Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A spatiotemporal atlas of mouse liver homeostasis and regeneration

Abstract

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/β-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stereo-seq profiles the homeostatic liver at whole-lobe scale.
Fig. 2: Stereo-seq resolves NPC distribution and zonation pattern.
Fig. 3: Stereo-seq dissects the cell–cell communication networks of the homeostatic liver.
Fig. 4: Stereo-seq identifies the spatiotemporal kinetics of hepatocyte proliferation in the regenerating liver.
Fig. 5: Stereo-seq dissects the spatiotemporal responses of the regenerating liver.
Fig. 6: Stereo-seq dissects the dynamics of cell–cell communication networks in the regenerating liver.
Fig. 7: Spatially resolved GRNs identify TBL1XR1 as a key regulator of liver regeneration.
Fig. 8: Spatiotemporal zonated events in the homeostatic and regenerating mammalian liver.

Data availability

All raw data for Stereo-seq and scRNA-seq generated in this study have been deposited to the CNGB Nucleotide Sequence Archive under accession code CNP0002310; raw data for bulk RNA-seq generated in this study is available from the Gene Expression Omnibus database under accession number GSE254481. All processed data can be visualized and downloaded on the LISTA website (db.cngb.org/stomics/lista). Source data are provided with this paper.

Code availability

Custom code supporting the current study is available from GitHub via https://github.com/BGIResearch/SAW (ref. 85), https://github.com/MGI-tech-bioinformatics/DNBelab_C_Series_HT_scRNA-analysis-software (ref. 86) and https://github.com/haoshijie13/LISTA (https://doi.org/10.5281/zenodo.10720177)87.

References

  1. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Halpern, K. B. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He, L. et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371, 6532 (2021).

    Article  Google Scholar 

  4. Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021).

    Article  PubMed  Google Scholar 

  5. Hildebrandt, F. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo, P. C. et al. Cell atlas of CCl4-induced progressive liver fibrosis reveals stage-specific responses. Zool. Res. 44, 451–466 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ben-Moshe, S. et al. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 29, 973–989.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Afriat, A. et al. A spatiotemporally resolved single-cell atlas of the Plasmodium liver stage. Nature 611, 563–569 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell, C. & Willenbring, H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 3, 1167–1170 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Sun, T. et al. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell 28, 1822–1837.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Cho, C. S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, H., Yuan, D., Li, M., Abulaiti, A. & Lu, F. Active HBV replication in hypoxic pericentral zone 3 is upregulated by multiple host factors including HIF-1α. J. Hepatol. 77, 265–267 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Kowalik, M. A. et al. TRβ is the critical thyroid hormone receptor isoform in T3-induced proliferation of hepatocytes and pancreatic acinar cells. J. Hepatol. 53, 686–692 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Li, C. Y. et al. Recombinant human hepassocin stimulates proliferation of hepatocytes in vivo and improves survival in rats with fulminant hepatic failure. Gut 59, 817–826 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Wei, Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371, eabb1625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perissi, V., Aggarwal, A., Glass, C. K., Rose, D. W. & Rosenfeld, M. G. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116, 511–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ou-Yang, Q. et al. Distinct role of nuclear receptor corepressor 1 regulated de novo fatty acids synthesis in liver regeneration and hepatocarcinogenesis in mice. Hepatology 67, 1071–1087 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Zhuang, Q. et al. NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nat. Cell Biol. 20, 400–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Jakobsen, J. S. et al. Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Res. 23, 592–603 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Winkler, M. et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J. Hepatol. 74, 380–393 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Inverso, D. et al. A spatial vascular transcriptomic, proteomic, and phosphoproteomic atlas unveils an angiocrine Tie–Wnt signaling axis in the liver. Dev. Cell 56, 1677–1693.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt, M. H. H. et al. Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat. Cell Biol. 11, 873–880 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Do, N. et al. BMP4 is a novel paracrine inhibitor of liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1220–G1227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeTomaso, D. & Yosef, N. Hotspot identifies informative gene modules across modalities of single-cell genomics. Cell Syst. 12, 446–456.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Shao, X. et al. CellTalkDB: a manually curated database of ligand–receptor interactions in humans and mice. Brief. Bioinform. 22, bbaa269 (2021).

    Article  PubMed  Google Scholar 

  33. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brosch, M. et al. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat. Commun. 9, 4150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Duan, J. L. et al. Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 68, 677–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, D. et al. ALK1 signaling is required for the homeostasis of Kupffer cells and prevention of bacterial infection. J. Clin. Invest. 132, e150489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bonecchi, R. & Graham, G. J. Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front. Immunol. 7, 224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brazovskaja, A. et al. Cell atlas of the regenerating human liver after portal vein embolization. Preprint at bioRxiv https://doi.org/10.1101/2021.06.03.444016 (2021).

  39. Huang, J. & Rudnick, D. A. Elucidating the metabolic regulation of liver regeneration. Am. J. Pathol. 184, 309–321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, W. et al. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell 25, 54–68.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Chembazhi, U. V., Bangru, S., Hernaez, M. & Kalsotra, A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res. 31, 576–591 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, L. et al. Kupffer-cell-derived IL-6 is repurposed for hepatocyte dedifferentiation via activating progenitor genes from injury-specific enhancers. Cell Stem Cell 30, 283–299.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Perugorria, M. J. et al. Wnt-β-catenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol. 16, 121–136 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Kakugawa, S. et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519, 187–192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Belenguer, G. et al. RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state. Nat. Commun. 13, 334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ben-Moshe, S. et al. Spatial sorting enables comprehensive characterization of liver zonation. Nat. Metab. 1, 899–911 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jia, Y. et al. In vivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. Cell Stem Cell 29, 372–385.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goddard, L. M. et al. Hemodynamic forces sculpt developing heart valves through a KLF2–WNT9B paracrine signaling axis. Dev. Cell 43, 274–289.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, H., Zhang, Y. & Heuckeroth, R. O. Tissue-type plasminogen activator deficiency exacerbates cholestatic liver injury in mice. Hepatology 45, 1527–1537 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sillen, M. & Declerck, P. J. A narrative review on plasminogen activator inhibitor-1 and its (patho)physiological role: To target or not to target? Int. J. Mol. Sci. 22, 2721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otsuka, T. et al. Overexpression of NK2 inhibits liver regeneration after partial hepatectomy in mice. World J. Gastroenterol. 11, 7444–7449 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, C. P., Ji, W. M., van den Brink, G. R. & Peppelenbosch, M. P. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver. World J. Gastroenterol. 12, 7621–7625 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haridoss, S. et al. Activin A is a prominent autocrine regulator of hepatocyte growth arrest. Hepatol. Commun. 1, 852–870 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chabicovsky, M., Herkner, K. & Rossmanith, W. Overexpression of activin βC or activin βE in the mouse liver inhibits regenerative deoxyribonucleic acid synthesis of hepatic cells. Endocrinology 144, 3497–3504 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014).

    Article  PubMed  Google Scholar 

  56. Xu, M. et al. LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell 178, 1478–1492.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416–419 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Pei, X. H., Lv, X. Q. & Li, H. X. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1. Biochem. Biophys. Res. Commun. 446, 322–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Su, J. et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature 577, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, C. et al. An ATAC-seq atlas of chromatin accessibility in mouse tissues. Sci. Data 6, 65 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Diril, M. K. et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl Acad. Sci. USA 109, 3826–3831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan, X., Behari, J., Cieply, B., Michalopoulos, G. K. & Monga, S. P. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. Gastroenterology 131, 1561–1572 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Fujita, J. et al. Effect of TNF gene depletion on liver regeneration after partial hepatectomy in mice. Surgery 129, 48–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Tajima, T. et al. HIF-1α is necessary to support gluconeogenesis during liver regeneration. Biochem. Biophys. Res. Commun. 387, 789–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Kohjima, M. et al. Delayed liver regeneration after partial hepatectomy in adipose differentiation related protein-null mice. J. Hepatol. 59, 1246–1254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Borude, P. et al. Hepatocyte-specific deletion of farnesoid X receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice. Hepatology 56, 2344–2352 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, Y. et al. Role for the endoplasmic reticulum stress sensor IRE1α in liver regenerative responses. J. Hepatol. 62, 590–598 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Argemi, J. et al. X-box binding protein 1 regulates unfolded protein, acute-phase, and DNA damage responses during regeneration of mouse liver. Gastroenterology 152, 1203–1216.e15 (2017).

    Article  PubMed  Google Scholar 

  70. Boj, S. F. et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151, 1595–1607 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Kachaylo, E. et al. PTEN down-regulation promotes β-oxidation to fuel hypertrophic liver growth after hepatectomy in mice. Hepatology 66, 908–921 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Li, J. & Wang, C. Y. TBL1–TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat. Cell Biol. 10, 160–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Gougelet, A. et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 59, 2344–2357 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Liang, N. et al. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat. Commun. 10, 1684 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sun, X. et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell 18, 456–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, W. et al. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 2288–2293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Prizant, H. et al. CXCL10+ peripheral activation niches couple preferred sites of Th1 entry with optimal APC encounter. Cell Rep. 36, 109523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liao, S. et al. Integrated spatial transcriptomic and proteomic analysis of fresh frozen tissue based on stereo-seq. Preprint at bioRxiv https://doi.org/10.1101/2023.04.28.538364 (2023).

  80. Wu, B. et al. A spatiotemporal atlas of cholestatic injury and repair in mice. Nat. Genet. https://doi.org/10.1038/s41588-024-01687-w (2024).

  81. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gong, C. et al. SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics. Gigabyte https://gigabytejournal.com/articles/111 (2024).

  86. Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Hao, S. J. haoshijie13/LISTA: LISTA_code_V1 (LISTA_V1_20240228). Zenodo https://doi.org/10.5281/zenodo.10720177 (2024).

Download references

Acknowledgements

We thank all our teams’ members, Jian Zhang (Experimental Animal Center, Guangzhou Institutes of Biomedicine and Health) and the CNGB for their support. This work was supported by the National Key Research and Development Program of China (2022YFC3400400 to X.X.), National Natural Science Foundation of China (32370848 to M.A.E., 92368301, 92168202 to L.H., 32200688 to Y. Lai and 32070861 to B.Q.), National Science and Technology Innovation 2030 Major Program (2021ZD0200100 to L. Liu), Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191 to L. Liu), Guangdong Basic and Applied Basic Research Foundation (2021B1515120075 to M.A.E. and 2021A1515110180 to Y. Lai), Guangzhou Basic and Applied Basic Research Foundation (202201010408 to Y. Lai, 202201011037 to Li Li, 202201010455 to T.A.). The CNGB was supported by Guangdong Genomics Data Center (2021B1212100001).

Author information

Authors and Affiliations

Authors

Contributions

P.G., X.X., L. Liu, A.C., Y. Lai and M.A.E. conceived the idea. X.X., L. Liu, A.C., Y. Lai and M.A.E. supervised the work. P.G., Y. Lai and M.A.E. designed the experiments. J.X., P.G. performed the majority of the experiments with the help of S.S. and G.V. S.H., P.G., Q.S. and Y. Lai analyzed the data. K.H., J.Z., J.A., Y.Y., M.C., Q.D., X.Z., G.L, H.N., B.W., X.S., L.W., X.W., Y.J., X.H., F.P., Y.S., R.L., Z.W., C.L., S.L. and Yuxiang Li provided technical support. S.H., T.Y., Z.X, W.D. and Ling Li constructed the LISTA website. T.A., K.Y., Z.D., Li Li, B.Q., Yinxiong Li, L. Lai, D.Q., J.C., R.F., Yongyin Li, J.H., M.O., A.D.S., T.C., A.S., K.K., A.P.H, B.G., P.H.M. and L.H. gave relevant advice. P.G., Y. Lai and M.A.E. wrote the manuscript.

Corresponding authors

Correspondence to Pengcheng Guo, Xun Xu, Longqi Liu, Ao Chen, Yiwei Lai or Miguel A. Esteban.

Ethics declarations

Competing interests

The chip, procedure and applications of Stereo-seq are described in a pending patent, with A.C., X.X. and L. Liu listed as the applicants. J.X., S.H. S.S., Y.Y., M.C., Q.D., X.W., Y.J., X.H., F.P., Y.S., R.L., Z.W., C.L., S.L., Yuxiang Li, T.Y., Z.X, W.D., Ling Li, X.X., L. Liu, A.C., Y. Lai and M.A.E are employees of BGI Group. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Meritxell Huch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ScRNA-seq homeostatic liver cell matrix, Stereo-seq performance, and identification of cell type distribution in the homeostatic liver.

a Left: UMAP projection showing 51,275 single cells from the homeostatic liver cell matrix. Right: UMAP projection showing the annotated cell types and the corresponding cell numbers. b Immunofluorescence staining (phalloidin and E-cadherin) of a whole lobe section adjacent to the one shown in Fig. 1a. c Spatial visualization of the imputed expression levels for the indicated pericentral (Akr1c6, Aldh1a1, Car3, Ces1c, Cyp1a2, Cyp2c37, Cyp2c50, Cyp2e1, Gsta3, Mgst1, Mup11, Mup17, Mup18, Oat, Pon1, Rgn) and periportal (Alb, Aldob, Arg1, Asl, Cyp2f2, Fbp1, Hal, Hpx, Hsd17b13, Mup20, Pck1, Slc25a47, Trf, Ass1) hepatocyte landmark genes (section D0-DY1).

Extended Data Fig. 2 Stereo-seq profiles liver zonation in different homeostatic liver replicates and comparison of Stereo-seq with other spatial transcriptomic technologies.

a Average expression levels for the indicated landmark genes in all homeostatic sections. b Left: spatial visualization of the zonation layers (sections D0-DY2, D0-DY3, D0-DT2 and D0-DT3) from two different biological replicates of the homeostatic liver. c Average zonation score for each zonation layer in all homeostatic sections. Colors indicate different homeostatic sections. d Upper left: UMAP projection of the integrated bins of all homeostatic sections. Others: UMAP projections of integrated bins showing the zonation layers in each homeostatic section. e Pearson correlation coefficient for landmark genes in each zonation layer among all homeostatic sections. f Left: spatial visualization of the zonation layers (section D0-DY1). Right: average zonation score for each zonation layer of the indicated areas. Colors indicate different areas. g Average expression levels for the indicated landmark genes of the areas indicated by the red box in the panel f. Colors indicate different areas. h Violin plots comparing the capture efficiency (UMIs and genes) of Stereo-seq (section D0-DY1) at similar resolution with Visium (Stereo-seq bin 140, ~100 μm resolution) and Seq-Scope (Stereo-seq bin 14, ~10 μm resolution). Visium data was taken from NCBI Sequence Read Archive under BioProject: PRJNA70508515 and Seq-Scope data from the MIP Lee lab website (lee.lab.medicine.umich.edu/seq-scope)16. i Size of the average capture area in sections profiled by Stereo-seq, Visium and Seq-Scope. n = 5 sections for Stereo-seq, n = 2 sections for Visium, n = 6 sections for Seq-Scope. Data are presented as mean values +/- s.e.m. j Left: spatial visualization of the zonation score in a representative homeostatic section profiled by Visium. Top right: magnification view of the indicated area. Bottom right, spatial visualization of the expression levels of Glul, Cyp2e1, Cyp2f2 and Alb in the indicated area profiled by Visium. Visium data was visualized with the actual resolution (100 μm). k Left: spatial visualization of the zonation score in homeostatic liver sections profiled by Seq-Scope (sections 2103 and 2104). Right: spatial visualization of the expression levels of Glul, Cyp2e1, Cyp2f2 and Alb for the corresponding sections.

Extended Data Fig. 3 Stereo-seq identifies hepatocyte zonated genes, pathways, and GRNs in the homeostatic liver.

a Venn diagram comparing the hepatocyte zonated genes identified by Stereo-seq to those identified by spatial reconstruction using scRNA-seq1. b Left: representative images from immunofluorescence staining of GS and NTCP in the homeostatic liver. Scale bar, 50 μm. Right: average signal intensity. Data are presented as mean values +/- s.e.m. n = 4 biological replicates. c Spatial visualization of the module score for the selected zonated pathways (section D0-DY1). d Average expression levels of zonated fatty acid degradation pathway genes in all homeostatic sections. Newly identified zonated genes are indicated in red. e Spatial visualization of the indicated zonated genes from the fatty acid degradation pathway (section D0-DY1). f Average expression of zonated glucagon signaling pathway genes in all homeostatic sections. Newly identified zonated genes are indicated in red. g Spatial visualization of the indicated zonated genes from the glucagon signaling pathway (section D0-DY1). h Left: representative images from immunofluorescence staining of GS (pericentral marker) and LAMP2 in homeostatic liver. Scale bar, 50 μm. Right: average signal intensity. Data are presented as mean values +/- s.e.m. n = 4 biological replicates. i Spatial visualization of the indicated pericentral (TCF7, PPARG) or periportal regulon (HNF4A, ESRRA) activity (section D0-DY1).

Source data

Extended Data Fig. 4 Stereo-seq identifies NPC zonated genes.

a Schematic representation of a Stereo-seq bin 50 showing the potential co-localization of hepatocytes and NPCs. b Average cell type distribution for each zonation layer in all homeostatic sections. Cell type distribution was calculated using RCTD by transferring annotation labels from the homeostatic liver cell matrix. c Top: spatial distribution of the indicated cell types (section D0-DY1). Bottom: spatial visualization of the distribution of the indicated cell types in the indicated area. d,e. Left: average expression levels of zonated genes in (d) sphingolipid de novo biosynthesis and (e) regulation of Notch signaling pathway in LSECs for each zonation layer in all the homeostatic sections. Upper-right: spatial visualization of the imputed expression levels for selected zonated genes in the corresponding pathways (section D0-DY1) for a representative area. Bottom-right: average expression levels for the corresponding genes in each zonation layer in all the homeostatic sections. f. Top: representative smFISH images of Cyp1a2, Gls2 and Egfl7 expression in the homeostatic liver. Scale bar, 50 μm. Bottom: average signal intensity for the corresponding genes. Data are presented as mean values +/- s.e.m. n = 4 biological replicates. g,h. Left: average expression levels of zonated genes in (g) BMP signaling pathway and (h) regulation of chemotaxis in HSCs for each zonation layer of all the homeostatic sections. Upper-right: spatial visualization of the imputed expression levels for zonated genes in corresponding pathways (section D0-DY1) for a representative area. Bottom-right: average expression levels for the corresponding genes for each zonation layer in all the homeostatic sections.

Source data

Extended Data Fig. 5 Stereo-seq unveils immune spots in the homeostatic liver.

a Average expression levels for genes in the indicated spatial auto-correlated modules (section D0-DY1). Module 2, central vein area; module 3, portal vein area; module 4, immune spot; module 14, bile duct; module 19, midzonal area. Selected genes in the corresponding modules are color matched. b Spatial visualization of the module score (section D0-DY1) for the central vein area (CV, module 2), portal vein area (PV, module 3), midzonal area (MZ, module 19) and bile duct (module 14). c Average expression levels for genes in the indicated spatial auto-correlated modules (section D0-DT2). Module 1, central vein area; module 3, portal vein area; module 7, immune spot; module 2, bile duct; module 14, midzonal area. Selected genes in the corresponding modules are color matched. d Spatial visualization of the module score for the immune spot (module 7, section D0-DT2). White arrows indicate the immune spots. e Spatial visualization of immune spot genes (Ifit1 and Rsad2, section D0-DT2). Blue arrows indicate the location of the immune spots. f UMAP projection showing the annotated cell types and the corresponding cell numbers among the 20,299 cells in the liver immune cell matrix. g Bubble plot shows the expression levels for the indicated genes from the immune spot module in the cell types identified from the liver immune cell matrix. Abbreviations: Treg/Th17, regulatory T cell or T helper type 17 cell; Th0, naïve T cell; Th1, T helper type 1 cell.

Extended Data Fig. 6 Cell-cell interactions in the homeostatic liver.

a Heatmap showing the cell-cell interaction weight calculated by CellChat34 in the cell types identified from the homeostatic liver cell matrix. b Bubble plots show the expression levels for ligands (left) and receptors (right) for the indicated pathways in the cell types identified from the homeostatic liver cell matrix. Black lines connect ligands with their corresponding receptors. c Top: representative smFISH images of Cyp1a2, Gls2 and Wnt4 expression in the homeostatic liver. Scale bar, 50 μm. Bottom: average signal intensity. Data are presented as mean values +/- s.e.m. n = 4 biological replicates. d Bubble plot shows the expression of Cxcl10 and its receptors (Tlr4, Cxcr3/4) in the cell types identified from the liver immune cell matrix. e Spatial visualization of the imputed interaction score for the indicated immune spot-related interactions (section D0-DY1). f Box plots comparing the enrichment of indicated interaction score inside and outside of the immune spot. P values were calculated by the two-sided Wilcoxon rank sum test. The central line is the median, the boxes indicate the upper and lower quartiles, the whiskers indicate the 1.5 interquartile range. Intra-spot: n = 92 Stereo-seq bins; outer-spot: n = 37,577 Stereo-seq bins.

Source data

Extended Data Fig. 7 Stereo-seq dissect the zonation dynamics and cell cycle kinetics during liver regeneration.

a UMAP projection of single cells from the liver regeneration cell matrix generated in this study. Cells are colored by time points. b Average gene expression from landmark genes for each zonation layer in all regeneration sections. c Spatial visualization of the zonation layers at the indicated time points from another biological replicate (sections 8h-FH2, D1-FB2, D2-FO1, D3-FP3 and D7-FO4). d Spatial visualization for the binarized expression of Cdh1 at the indicated time points of regenerating liver (sections D0-DY1, D1-FN4 and D2-DX6). The percentage of Cdh1 highly expressing bins for each section is labeled on the bottom. Cdh1 highly expressing bins were defined by the expression of Cdh1 higher than the mean expression of Cdh1 in all the regeneration sections. e Violin plots showing the module score for pericentral, midzonal and periportal zonated genes defined in homeostasis liver for all the regeneration sections. f Left: spatial visualization of Mki67+ bins at each time point of liver regeneration from different biological replicates (upper sections: D0-DY1, 8h-DX1, D1-FN4, D2-DX6, D3-FH4 and D7-DX7; bottom sections: D0-DT2, 8h-FH2, D1-FB2, D2-FO1, D3-FP3 and D7-FO4). Bins are colored by zonation layer. Right: average expression levels of Mki67 for each zonation layer in regeneration sections of different biological replicates. g Left: average expression levels of S-phase gene Mcm6 (top) and the G2/M-phase gene Cdc20 (bottom) for each zonation layer in all the regeneration sections. Right: spatial visualization of the imputed expression for the corresponding genes at the indicated time points (upper sections: D0-DY1, D1-FN4 and D2-DX6). h Left: spatial visualization of S-phase score (top, D1-FN4) and G2/M-phase score (bottom, D2-DX6). Right: average S-phase (top) and G2/M-phase (bottom) score for each zonation layer of the indicated areas in the left panel. Colors indicate different areas. i Average module score for S-phase genes (top) or G2/M-phase genes (bottom) for each fine-grained zonation layer in all the regeneration sections.

Extended Data Fig. 8 Stereo-seq identifies zone-specific changes of gene expression in the regenerating liver.

a Average expression of genes related to indicated biological processes for each zonation layer in all the regeneration sections. b Left: average expression of the indicated genes for each zonation layer in all the regeneration sections. Right: spatial visualization of the imputed expression levels of the corresponding genes at the indicated time points. c Average module score of pathways for each zonation layer in all the regeneration sections. d Upper: spatial visualization of the module score of bile secretion pathway (sections D0-DY1, D1-FN4, and D7-DX7) for the indicated time point of the regenerating liver. Bottom: spatial visualization of the module score of bile secretion pathway in the indicated area. e Left: fuzzy clustering analysis of pseudobulk data of the regenerating liver scRNA-seq matrix showing 1,378 hypervariable genes across time course expressed in HSC that were clustered into three groups. The line charts show the standardized expression levels with each individual line representing a gene within the group. Right: bar plots show the percentage of zonated genes in each gene group. f Functional enrichment for each hypervariable gene group in HSCs. P values were calculated using the hypergeometric test and corrected with the Benjamini-Hochberg method. g Average expression of HSC hypervariable genes related to the indicated biological processes for each zonation layer in all the regeneration sections. h Spatial visualization of Ifit1/Rsad2 co-expressing bins, indicating the distribution of the immune spots (sections D0-DY1, 8h-DX1, D1-FN4, D2-DX6, D3-FH4 and D7-DX7) of the regenerating liver. i Dot plot showing the percentage of Ifit1/Rsad2 co-expressing bins in each Stereo-seq section of the regenerating liver. Colors indicate the time point, and each dot represents one replicate. Data are presented as mean values +/- s.e.m. The dots represent each section. P values were calculated by the two-sided Student’s t test. n = 5 sections for D0, n = 6 sections for 8 h, n = 4 sections for D1, n = 5 sections for D2, n = 5 sections for D3, and n = 5 sections for D7.

Source data

Extended Data Fig. 9 Stereo-seq identifies zone-specific microenvironmental changes in the regenerating liver.

a Average expression levels for ligands (top) or receptors (bottom) in the cell types identified from the liver regeneration cell matrix. b Left: average interaction score for each zonation layer in all regeneration sections. Right: spatial visualization of the imputed interaction score for the corresponding interactions at the indicated time points (sections D0-DY1, 8h-DX1, D1-FN4, D2-DX6 and D7-DX7). c Representative smFISH images of Cyp1a2, Gls2 and Fgfr1 expression in a homeostatic liver section (left) or 8 h post-PHx (right). Scale bar, 50 μm. n = 1 biological replicate. d Left: average expression of Plat, Tac1 and Serpine1/2 for each zonation layer in all the regeneration sections. Right: spatial visualization of imputed expression levels for Tac1 and Serpine1 at the indicated time points (sections D0-DY1, 8h-DX1 and D1-FN4). e Upper left: average module score for neutrophils (S100a8, S100a9, Cxcr2, F13a1, Fgr) for each zonation layer in all the regeneration sections. Other: spatial visualization of the module score for neutrophils at the indicated time points are shown on the right (sections D0-DY1, 8h-DX1 and D7-DX7).

Extended Data Fig. 10 Identification of TBL1XR1 as a rheostat for liver regeneration.

a Left: average activity score of the indicated regulons for each zonation layer of the regenerating liver (sections D0-DY1, 8h-DX1, D1-FN4, D2-DX6, D3-FH6 and D7-DX7). Right: spatial visualization of the corresponding regulon activity at the indicated time points. b Spatial visualization of the imputed expression for Tbl1xr1 (sections D0-DY1, 8h-DX1, and D1-FN4). c Expression of Tbl1xr1 in hepatocytes from the liver regeneration cell matrix. d UMAP projection of scRNA-seq data for TNFα untreated/treated (TNFα-/TNFα + ) mouse primary hepatocytes. e Expression levels for Tbl1xr1 and Mki67 for TNFα untreated/treated mouse primary hepatocytes. f Regulons controlling Tbl1xr1. g Tbl1xr1 locus in ATAC-seq for homeostatic liver. Predicted transcription factor binding motifs. h Strategy for AAV8-TBG-shRNA delivery, i Cell-area size (left, n = 7 areas, from two biological replicates); liver/body weight ratio (right, n = 4 biological replicates) at D2 post-PHx in control and Tbl1xr1 knockdown livers. j RT-qPCR for Tbl1xr1 and cell cycle-related genes comparing control and Tbl1xr1 knockdown livers at D7 post-PHx. n = 3 biological replicates. k Left: representative images of immunofluorescence staining for Ki67 at D7 post-PHx in control (top) and Tbl1xr1 knockdown (bottom). Right: magnification of the indicated area on the left. l Ratio of Ki67+ nuclei to all nuclei (left, control, n = 3 biological replicates; Tbl1xr1 knockdown, n = 5 biological replicates), cell-area size (middle, control, n = 8 areas; Tbl1xr1 knockdown, n = 6 areas; from three biological replicates) and liver/body weight ratio (right, control, n = 3 biological replicates; Tbl1xr1 knockdown, n = 5 biological replicates) at D7 post-PHx. m RT-qPCR for Wnt target genes and fatty acid β-oxidation related genes comparing control and Tbl1xr1 knockdown livers at D2 post-PHx. n = 3 biological replicates. n H&E (left) or oil red O staining (right) of representative sections from control (n = 2 biological replicates) and Tbl1xr1 knockdown (n = 3 biological replicates) livers at D2 post-PHx. Scale bar, 100 μm. o TBL1XR1 protein interaction network based on STRING database (https://cn.string-db.org/). For panel i, j, l and m, data are presented as mean values +/- s.e.m. P values were calculated by the two-sided Student’s t test.

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1–3 and Table legends.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Table 1. Data quality control. Supplementary Table 2. Cell type-specific markers used for annotation in scRNA-seq. Supplementary Table 3. Zonated genes for hepatocytes, LSECs and HSCs. Supplementary Table 4. Zonated regulons in liver homeostasis and regeneration. Supplementary Table 5. Gene modules identified by Hotspot. Supplementary Table 6. Zonated interactions in liver homeostasis and regeneration. Supplementary Table 7. Hypervariable genes for hepatocytes, LSECs and HSCs in liver regeneration. Supplementary Table 8. Module score for KEGG pathways during liver regeneration and the corresponding gene sets. Supplementary Table 9. Oligonucleotide sequence of the RT-qPCR primers and RNAscope probes.

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1.

Source Data Fig. 2

Statistical Source Data for Fig. 2.

Source Data Fig. 3

Statistical Source Data for Fig. 3.

Source Data Fig. 4

Statistical Source Data for Fig. 4.

Source Data Fig. 7

Statistical Source Data for Fig. 7.

Source Data Extended Data Fig. 3

Statistical Source Data for extended data Fig. 3.

Source Data Extended Data Fig. 4

Statistical Source Data for extended data Fig. 4.

Source Data Extended Data Fig. 6

Statistical Source Data for extended data Fig. 6.

Source Data Extended Data Fig. 8

Statistical Source Data for extended data Fig. 8.

Source Data Extended Data Fig. 10

Statistical Source Data for extended data Fig. 10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Guo, P., Hao, S. et al. A spatiotemporal atlas of mouse liver homeostasis and regeneration. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01709-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing