Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast and sensitive CRISPR detection by minimized interference of target amplification

Subjects

Abstract

Despite the great potential of CRISPR-based detection, it has not been competitive with other market diagnostics for on-site and in-home testing. Here we dissect the rate-limiting factors that undermine the performance of Cas12b- and Cas13a-mediated detection. In one-pot testing, Cas12b interferes with loop-mediated isothermal amplification by binding to and cleaving the amplicon, while Cas13a directly degrades the viral RNA, reducing its amplification. We found that the protospacer-adjacent motif-interacting domain engineered Cas12b accelerated one-pot testing with 10–10,000-fold improved sensitivity, and detected 85 out of 85 SARS-CoV-2 clinical samples with a sensitivity of 0.5 cp μl−1, making it superior to wild-type Cas12b. In parallel, by diminishing the interference of Cas13a with viral RNA, the optimized Cas13a-based assay detected 86 out of 87 SARS-CoV-2 clinical samples at room temperature in 30 min with a sensitivity of 0.5 cp μl−1. The relaxed reaction conditions and improved performance of CRISPR-based assays make them competitive for widespread use in pathogen detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutants of AapCas12b enable faster and more sensitive one-pot testing than WT.
Fig. 2: Detection of SARS-CoV-2 clinical samples using the AapCas12b mutant.
Fig. 3: REVERSE enables faster and more sensitive one-pot testing than SHINE.
Fig. 4: REVERSE-2 enables nucleic acids detection at room temperature.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Kuiken, T. et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhong, N. S. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 362, 1353–1358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New Engl. J. Med. 367, 1814–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Chang, S. Y., Bowman, B. H., Weiss, J. B., Garcia, R. E. & White, T. J. The origin of HIV-1 isolate HTLV-IIIB. Nature 363, 466–469 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Dietrich, U. et al. A highly divergent HIV-2-related isolate. Nature 342, 948–950 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Piot, P., Muyembe, J. J. & Edmunds, W. J. Ebola in west Africa: from disease outbreak to humanitarian crisis. Lancet. Infect. Dis. 14, 1034–1035 (2014).

    Article  PubMed  Google Scholar 

  7. Petersen, L. R., Jamieson, D. J., Powers, A. M. & Honein, M. A. Zika virus. New Engl. J. Med. 374, 1552–1563 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med. 382, 727–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y. et al. Emerging SARS-CoV-2 variants: why, how, and what’s next? Cell Insight 1, 100029 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Safiabadi Tali, S. H. et al. Tools and techniques for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 detection. Clin. Microbiol. Rev. 34, e00228-20 (2021).

  12. Osório, N. S. & Correia-Neves, M. Implication of SARS-CoV-2 evolution in the sensitivity of RT-qPCR diagnostic assays. Lancet Infect. Dis. 21, 166–167 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blairon, L., Piteüs, S., Beukinga, I. & Tré-Hardy, M. Development and implementation of a RT-qPCR extraction-free protocol for the detection of SARS-CoV-2 and impact on the turn-around-time. J. Med. Virology 93, 2538–2542 (2021).

    Article  CAS  Google Scholar 

  14. Vogels, C. B. F. et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat. Microbiol. 5, 1299–1305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freire-Paspuel, B. & Garcia-Bereguiain, M. A. Analytical sensitivity and clinical performance of a triplex RT-qPCR assay using CDC N1, N2, and RP targets for SARS-CoV-2 diagnosis. Int. J. Infect. Dis. 102, 14–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Albert, E. et al. Field evaluation of a rapid antigen test (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clin. Microbiol. Infection 27, 472.e7–472.e10 (2021).

  17. Corman, V. M. et al. Comparison of seven commercial SARS-CoV-2 rapid point-of-care antigen tests: a single-centre laboratory evaluation study. Lancet. Microbe 2, e311–e319 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mak, G. C. et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J. Clin. Virol. 129, 104500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Torres, I., Poujois, S., Albert, E., Colomina, J. & Navarro, D. Evaluation of a rapid antigen test (Panbio™ COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clin. Microbiol. Infect. 27, 636.e1–636.e4 (2021).

  20. Piepenburg, O., Williams, C. H., Stemple, D. L. & Armes, N. A. DNA detection using recombination proteins. PLoS Biol. 4, e204 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park, G. S. et al. Development of reverse transcription loop-mediated isothermal amplification assays targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J. Mol. Diagn. 22, 729–735 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Baek, Y. H. et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg. Microbes Infect. 9, 998–1007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cherkaoui, D., Huang, D., Miller, B. S., Turbé, V. & McKendry, R. A. Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings. Biosens. Bioelectron. 189, 113328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Freije, C. A. & Sabeti, P. C. Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host Microbe 29, 689–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, T. Y. et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 17, 982–988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, L.-Z. et al. Multi-color RNA imaging with CRISPR-Cas13b systems in living cells. Cell Insight 1, 100044 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qiu, H.-Y., Ji, R.-J. & Zhang, Y. Current advances of CRISPR-Cas technology in cell therapy. Cell Insight 1, 100067 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, S. Y. et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28, 491–493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teng, F. et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 20, 132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184, 323–333.e329 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Swarts, D. C. & Jinek, M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73, 589–600.e4 (2019).

  35. East-Seletsky, A., O’Connell, M. R., Burstein, D., Knott, G. J. & Doudna, J. A. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol. Cell 66, 373–383.e3 (2017).

  36. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Myhrvold, C. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444–448 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Broughton, J. P. et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patchsung, M. et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 4, 1140–1149 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Arizti-Sanz, J. et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 11, 5921 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joung, J. et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. New Engl. J. Med. 383, 1492–1494 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, S. et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nat. Biomed. Eng. 6, 286–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Chandrasekaran, S. S. et al. Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nat. Biomed. Eng. 6, 944–956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arizti-Sanz, J. et al. Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat. Biomed. Eng. 6, 932–943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakauchi, M. et al. Evaluation of reverse transcription loop-mediated isothermal amplification assays for rapid diagnosis of pandemic influenza A/H1N1 2009 virus. J. Med. Virol. 83, 10–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Hatano, B. et al. Mobile and accurate detection system for infection by the 2009 pandemic influenza A (H1N1) virus with a pocket-warmer reverse-transcriptase loop-mediated isothermal amplification. J. Med. Virol. 83, 568–573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814–1828.e12 (2016).

  48. Lai, M. Y. et al. Colorimetric detection of SARS-CoV-2 by uracil-DNA glycosylase (UDG) reverse transcription loop-mediated isothermal amplification (RT-LAMP). Int. J. Infect. Dis. 120, 132–134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qian, C. et al. Uracil-mediated new photospacer-adjacent motif of Cas12a to realize visualized DNA detection at the single-copy level free from contamination. Anal. Chem. 91, 11362–11366 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Minetti, C., Lacourse, E. J., Reimer, L. & Stothard, J. R. Focusing nucleic acid-based molecular diagnostics and xenomonitoring approaches for human helminthiases amenable to preventive chemotherapy. Parasitol. Open 2, e16 (2016).

    Article  Google Scholar 

  51. Sam, I. K. et al. TB-QUICK: CRISPR-Cas12b-assisted rapid and sensitive detection of Mycobacterium tuberculosis. J. Infect. 83, 54–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Rödel, J. et al. Use of the Variplex™ SARS-CoV-2 RT-LAMP as a rapid molecular assay to complement RT-PCR for COVID-19 diagnosis. J. Clin. Virol. 132, 104616 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Felice, M., De Falco, M., Zappi, D., Antonacci, A. & Scognamiglio, V. Isothermal amplification-assisted diagnostics for COVID-19. Biosens. Bioelectron. 205, 114101 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang, J. et al. Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection. Nat. Chem. Biol. 19, 45–54 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Brown, M. D. & Schoenfisch, M. H. Electrochemical nitric oxide sensors: principles of design and characterization. Chem. Rev. 119, 11551–11575 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Shi, Y. J. et al. DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Mol. Cell 82, 4160–4175.e6 (2022).

  57. Zhang, H.-X. et al. Cas12a-based one-pot SNP detection with high accuracy. Cell Insight 2, 100080 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is kindly supported by Key R&D Program of Hubei Province (grant nos. 2022BCA089 to H.Y. and 2022ACA005 to Y.Z.), National Key R&D Program of China (grant nos. 2019YFA0802801, 2018YFA0801401 and 2022YFF1002801), the Ministry of Agriculture and Rural Affairs of China, the Strategic Priority Research Program of CAS (grant no. XDB29010300 to X.Z.), the National Natural Science Foundation of China (grant nos. 31871345 and 32071442 to H.Y., 31972936 to Y.Z. and 31970169 to X.Z.), State Key Laboratory for Animal Disease Control and Prevention (SKLVBF202202), Medical Science Advancement Program (Basic Medical Sciences) of Wuhan University (grant no. TFJC2018004), the Fundamental Research Funds for the Central Universities (grant nos. 2042022dx0003 and 2042022kf1190), Applied Basic Frontier Program of Wuhan City (grant no. 2020020601012216 to H.Y.) and the startup funding from Wuhan University (to H.Y. and Y.Z.). We thank the core facility of Medical Research Institute at Wuhan University for their technical supports. We thank Wuhan Easy Diagnosis Biomedicine Co. for providing some reagents.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. conceived, designed and managed the project. X.T. and K.Z. performed most experiments with the help of T.L., M.D. and R.J. X.T. engineered the Cas12b protein and developed a room temperature REVERSE method. X.T., K.Z. and T.L. developed one-pot testing mediated by Cas12b-mutants. X.T., K.Z. and T.L. optimized conditions for detecting viral samples. Y.Z. provided conceptual advice. X.Z., X.W. and Y.H. provided samples, and Y.H. performed related experiments. X.T. and H.Y. analyzed the data. H.Y., Y.Z. and X.T. wrote the paper with inputs from the authors.

Corresponding author

Correspondence to Hao Yin.

Ethics declarations

Competing interests

H.Y., Y.Z., X.T., K.Z. and T.L. have filed a patent application (no. 202311783425.X) through Wuhan University. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of Cas12b-mediated one-pot testing using canonical PAM or suboptimal PAMs.

(af) The fluorescence curves of one-pot testing using canonical PAM or suboptimal PAMs of Cas12b. For a-c, the one-pot testing was mediated by LAMP. For d-f, the one-pot testing was mediated by RPA. Mean ± s.d. for 3 technical replicates.

Source data

Extended Data Fig. 2 Sequences of AapCas12b.

Conservative analysis of residues 478 and 396 between Cas12b orthologs.

Extended Data Fig. 3 Cis-cleavage of Cas12b variants.

Cis-cleavage of Cas12b-WT, Cas12b-2M, enzymatically dead Cas12b-WT, and enzymatically dead Cas12b-2M. Enzymatically dead indicates E848A (ref. 45). Proteinase K was introduced to stop reaction at various time points. The experiment was repeated twice with similar results. S, 1241 bp substrate; P1 and P2, 927 bp product 1 and 314 bp product 2.

Source data

Extended Data Fig. 4 Optimization of one-pot testing.

(a) The performance of commercially available bst enzymes were determined in one-pot testing at 60 °C. Bst1-7 represent bst 2.0 DNA polymerase (NEB), bst 3.0 DNA polymerase (NEB), bst DNA polymerase from Vazyme, Beyotime, FAPON-BIOTECH, YEASEN and bst DNA polymerase Plus from YEASEN. (b) The optimized one-pot testing using Cas12b-2M or WT. ‘cp/µL’ indicates the copy number per microliter in one-pot testing. For a & b, mean ± s.d. for 3 technical replicates. (c) LAMP alone tests of SARS-CoV-2 clinical samples.

Source data

Extended Data Fig. 5 The fluorescence curves in one-pot testing with or without UNG.

(a-b) The fluorescence curves of one-pot testing with or without UNG were identified. The Ct values of clinical samples 1-6 were 23.8, 23.5, 22.6, 27.0, 33.5, and 29.0, respectively. Mean ± s.d. of n = 3 technical replicates.

Source data

Extended Data Fig. 6 Performance of REVERSE in detecting SARS-CoV-2.

(a) Sensitivity comparison between REVERSE and SHINE. The black dotted line represents the threshold, which was determined as three times the negative control fluorescence value. (b, c) Evaluation of REVERSE-2 performance at 20 °C using a fluorescence reader (b) and blue light (c). (d) Comparison of Cas13a-, Cas12a- and Cas12b-mediated one-pot testing at 20 °C and 25 °C. The input substrates comprised pseudo-SARS-CoV-2 RNA of 1 cp/μL. Results were captured using blue light at 30, 40, 50, and 60 minutes. Mean ± s.d. for 4 technical replicates for a; 3 technical replicates for b.

Source data

Extended Data Fig. 7 Sensitivity and specificity comparison between REVERSE-2 and antigen test at room temperature.

(a, b) Sensitivity assessment of REVERSE-2 (a) and the antigen test (b). (c, d) Determination of the specificity of REVERSE-2 and the antigen test.

Source data

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Zhang, K., Han, Y. et al. Fast and sensitive CRISPR detection by minimized interference of target amplification. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-023-01534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-023-01534-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing