Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells

Abstract

CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells1,2,3. Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells3,4,5,6,7,8,9,10,11,12,13. Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction3. The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations14, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Efficient Cas9 gene disruption is toxic to hPSCs.
Fig. 2: CRISPR screen identifies a hPSC-specific toxic response to Cas9-induced DSBs.
Fig. 3: Characterization of the Cas9 DSB-induced transcriptional response.
Fig. 4: P53-dependent toxicity inhibits Cas9 genome engineering in hPSCs.

References

  1. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–822 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. He, X. et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3, e04766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zwaka, T. P. & Thomson, J. A. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21, 319–321 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 27, 851–857 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu, Y. & Rao, M. Gene targeting in human pluripotent stem cells. Methods Mol. Biol. 767, 355–367 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. Hockemeyer, D. & Jaenisch, R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18, 573–586 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Song, H., Chung, S. K. & Xu, Y. Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6, 80–89 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Merkle, F. T. et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep. 11, 875–883 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Merkle, F. T. et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233 (2017).

  15. Avior, Y., Sagi, I. & Benvenisty, N. Pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Mol. Cell Biol. 17, 170–182 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. González, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wells, M. F. et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Stem Cell 19, 703–708 (2016).

    CAS  Google Scholar 

  18. Liang, X. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44–53 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Banaszynski, L. A., Chen, L., Maynard-Smith, L. A., Ooi, A. G. L. & Wandless, T. J. A. Rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chindelevitch, L. et al. Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28, 1114–1121 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Jaeger, S. et al. Causal network models for predicting compound targets and driving pathways in cancer. J. Biomol. Screen. 19, 791–802 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Lane, D. P. p53, Guardian of the genome. Nature 358, 15–16 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Cazzalini, O., Scovassi, A. I., Savio, M., Stivala, L. A. & Prosperi, E. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat. Res. 704, 12–20 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Schlaeger, T. M. et al. A comparison of non-integrating reprogramming methods. Nat. Biotechnol. 33, 58–63 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460, 1132–1135 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hagiyama, H. et al. Signaling through the antigen receptor of B lymphocytes activates a p53-independent pathway of c-Myc-induced apoptosis. Oncogene 18, 4091–4098 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

  34. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR-Cas9 targeting. Cancer Discov. 2641, 617–632 (2016).

    Google Scholar 

  35. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

  36. Dumitru, R. et al. Human embryonic stem cells have constitutively active Bax at the golgi and are primed to undergo rapid apoptosis. Mol. Cell 46, 573–583 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu, J. C. et al. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13, 483–491 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hanel, W. & Moll, U. M. Links between mutant p53 and genomic instability. J. Cell. Biochem. 113, 433–439 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Qin, H. et al. Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J. Biol. Chem. 282, 5842–5852 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sun, Y. et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet syndrome patients. eLife 5, e13073 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wells, M. F. et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Stem Cell 19, 703–708 (2016).

    CAS  Google Scholar 

  43. Bidinosti, M. et al. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 351, 1199–1203 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Dejesus, R. et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. eLife 5, e17290 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liang, X. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44–53 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data HTSeq. Bioinformatics 31, 166–169 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 16–21 (2001).

    Article  Google Scholar 

  50. Chindelevitch, L. et al. Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28, 1114–1121 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. Jaeger, S. et al. Causal network models for predicting compound targets and driving pathways in cancer. J. Biomol. Screen. 19, 791–802 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Szklarczyk, D. et al. STRINGv10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    Article  PubMed  CAS  Google Scholar 

  53. Ran, F. A. et al. Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Sigoillot for access to the list of sgRNAs with multiple perfect binding sites, M. Morris and A. Hill for help with interactome analysis, and M. Hild for constructive feedback on the project.

Author information

Authors and Affiliations

Authors

Contributions

R.J.I. and A.K. designed all the experiments and wrote the manuscript. R.D. revised the manuscript. R.J.I. designed iCas9 constructs. R.J.I. and S.K. made transgenic cell lines and characterized them. D.H. and C.Y. developed and performed indel analysis of mutated DNA samples. M.S. packaged the 47 individual sgRNAs, and K.A.W. tested them. K.T. helped with live cell imaging of confluence. E.F., G.R.H. and G.M. helped with the design of the pooled screen, execution and analysis. J.R.-H. generated sgRNA libraries. C.R. sequenced pooled screen samples. G.R.H., G.M., Z.Y. and W.F. provided access and analysed non-targeting control data across transformed cell lines. T.K. identified sgRNAs with SNPs in the H1-hESC genome. J.C. prepped RNA samples for RNA-seq experiments. R.R. performed RNA-seq and interactome analysis. T.K. analysed SNP and multicutter data. M.R.S. conducted high-content image analysis. K.A.W. helped design and performed the OCT4 HDR assay

Corresponding author

Correspondence to Ajamete Kaykas.

Ethics declarations

Competing interests

All authors were employees of Novartis Institutes for Biomedical Research when the research was conducted.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4

Reporting Summary

Supplementary Data 1

pAAVS1-iCas9 plasmid map

Supplementary Data 2

pAAVS1-ieCas9 plasmid map

Supplementary Data 3

pB-iNgn2-cDDCas9 plasmid map

Supplementary Data 4

13K pooled screen in hPSCs

Supplementary Data 5

DSB day 2 differential expression analysis

Supplementary Data 6

hOCT4-C-LinkHA-tdTomato-Donor plasmid map

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihry, R.J., Worringer, K.A., Salick, M.R. et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 24, 939–946 (2018). https://doi.org/10.1038/s41591-018-0050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0050-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing