Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser spectroscopy of triply charged 229Th isomer for a nuclear clock

Abstract

Thorium-229 (229Th) possesses an optical nuclear transition between the ground state (229gTh) and low-lying isomer (229mTh). A nuclear clock based on this nuclear-transition frequency is expected to surpass existing atomic clocks owing to its insusceptibility to surrounding fields1,2,3,4,5. In contrast to other charge states, triply charged 229Th (229Th3+) is the most suitable for highly accurate nuclear clocks because it has closed electronic transitions that enable laser cooling, laser-induced fluorescence detection and state preparation of ions1,6,7,8. Although laser spectroscopic studies of 229Th3+ in the nuclear ground state have been performed8, properties of 229mTh3+, including its nuclear decay lifetime that is essential to specify the intrinsic linewidth of the nuclear-clock transition, remain unknown. Here we report the trapping of 229mTh3+ continuously supplied by a 233U source and the determination of nuclear decay half-life of the isolated 229mTh3+ to be \({{\rm{1,400}}}_{-300}^{+600}\,{\rm{s}}\) through nuclear-state-selective laser spectroscopy. Furthermore, by determining the hyperfine constants of 229mTh3+, we reduced the uncertainty of the sensitivity of the 229Th nuclear clock to variations in the fine-structure constant by a factor of four. These results offer key parameters for the 229Th3+ nuclear clock and its applications in the search for new physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trapping of continuously supplied 229Th3+ ions.
Fig. 2: Laser spectroscopy of 229Th3+.
Fig. 3: Observation of the hyperfine spectra of 229mTh3+.
Fig. 4: Determination of the nuclear decay rate of 229mTh3+.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).

    Article  ADS  CAS  Google Scholar 

  2. Peik, E. & Okhapkin, M. Nuclear clocks based on resonant excitation of γ-transitions. C. R. Phys. 16, 516–523 (2015).

    Article  CAS  Google Scholar 

  3. Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article  CAS  Google Scholar 

  4. Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).

    Article  ADS  Google Scholar 

  5. Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Klinkenberg, P. F. A. Spectral structure of trebly ionized thorium, Th IV. Physica B+C 151, 552–567 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Campbell, C. J. et al. Multiply charged thorium crystals for nuclear laser spectroscopy. Phys. Rev. Lett. 102, 233004 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Campbell, C. J., Radnaev, A. G. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yamaguchi, A. et al. Energy of the 229Th nuclear clock isomer determined by absolute γ-ray energy difference. Phys. Rev. Lett. 123, 222501 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Arvanitaki, A., Huang, J. & Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015).

    Article  ADS  Google Scholar 

  15. Tsai, Y.-D., Eby, J. & Safronova, M. S. Direct detection of ultralight dark matter bound to the Sun with space quantum sensors. Nat. Astron. 7, 113–121 (2023).

    Article  ADS  Google Scholar 

  16. Brzeminski, D., Chacko, Z., Dev, A., Flood, I. & Hook, A. Searching for a fifth force with atomic and nuclear clocks. Phys. Rev. D 106, 095031 (2022).

    Article  ADS  CAS  Google Scholar 

  17. Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Fadeev, P., Berengut, J. C. & Flambaum, V. V. Sensitivity of 229Th nuclear clock transition to variation of the fine-structure constant. Phys. Rev. A 102, 052833 (2020).

    Article  ADS  CAS  Google Scholar 

  20. von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).

    Article  ADS  Google Scholar 

  21. von der Wense, L., Seiferle, B., Laatiaoui, M. & Thirolf, P. G. Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell. Eur. Phys. J. A 51, 29 (2015).

    Article  ADS  Google Scholar 

  22. von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47–51 (2016).

    Article  ADS  PubMed  Google Scholar 

  23. von der Wense, L., Seiferle, B., Laatiaoui, M. & Thirolf, P. G. The extraction of 229Th3+ from a buffer-gas stopping cell. Nucl. Instrum. Methods Phys. Res. B 376, 260–264 (2016).

    Article  ADS  Google Scholar 

  24. Barci, V. et al. Nuclear structure of 229Th from γ-ray spectroscopy study of 233U α-particle decay. Phys. Rev. C 68, 034329 (2003).

    Article  ADS  Google Scholar 

  25. Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Wada, M. et al. Slow RI-beams from projectile fragment separators. Nucl. Instrum. Methods Phys. Res. B 204, 570–581 (2003).

    Article  ADS  CAS  Google Scholar 

  27. Churchill, L. R., DePalatis, M. V. & Chapman, M. S. Charge exchange and chemical reactions with trapped Th3+. Phys. Rev. A 83, 012710 (2011).

    Article  ADS  Google Scholar 

  28. Porsev, S. G., Safronova, M. S. & Kozlov, M. G. Precision calculation of hyperfine constants for extracting nuclear moments of 229Th. Phys. Rev. Lett. 127, 253001 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Berengut, J. C., Dzuba, V. A., Flambaum, V. V. & Porsev, S. G. Proposed experimental method to determine α sensitivity of splitting between ground and 7.6 eV isomeric states in 229Th. Phys. Rev. Lett. 102, 210801 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhang, W. et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys. Rev. Lett. 119, 243601 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Dykhne, A. M., Eremin, N. V. & Tkalya, E. V. Alpha decay of the first excited state of the Th-229 nucleus. J. Exp. Theor. Phys. Lett. 64, 345–349 (1996).

    Article  Google Scholar 

  32. Porsev, S. G. & Flambaum, V. V. Effect of atomic electrons on the 7.6-eV nuclear transition in 229Th3+. Phys. Rev. A 81, 032504 (2010).

    Article  ADS  Google Scholar 

  33. Müller, R. A., Volotka, A. V., Fritzsche, S. & Surzhykov, A. Theoretical analysis of the electron bridge process in 229Th3+. Nucl. Instrum. Methods Phys. Res. B 408, 84–88 (2017).

    Article  ADS  Google Scholar 

  34. Dykhne, A. M. & Tkalya, E. V. Matrix element of the anomalously low-energy (3.5±0.5 eV) transition in 229Th and the isomer lifetime. J. Exp. Theor. Phys. Lett. 67, 251–256 (1998).

    Article  Google Scholar 

  35. Ruchowska, E. et al. Nuclear structure of 229Th. Phys. Rev. C 73, 044326 (2006).

    Article  ADS  Google Scholar 

  36. Tkalya, E. V., Schneider, C., Jeet, J. & Hudson, E. R. Radiative lifetime and energy of the low-energy isomeric level in 229Th. Phys. Rev. C 92, 054324 (2015).

    Article  ADS  Google Scholar 

  37. Minkov, N. & Pálffy, A. Reduced transition probabilities for the gamma decay of the 7.8 eV isomer in 229Th. Phys. Rev. Lett. 118, 212501 (2017).

    Article  ADS  PubMed  Google Scholar 

  38. Minkov, N. & Pálffy, A. Theoretical predictions for the magnetic dipole moment of 229mTh. Phys. Rev. Lett. 122, 162502 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Minkov, N. & Pálffy, A. 229mTh isomer from a nuclear model perspective. Phys. Rev. C 103, 014313 (2021).

    Article  ADS  CAS  Google Scholar 

  40. Shigekawa, Y. et al. Estimation of radiative half-life of 229mTh by half-life measurement of other nuclear excited states in 229Th. Phys. Rev. C 104, 024306 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh(3/2+, 3.5±1.0 eV) decay. J. Exp. Theor. Phys. Lett. 71, 311–313 (2000).

    Article  CAS  Google Scholar 

  42. Seiferle, B., von der Wense, L. & Thirolf, P. G. Lifetime measurement of the 229Th nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017).

    Article  ADS  PubMed  Google Scholar 

  43. Hayes, A. C., Friar, J. L. & Möller, P. Splitting sensitivity of the ground and 7.6 eV isomeric states of 229Th. Phys. Rev. C 78, 024311 (2008).

    Article  ADS  Google Scholar 

  44. Litvinova, E., Feldmeier, H., Dobaczewski, J. & Flambaum, V. Nuclear structure of lowest 229Th states and time-dependent fundamental constants. Phys. Rev. C 79, 064303 (2009).

    Article  ADS  Google Scholar 

  45. Safronova, U. I., Johnson, W. R. & Safronova, M. S. Excitation energies, polarizabilities, multipole transition rates, and lifetimes in Th IV. Phys. Rev. A 74, 042511 (2006).

    Article  ADS  Google Scholar 

  46. Bollen, G. “Ion surfing” with radiofrequency carpets. Int. J. Mass Spectrom. 299, 131–138 (2011).

    Article  CAS  Google Scholar 

  47. Kopfermann, H. Nuclear moments. Nucl. Phys. 16, 188 (1960).

    Google Scholar 

  48. Safronova, M. S. et al. Nuclear charge radii of 229Th from isotope and isomer shifts. Phys. Rev. Lett. 121, 213001 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Angeli, I. & Marinova, K. P. Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69–95 (2013).

    Article  ADS  CAS  Google Scholar 

  50. Kälber, W. et al. Nuclear radii of thorium isotopes from laser spectroscopy of stored ions. Z. Phys. A 334, 103–108 (1989).

    ADS  Google Scholar 

Download references

Acknowledgements

The 233U sample used in this paper was provided by the 233U cooperation project between the Japan Atomic Energy Agency and the Inter-University Cooperative Research Program of the Institute for Materials Research, Tohoku University (proposal nos. 17K0204, 17F0011 and 18F0014). This work was supported by JST PRESTO (grant number JPMJPR1868), JSPS KAKENHI (grant nos. JP19H00685, JP21H04473, JP22H04946 and JP23H00094) and Yamada Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.Y. and Y.S. contributed to building the experimental setup, performed the measurements and analysed the data. A.Y., Y.S., H.Ki., K.S. and H.H. contributed to developing the 233U source. M.W. contributed to developing the ion manipulation system, including an RF carpet and a PCB-based quadrupole ion guide. All works were supervised by H.Ka., H.H. and M.W. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Atsushi Yamaguchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Xu Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Doppler-broadened spectrum of the 5f2F5/2 ↔ 6d2D5/2 transition of 229gTh3+.

The red curve represents the background-subtracted fluorescence count rate at 984 nm as a function of the 690-nm laser frequency. Vertical blue bars denote hyperfine transitions \(({F}_{{\rm{g}}}^{{\rm{i}}}\to {F}_{{\rm{g}}}^{{\rm{f}}})\) whose frequencies were calculated on the basis of refs. 7,8. The relative height of the blue bars represents the relative strength of the calculated absorption cross-sections of each hyperfine transition. The black curve represents the summation of Gaussian functions corresponding to each hyperfine transition, for which the width and scaling factor were determined from the fitting of the isolated 5 → 4 peak.

Extended Data Fig. 2 Dependence of decay rate on laser irradiation time.

Dependence of the decay rate on the duty ratio of the laser irradiation time was evaluated for 229gTh3+ (a) and 229mTh3+ (b). Each decay-rate measurement was conducted by repeating a 24-s sequence, in which all three lasers were on for tON s and off for (24 − tON) s. The duty ratio is calculated as tON/24. The error bars represent the standard deviation of the mean. From the linear fitting shown as a solid line, the decay rate for no laser irradiation was estimated to be 8.94(11) × 10−4 s−1 for the ground state and 1.47(15) × 10−3 s−1 for isomer.

Extended Data Fig. 3 Determination of the resonance frequency \(({{\boldsymbol{\nu }}}_{{\bf{m}},{\bf{HF}}}^{690})\) of the |5f2F5/2, Fm = 1 → |6d2D5/2, Fm = 2 transition.

a, The spectra of the |5f2F5/2, Fm = 1 → |6d2D3/2, Fm = 2 transition (1,088 nm) were measured with several 690-nm laser frequencies around the resonance frequency of the |5f2F5/2, Fm = 1 → |6d2D5/2, Fm = 2 transition. From bottom to top, the 690-nm laser frequency was increased by 100 MHz at each step. The spectra were vertically shifted by 1.5 × 105 s−1 at each step for clarity. b, The spectral area was determined by fitting (black line) and plotted as a function of the 690-nm laser frequency. The resonance frequency \({\nu }_{{\rm{m}},{\rm{HF}}}^{690}\) was determined to be the one that gives the largest spectral area. The error bars represent the standard deviation of the mean.

Extended Data Fig. 4 Observations of all 229mTh3+ hyperfine resonances on the 5f2F5/2 → 6d2D3/2 and 5f2F5/2 → 6d2D5/2 transitions.

ag, All of the hyperfine transitions on the 5f2F5/2 → 6d2D3/2 (1,088 nm) and 5f2F5/2 → 6d2D5/2 (690 nm) transitions, which were not contained in Fig. 3b–d, were observed. Definitions of the blue, orange, brown and green curves are same as in Fig. 3b–d. The purple bars indicate the resonance frequencies of each transition calculated using the hyperfine constants and isomer shifts obtained in this study. The width of the purple bar represents the uncertainty of the calculated values. The corresponding hyperfine transitions \(|5f\,{}^{2}{F}_{5/2},{F}_{{\rm{m}}}^{{\rm{i}},690}\rangle \to |6d\,{}^{2}{D}_{5/2},{F}_{{\rm{m}}}^{{\rm{f}},690}\rangle \) (690 nm) and \(|5f\,{}^{2}{F}_{5/2},{F}_{{\rm{m}}}^{{\rm{i}},\,1,088}\rangle \to |6d\,{}^{2}{D}_{3/2},{F}_{{\rm{m}}}^{{\rm{f}},1,088}\rangle \) (1,088 nm) are shown at the top of each figure as \({F}_{{\rm{m}}}^{{\rm{i}},690}\to {F}_{{\rm{m}}}^{{\rm{f}},690}\) and \({F}_{{\rm{m}}}^{{\rm{i}},1,088}\to {F}_{{\rm{m}}}^{{\rm{f}},1,088}\). We measured the spectrum a only with \({\nu }_{{\rm{B}}}^{984}\) because there were no overlapped 229gTh3+ resonances in the scanned frequency range.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, A., Shigekawa, Y., Haba, H. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature (2024). https://doi.org/10.1038/s41586-024-07296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07296-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing