Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation and quantification of the pseudogap in unitary Fermi gases

Abstract

The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap—if it exists—necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental scheme.
Fig. 2: Microwave spectra at 0.77Tc and 1.51Tc.
Fig. 3: Momentum-resolved microwave spectra at various temperatures across the superfluid transition.
Fig. 4: Temperature dependence of Δ, Γ and the EDCs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at https://doi.org/10.5281/zenodo.10115338.

References

  1. Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Loeser, A. G. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ. Science 273, 325–329 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    Article  ADS  CAS  Google Scholar 

  4. Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    Article  ADS  CAS  Google Scholar 

  5. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  CAS  Google Scholar 

  6. Zaanen, J. Why the temperature is high. Nature 430, 512–513 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Trivedi, N. & Randeria, M. Deviations from Fermi-liquid behavior above Tc in 2D short coherence length superconductors. Phys. Rev. Lett. 75, 312 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  ADS  Google Scholar 

  10. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article  ADS  CAS  Google Scholar 

  11. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article  ADS  CAS  Google Scholar 

  12. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  CAS  Google Scholar 

  14. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  CAS  Google Scholar 

  15. Stajic, J. et al. Nature of superfluidity in ultracold Fermi gases near Feshbach resonances. Phys. Rev. A 69, 063610 (2004).

    Article  ADS  Google Scholar 

  16. Zwerger, W. (ed.) The BCS–BEC Crossover and the Unitary Fermi Gas (Springer, 2012).

  17. Randeria, M. & Taylor, E. Crossover from Bardeen–Cooper–Schrieffer to Bose–Einstein condensation and the unitary Fermi gas. Annu. Rev. Condens. Matter Phys. 5, 209–232 (2014).

    Article  ADS  CAS  Google Scholar 

  18. Chin, C. et al. Observation of the pairing gap in a strongly interacting Fermi gas. Science 305, 1128–1130 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Schunck, C. H., Shin, Y., Schirotzek, A. & Ketterle, W. Determination of the fermion pair size in a resonantly interacting superfluid. Nature 454, 739–743 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Murthy, P. A. et al. High-temperature pairing in a strongly interacting two-dimensional Fermi gas. Science 359, 452–455 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. Stewart, J. T., Gaebler, J. P. & Jin, D. S. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Gaebler, J. P. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 6, 569–573 (2010).

    Article  CAS  Google Scholar 

  23. Feld, M., Fröhlich, B., Vogt, E., Koschorreck, M. & Köhl, M. Observation of a pairing pseudogap in a two-dimensional Fermi gas. Nature 480, 75–78 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Mueller, E. J. Review of pseudogaps in strongly interacting Fermi gases. Rep. Prog. Phys. 80, 104401 (2017).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  25. Schneider, W. & Randeria, M. Universal short-distance structure of the single-particle spectral function of dilute Fermi gases. Phys. Rev. A 81, 021601 (2010).

    Article  ADS  Google Scholar 

  26. Nascimbène, S. et al. Fermi-liquid behavior of the normal phase of a strongly interacting gas of cold atoms. Phys. Rev. Lett. 106, 215303 (2011).

    Article  ADS  PubMed  Google Scholar 

  27. Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    Article  ADS  PubMed  Google Scholar 

  28. Mukherjee, B. et al. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).

    Article  ADS  PubMed  Google Scholar 

  29. Baird, L., Wang, X., Roof, S. & Thomas, J. E. Measuring the hydrodynamic linear response of a unitary Fermi gas. Phys. Rev. Lett. 123, 160402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Li, X. et al. Second sound attenuation near quantum criticality. Science 375, 528–533 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Baym, G., Pethick, C. J., Yu, Z. & Zwierlein, M. W. Coherence and clock shifts in ultracold Fermi gases with resonant interactions. Phys. Rev. Lett. 99, 190407 (2007).

    Article  ADS  PubMed  Google Scholar 

  32. Mukherjee, B. et al. Spectral response and contact of the unitary Fermi gas. Phys. Rev. Lett. 122, 203402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Robaszkiewicz, S., Micnas, R. & Chao, K. A. Thermodynamic properties of the extended Hubbard model with strong intra-atomic attraction and an arbitrary electron density. Phys. Rev. B 23, 1447 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985).

    Article  ADS  Google Scholar 

  35. Sá de Melo, C. A. R., Randeria, M. & Engelbrecht, J. R. Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993).

    Article  ADS  Google Scholar 

  36. Zürn, G. et al. Precise characterization of 6Li Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013).

    Article  ADS  PubMed  Google Scholar 

  37. Chen, Q., He, Y., Chien, C.-C. & Levin, K. Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates. Rep. Prog. Phys. 72, 122501 (2009).

    Article  ADS  Google Scholar 

  38. Ku, M. J. H., Sommer, A. T., Cheuk, L. W. & Zwierlein, M. W. Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563–567 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Haussmann, R., Punk, M. & Zwerger, W. Spectral functions and rf response of ultracold fermionic atoms. Phys. Rev. A 80, 063612 (2009).

    Article  ADS  Google Scholar 

  40. Carcy, C. et al. Contact and sum rules in a near-uniform Fermi gas at unitarity. Phys. Rev. Lett. 122, 203401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Chen, Q. & Levin, K. Momentum resolved radio frequency spectroscopy in trapped Fermi gases. Phys. Rev. Lett. 102, 190402 (2009).

    Article  ADS  PubMed  Google Scholar 

  42. Biss, H. et al. Excitation spectrum and superfluid gap of an ultracold Fermi gas. Phys. Rev. Lett. 128, 100401 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Magierski, P., Wlazłowski, G., Bulgac, A. & Drut, J. E. Finite-temperature pairing gap of a unitary Fermi gas by quantum Monte Carlo calculations. Phys. Rev. Lett. 103, 210403 (2009).

    Article  ADS  PubMed  Google Scholar 

  44. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093 (1998).

    Article  ADS  CAS  Google Scholar 

  45. Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS–BEC crossover. Phys. Rev. A 75, 023610 (2007).

    Article  ADS  Google Scholar 

  46. Kondo, T. et al. Point nodes persisting far beyond Tc in Bi2212. Nat. Commun. 6, 7699 (2015).

    Article  ADS  PubMed  Google Scholar 

  47. Esslinger, T. Fermi–Hubbard physics with atoms in an optical lattice. Annu. Rev. Condens. Matter Phys. 1, 129–152 (2010).

    Article  ADS  CAS  Google Scholar 

  48. Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P. & Törmä, P. The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Rep. Prog. Phys. 81, 046401 (2018).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  51. Yao, X.-C. et al. Observation of coupled vortex lattices in a mass-imbalance Bose and Fermi superfluid mixture. Phys. Rev. Lett. 117, 145301 (2016).

    Article  ADS  PubMed  Google Scholar 

  52. Pasienski, M. & DeMarco, B. A high-accuracy algorithm for designing arbitrary holographic atom traps. Opt. Express 16, 2176–2190 (2008).

    Article  ADS  PubMed  Google Scholar 

  53. Murthy, P. A. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).

    Article  ADS  Google Scholar 

  54. Ries, M. G. et al. Observation of pair condensation in the quasi-2D BEC–BCS crossover. Phys. Rev. Lett. 114, 230401 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Ketterle, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. Riv. Nuovo Cim. 31, 247–422 (2008).

    ADS  CAS  Google Scholar 

  56. Duan, Z.-X., Wu, W.-T., Lin, Y.-T. & Yang, S.-J. Simple and active magnetic-field stabilization for cold atom experiments. Rev. Sci. Instrum. 93, 123201 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Merkel, B. et al. Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum. 90, 044702 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Borkowski, M. et al. Active stabilization of kilogauss magnetic fields to the ppm level for magnetoassociation on ultranarrow Feshbach resonances. Rev. Sci. Instrum. 94, 073202 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Xu, X.-T. et al. Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum. 90, 054708 (2019).

    Article  ADS  PubMed  Google Scholar 

  60. Cohen-Tannoudji, C., Diu, B. & Laloë, F. Quantum Mechanics, Vol. I, 522–523 (Wiley-VCH, 2020).

  61. Riou, J.-F. et al. Theoretical tools for atom-laser-beam propagation. Phys. Rev. A 77, 033630 (2008).

    Article  ADS  Google Scholar 

  62. Horikoshi, M. et al. Appropriate probe condition for absorption imaging of ultracold 6Li atoms. J. Phys. Soc. Japan 86, 104301 (2017).

    Article  ADS  Google Scholar 

  63. Ockeloen, C. F., Tauschinsky, A. F., Spreeuw, R. J. C. & Whitlock, S. Detection of small atom numbers through image processing. Phys. Rev. A 82, 061606 (2010).

    Article  ADS  Google Scholar 

  64. Stancik, A. L. & Brauns, E. B. A simple asymmetric lineshape for fitting infrared absorption spectra. Vib. Spectrosc. 47, 66–69 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Qi for sharing the scattering data of lithium-6 atoms. This work was supported by the National Key R&D Program of China (grant no. 2018YFA0306501), NSFC of China (grant no. 11874340), the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0301900), the Chinese Academy of Sciences (CAS), the Anhui Initiative in Quantum Information Technologies and the Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX01). Y.-A.C. was supported by the XPLORER PRIZE from Tencent Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.-A.C., X.-C.Y. and J.-W.P. conceived the research. X. Luo, Y.-Y.Z. and X.-C.Y. stabilized the magnetic field. X. Li, S.W., X. Luo, Y.-Y.Z., K.X., H.-C.S., Y.-Z.N. and X.-C.Y. performed the experiment and collected the data. X. Li, S.W., Q.C., H.H., Y.-A.C., X.-C.Y. and J.-W.P. contributed to the data analysis and writing of the manuscript.

Corresponding authors

Correspondence to Yu-Ao Chen, Xing-Can Yao or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Pair momentum distributions in the vicinity of the superfluid phase transition.

After ballistic expansion for one quarter of the radial trap period, the one-dimensional momentum distribution n1D(k) maps out the original pair momentum distribution of a unitary Fermi gas before the interaction quench30. Each data point corresponds to the average of approximately 15 individual measurements. In the subplot, we show log(n1D(k)) as a function of k2 at low momentum. The solid lines are the Boltzmann distribution fitting to the thermal wings. Pair condensation is clearly observed for T ≤ Tc.

Extended Data Fig. 2 Schematic diagram for the magnetic field stabilization.

a, The experimental platform is enclosed with several layers of mu-metal plates. b, The ultrastable magnet power supply for generating the required magnetic field of 689.68 G, which is further stabilized with an analog proportional integral derivative controller. c, The active magnetic field compensation system that includes (1) a current measurement setup, consisting of a high precision current sensor and an 8.5-digit multimeter; (2) a proportional integral controlled compensation current source, consisting of a digital proportional integral, a waveform generator, and a voltage-controlled bipolar current source; and (3) a pair of compensation coils. d, A series of low-pass filters, which are composed of several capacitors and inductors. e, The microwave pulse is synchronized to the mains electricity.

Extended Data Fig. 3 The residual 50 Hz noise and Rabi oscillations between the |3 and |4 hyperfine levels.

a, The data points (red circles) are obtained by measuring the resonant frequency of the |3 to |4 microwave transition as a function of delay time td, i.e., the time duration between the synchronization trigger and the microwave pulse. The red solid line is the sine fitting curve with 50 Hz frequency. The red arrow indicates the moment of the synchronization trigger. b, Data points: the normalized atom number in level |4 as a function of microwave duration. Every data point corresponds to an average value of approximately 10 independent measurements. The error bar represents one standard error. The solid line is the fitting curve described by equation (3).

Extended Data Fig. 4 Density distribution after ballistic expansion and n(k, Δω) of the unitary Fermi gas at 0.77Tc.

a, The azimuthally averaged 2D density distribution after 5 ms ballistic expansion at Δω = 2π × 35 kHz. The inset displays the average result of n2D(x, y) of approximately 100 raw images. b, The 3D reconstructed distribution n3D(r), obtained by performing an inverse Abel transform to the n2D(r) in a. c, Momentum-resolved microwave spectrum n(k, Δω). d, Plot of n(k, Δω) in a logarithmic scale. The blue dashed line denotes the cutoff contour line.

Extended Data Fig. 5 The contour plots of A(k, ω).

The black dashed circles in the panels at 1.23Tc and 1.51Tc highlight the saddle region.

Extended Data Fig. 6 Analysis of the energy dispersion.

a, The contour plot of A(k, ω) at Tc. The green line is a guideline indicating an EDC slice at kF that is presented in c. b, The contour plot of A(k, Δω) at Tc, where Δω = ϵk/ħ-ω. The gray dashed lines are the cut lines of the MEDCs and the red circles are the peak positions of these lines. The orange line shows the MEDC used in d near kF, with a red star highlighted for the peak position. c, d, The spectral slices along the green (EDC) and the orange (MEDC) lines illustrated in a and b. The solid line in d is the fitting result of the MEDC by equation (20).

Extended Data Fig. 7 The evolution of EDC as a function of k for various T.

The red circles denote the peak energies of the left peak in EDCs (that is, the lower branch) for T ≤ 1.11Tc and of the combined single branch for T ≥ 1.23Tc. The red dashed line represents the chemical potential μ.

Extended Data Fig. 8 Temperature dependence of Δ, \({m}_{{\rm{h}}}^{\ast }\) and Uh.

Dark red circles: our fitting results by equations (21) and (22). Dark green squares: quantum Monte Carlo results from ref. 43. Error bars represent standard errors.

Extended Data Table 1 Temperature dependence of Δ, m*, and U

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, S., Luo, X. et al. Observation and quantification of the pseudogap in unitary Fermi gases. Nature 626, 288–293 (2024). https://doi.org/10.1038/s41586-023-06964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06964-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing