Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GAGE-seq concurrently profiles multiscale 3D genome organization and gene expression in single cells

Abstract

The organization of mammalian genomes features a complex, multiscale three-dimensional (3D) architecture, whose functional significance remains elusive because of limited single-cell technologies that can concurrently profile genome organization and transcriptional activities. Here, we introduce genome architecture and gene expression by sequencing (GAGE-seq), a scalable, robust single-cell co-assay measuring 3D genome structure and transcriptome simultaneously within the same cell. Applied to mouse brain cortex and human bone marrow CD34+ cells, GAGE-seq characterized the intricate relationships between 3D genome and gene expression, showing that multiscale 3D genome features inform cell-type-specific gene expression and link regulatory elements to target genes. Integration with spatial transcriptomic data revealed in situ 3D genome variations in mouse cortex. Observations in human hematopoiesis unveiled discordant changes between 3D genome organization and gene expression, underscoring a complex, temporal interplay at the single-cell level. GAGE-seq provides a powerful, cost-effective approach for exploring genome structure and gene expression relationships at the single-cell level across diverse biological contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview and validation of GAGE-seq.
Fig. 2: High-quality scHi-C and scRNA-seq data generated by GAGE-seq.
Fig. 3: Cell types in mouse cortex characterized by GAGE-seq scHi-C and scRNA-seq.
Fig. 4: 3D genome features inform cell-type-specific gene expressions in the mouse cortex.
Fig. 5: Integrative analysis of GAGE-seq and chromatin accessibility in the mouse cortex.
Fig. 6: Interplay between 3D genome variation and gene expression changes in human bone marrow differentiation.

Similar content being viewed by others

Data availability

All sequencing data from this study have been submitted to GEO under the accession number GSE238001. We use the following publicly available datasets in this work: in situ Hi-C datasets from Rao et al.3 (GSE: GSE63525); scHi-C datasets from Nagano et al.17 (GEO: GSE48262), Nagano et al.23 (GEO: GSE94489), Ramani et al.22 (GEO: GSE84920), Kim et al.37 (4DN Data Portal: 4DNES4D5MWEZ, 4DNESUE2NSGS, 4DNESIKGI39T, 4DNES1BK1RMQ and 4DNESTVIP977), Tan et al.26 (GEO: GSE117876), Tan et al.57 (GEO: GSE121791), Tan et al.27 (GEO: GSE162511), Flyamer et al.24 (GEO: GSE80006), Gassler et al.60 (GEO: GSE100569), Stevens et al.25 (GEO: GSE80280), Collombet et al.59 (GEO: GSE129029), Lee et al.44 (GEO: GSE124391), Liu et al.45 (GEO: GSE132489) and Mulqueen et al.58 (GEO: GSE174226); scRNA-seq datasets from Chen et al.62 (GEO: GSE126074), Plongthongkum et al.56 (GEO: GSE157660), Chen et al.55 (GEO: GSE178707), Ma et al.43 (GEO: GSE140203), Xu et al.65 (ArrayExpress: E-MTAB-11264), Xiong et al.66 (GEO: GSE158435), Zhu et al.63 (GEO: GSE130399), Zhu et al.52 (GEO: GSE152020), Cao et al.61 (GEO: GSE117089), Mimitou et al.64 (GEO: GSE126310) and Zhang et al.53 (GEO: GSE137864); HiRES co-assayed scHi-C and scRNA-seq datasets from Liu et al.35 (GEO: GSE223917); MERFISH spatial transcriptome datasets from Zhang et al.49 (Brain Image Library: cf1c1a431ef8d021); Paired-seq co-assayed scRNA-seq and scATAC-seq from Zhu et al.52 (GEO: GSE152020).

Code availability

The source code of the GAGE-seq data processing and analysis workflows can be accessed at: https://github.com/ma-compbio/GAGE-seq, which has also been deposited via Zenedo (https://doi.org/10.5281/zenodo.10888453)72. In our GitHub repository, we have provided notebooks (https://github.com/ma-compbio/GAGE-seq/tree/main/scripts_analysis) that detail the integration between GAGE-seq and Paired-seq data for single-cell joint analysis of 3D genome structure, chromatin accessibility and gene expression.

References

  1. Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiong, K. & Ma, J. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions. Nat. Commun. 10, 5069 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salameh, T. J. et al. A supervised learning framework for chromatin loop detection in genome-wide contact maps. Nat. Commun. 11, 3428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, J. & Duan, Z. Replication timing becomes intertwined with 3D genome organization. Cell 176, 681–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, T., Zhang, R. & Ma, J. The 3D genome structure of single cells. Annu. Rev. Biomed. Data Sci. 4, 21–41 (2021).

    Article  PubMed  Google Scholar 

  19. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calderon, D. et al. The continuum of Drosophila embryonic development at single-cell resolution. Science 377, eabn5800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, L., Xing, D., Chang, C.-H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan, L. et al. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell 184, 741–758.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Li, G. et al. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat. Methods 16, 991–993 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, R., Zhou, T. & Ma, J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat. Biotechnol. 40, 254–261 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity.Cell Genom. 2, 100107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Z. et al. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 380, 1070–1076 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Ramani, V. et al. Sci-Hi-C: a single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Methods 170, 61–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, H.-J. et al. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data. PLoS Comput. Biol. 16, e1008173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonora, G. et al. Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. Genome Biol. 22, 279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, D.-S. et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16, 999–1006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, H. et al. DNA methylation atlas of the mouse brain at single-cell resolution. Nature 598, 120–128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, R., Zhou, T. & Ma, J. Ultrafast and interpretable single-cell 3D genome analysis with Fast-Higashi. Cell Syst. 13, 798–807.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin topologies. Nature 599, 684–691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heffel, M. G. et al. Epigenomic and chromosomal architectural reconfiguration in developing human frontal cortex and hippocampus. Preprint at bioRxiv https://doi.org/10.1101/2022.10.07.511350 (2022).

  49. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chidester, B., Zhou, T., Alam, S. & Ma, J. SPICEMIX enables integrative single-cell spatial modeling of cell identity. Nat. Genet. 55, 78–88 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Law, A. J., Kleinman, J. E., Weinberger, D. R. & Weickert, C. S. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum. Mol. Genet. 16, 129–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, C. et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods 18, 283–292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y. et al. Temporal molecular program of human hematopoietic stem and progenitor cells after birth. Dev. Cell 57, 2745–2760.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Plongthongkum, N., Diep, D., Chen, S., Lake, B. B. & Zhang, K. Scalable dual-omics profiling with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE-seq2). Nat. Protoc. 16, 4992–5029 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Tan, L., Xing, D., Daley, N. & Xie, X. S. Three-dimensional genome structures of single sensory neurons in mouse visual and olfactory systems. Nat. Struct. Mol. Biol. 26, 297–307 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Mulqueen, R. M. et al. High-content single-cell combinatorial indexing. Nat. Biotechnol. 39, 1574–1580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Collombet, S. et al. Parental-to-embryo switch of chromosome organization in early embryogenesis. Nature 580, 142–146 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, W. et al. ISSAAC-seq enables sensitive and flexible multimodal profiling of chromatin accessibility and gene expression in single cells. Nat. Methods 19, 1243–1249 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Xiong, H., Luo, Y., Wang, Q., Yu, X. & He, A. Single-cell joint detection of chromatin occupancy and transcriptome enables higher-dimensional epigenomic reconstructions. Nat. Methods 18, 652–660 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Goloborodko, A., Abdennur, N. & Venev, S. hbbrandao, gfudenberg. mirnylab/pairtools: v0.3.0. Zenodo https://doi.org/10.5281/zenodo.2649383 (2019).

  71. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhou T. GAGE-seq analysis workflow. Zenodo https://doi.org/10.5281/zenodo.10888453 (2024).

Download references

Acknowledgements

We thank Y. Zhang for assistance with the figures. This work was primarily supported by the National Institutes of Health (NIH) grant no. R01HG012303 (J.M. and Z.D.), with additional funding, in part, provided by NIH Common Fund 4D Nucleome Program grant nos UM1HG011593 (J.M.) and UM1HG011586 (Z.D.), NIH Common Fund Cellular Senescence Network Program grant no. UG3CA268202 (J.M.) and NIH grant nos R01HG007352 (J.M.) and R61DA047010 (Z.D.). Z.D. was additionally supported by EvansMDS Discovery Research Grant 2019. J.M. received additional support from a Guggenheim Fellowship from the John Simon Guggenheim Memorial Foundation, a Google Research Collabs Award and a Single-Cell Biology Data Insights award from the Chan Zuckerberg Initiative. R.Z. was supported by the Eric and Wendy Schmidt Center at the Broad Institute. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.D. and J.M. conceived and oversaw the project. Z.D. conceived and developed the GAGE-seq protocol with critical contributions from T.Z. and J.M. T.Z. developed the computational workflow and performed all the data analysis with assistance from R.Z., under the supervision of Z.D. and J.M. D.J. provided mice and dissected the mouse brain tissues, under the supervision of L.X. R.T.D. and A.D.M. prepared human PBMCs for method optimization, under the supervision of J.L.A. D.G. performed experiments under the supervision of Z.D. T.Z., Z.D. and J.M. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Zhijun Duan or Jian Ma.

Ethics declarations

Competing interests

Z.D. is listed as the inventor on a provisional patent application that covered the GAGE-seq experimental protocol filed by the University of Washington. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Fulai Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results and Figs. 1–44.

Reporting Summary

Supplementary Tables

Supplementary Table 1. Sequences of the GAGE-seq primers. Table 2. Metadata of the single cells detected in the K562-NIH3T3 library. Table 3. Metadata of the single cells detected in the K562-GM12878 library. Table 4. Metadata of the single cells detected in the MDS-L library. Table 5. Metadata of the single cells detected in the mBCortex libraries. Table 6. Metadata of the single cells detected in the hBMCD libraries.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Zhang, R., Jia, D. et al. GAGE-seq concurrently profiles multiscale 3D genome organization and gene expression in single cells. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01745-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research