucleic Acids Res. 45, W130–W137 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Canny, M. D. et al. Nat. Biotechnol. 36, 95–102 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Cuella-Martin, R. et al. Mol. Cell 64, 51–64 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Muerdter, F. et al. Nat. Methods 15, 141–149 (2018).

    Article  PubMed  CAS  Google Scholar 

  18. Li, W. et al. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang, T. et al. Science 350, 1096–1101 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tsai, S. Q. et al. Nat. Biotechnol. 33, 187–197 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out at the High Throughput Genome Engineering Facility and the Swedish National Genomics Infrastructure funded by Science for Life Laboratory (Scilifelab). The Knut and Alice Wallenberg Foundation, Cancerfonden, Barncancerfonden and the Academy of Finland supported this work. We thank H. Han and Y. Bryceson for providing equipment, the Protein Science Facility at Karolinska Institutet, as well as I. Sur and T. Kivioja for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.H., B.S. and J.T. wrote the manuscript. S.B., B.S. and J.P. conducted the genome-wide knockout screens. E.H., B.S. and S.B. prepared the cell lines and performed the flow cytometry experiments. J.T. and B.S. supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bernhard Schmierer or Jussi Taipale.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haapaniemi, E., Botla, S., Persson, J. et al. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24, 927–930 (2018). https://doi.org/10.1038/s41591-018-0049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0049-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing