Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep, ultra-hot-melting residues as cradles of mantle diamond

Abstract

The ancient stable continents are up to 250 km deep, with roots extending into the diamond stability field1. These cratons owe their mechanical strength to being cool and rigid2, features inherited from extensive melt extraction1,3. The most prominent model for craton formation anticipates dominant melting at relatively shallow depth (50–100 km) above diamond stability4,5,6,7, followed by later imbrication to form the deeper roots8,9. Here we present results from thermodynamic and geochemical modelling of melting at sufficiently high temperatures to produce the very magnesian olivine of cratonic roots10. The new closed-system and open-system modelling reproduces the observed cratonic mantle mineral compositions by deep (about 200 km) and very hot melting (≥1,800 °C), obviating the need for shallow melting and stacking. The modelled highly magnesian liquids (komatiites) evolve to Al-enriched and Ti-depleted forms, as observed in the greenstone belts at the fossil surface of cratons11. The paucity of Ti-depleted komatiite12 implies that advanced closed-system isochemical melting (>1,825 °C) was much less common than open-system interaction between deeper liquids and melting of existing refractory mantle. The highly refractory compositions of diamond inclusion minerals could imply preferential diamond growth in the more reducing parts of the cratonic root, depleted by ultra-hot melting in response to heat plumes from a deeper former boundary layer that vanished at the end of the Archaean13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stability fields, abundances and selected chemical attributes of modelled mantle minerals.
Fig. 2: Modelled loss of HREEs during progressive melt extraction from deep mantle.
Fig. 3: Geodynamic model explaining the evolution of deep cratonic mantle, related volcanic rock chemistry and formation of diamond cradles.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the paper or its supplementary files (also available on EarthChem https://doi.org/10.26022/ieda/112711), or otherwise available on reasonable request from the corresponding author. Source data are provided with this paper.

References

  1. Kopylova, M. G. & Caro, G. Mantle xenoliths from the southeastern Slave craton: evidence for chemical zonation in a thick, cold lithosphere. J. Petrol. 45, 1045–1067 (2004).

    Article  ADS  CAS  Google Scholar 

  2. Begg, G. C. et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5, 23–50 (2009).

    Article  ADS  Google Scholar 

  3. Griffin, W. et al. The origin and evolution of Archean lithospheric mantle. Precambrian Res. 127, 19–41 (2003).

    Article  ADS  CAS  Google Scholar 

  4. Canil, D. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77, 375–393 (2004).

    Article  ADS  CAS  Google Scholar 

  5. Brey, G. P. & Shu, Q. The birth, growth and ageing of the Kaapvaal subcratonic mantle. Mineral. Petrol. 112, 23–41 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Pearson, D. G. et al. Deep continental roots and cratons. Nature 596, 199–210 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wittig, N. et al. Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet. Sci. Lett. 274, 24–33 (2008).

    Article  ADS  CAS  Google Scholar 

  8. Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Lee, C.-T. A. & Chin, E. J. Calculating melting temperatures and pressures of peridotite protoliths: implications for the origin of cratonic mantle. Earth Planet. Sci. Lett. 403, 273–286 (2014).

    Article  ADS  CAS  Google Scholar 

  10. Boyd, F. R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Robin-Popieul, C. C. et al. A new model for Barberton komatiites: deep critical melting with high melt retention. J. Petrol. 53, 2191–2229 (2012).

    Article  ADS  CAS  Google Scholar 

  12. Wilson, A. H. The late-Paleoarchean ultra-depleted Commondale komatiites: Earth’s hottest lavas and consequences for eruption. J. Petrol. 60, 1575–1620 (2019).

    Article  ADS  CAS  Google Scholar 

  13. Davies, G. F. Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett. 275, 382–392 (2008).

    Article  ADS  CAS  Google Scholar 

  14. Pearson, D. G. & Wittig, N. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. 165, 895–914 (2008).

    Article  ADS  Google Scholar 

  15. Kamber, B. S. & Tomlinson, E. L. Petrological, mineralogical and geochemical peculiarities of Archaean cratons. Chem. Geol. 511, 123–151 (2019).

    Article  ADS  CAS  Google Scholar 

  16. Takahashi, E. & Scarfe, C. M. Melting of peridotite to 14 GPa and the genesis of komatiite. Nature 315, 566–568 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. Solid Earth 97, 4521–4540 (1992).

    Article  CAS  Google Scholar 

  18. Simon, N. S. C., Carlson, R. W., Pearson, D. G. & Davies, G. R. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 48, 589–625 (2007).

    Article  ADS  CAS  Google Scholar 

  19. Schulze, D. J. A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71, 195–213 (2003).

    Article  ADS  CAS  Google Scholar 

  20. Holland, T. J. B., Green, E. C. R. & Powell, R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J. Petrol. 59, 881–900 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Tomlinson, E. L. & Holland, T. J. A thermodynamic model for the subsolidus evolution and melting of peridotite. J. Petrol. 62, egab012 (2021).

    Article  Google Scholar 

  22. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Schmeling, H. & Arndt, N. Modelling komatiitic melt accumulation and segregation in the transition zone. Earth Planet. Sci. Lett. 472, 95–106 (2017).

    Article  ADS  CAS  Google Scholar 

  24. Tomlinson, E. L. & Kamber, B. S. Depth-dependent peridotite-melt interaction and the origin of variable silica in the cratonic mantle. Nat. Commun. 12, 1082 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grütter, H. S., Gurney, J. J., Menzies, A. H. & Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77, 841–857 (2004).

    Article  ADS  Google Scholar 

  26. Stachel, T. & Harris, J. The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol. Rev. 34, 5–32 (2008).

    Article  Google Scholar 

  27. Zou, H. & Reid, M. R. Quantitative modeling of trace element fractionation during incongruent dynamic melting. Geochim. Cosmochim. Acta 65, 153–162 (2001).

    Article  ADS  CAS  Google Scholar 

  28. Pokhilenko, N. P., Pearson, D. G., Boyd, F. R. & Sobolev, N. V. Megacrystalline dunites and peridotites: hosts for Siberian diamonds. Ann. Rep. Dir. Geophys. Lab. 11–18 (1991).

  29. Viljoen, K., Swash, P., Otter, M., Schulze, D. & Lawless, P. Diamondiferous garnet harzburgites from the Finsch kimberlite, Northern Cape, South Africa. Contrib. Mineral. Petrol. 110, 133–138 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Sproule, R. A., Lesher, C. M., Ayer, J. A., Thurston, P. C. & Herzberg, C. T. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian Res. 115, 153–186 (2002).

    Article  ADS  CAS  Google Scholar 

  31. Wilson, A. & Bolhar, R. Olivine in komatiite records origin and travel from the deep upper mantle. Geology 50, 351–355 (2021).

    Article  ADS  Google Scholar 

  32. McKenzie, D. Speculations on the generation and movement of komatiites. J. Petrol. 61, egaa061 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Canil, D. & O’Neill, H. S. C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996).

    Article  ADS  CAS  Google Scholar 

  34. McCammon, C. & Kopylova, M. A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 148, 55–68 (2004).

    Article  ADS  CAS  Google Scholar 

  35. McCammon, C., Griffin, W. L., Shee, S. & O’Neill, H. S. C. Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib. Mineral. Petrol. 141, 287 (2001).

    Article  ADS  CAS  Google Scholar 

  36. Nimis, P., Preston, R., Perritt, S. H. & Chinn, I. L. Diamond’s depth distribution systematics. Lithos 376–377, 105729 (2020).

    Article  Google Scholar 

  37. Shu, Q. & Brey, G. P. Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 418, 27–39 (2015).

    Article  ADS  CAS  Google Scholar 

  38. Hoare, B. C., Tomlinson, E. L. & Kamber, B. S. Evidence for a very thick Kaapvaal craton root: implications for equilibrium fossil geotherms in the early continental lithosphere. Earth Planet. Sci. Lett. 597, 117796 (2022).

    Article  CAS  Google Scholar 

  39. Moore, W. B. & Webb, A. A. G. Heat-pipe earth. Nature 501, 501–505 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Nesbitt, R., Sun, S.-S. & Purvis, A. Komatiites; geochemistry and genesis. Can. Mineral. 17, 165–186 (1979).

    CAS  Google Scholar 

  41. Powell, R. & Holland, T. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 6, 173–204 (1988).

    Article  ADS  CAS  Google Scholar 

  42. Lexa, O. pypsbuilder, https://pypsbuilder.readthedocs.io/en/latest/index.html (2020).

  43. Palin, R. M. et al. High‐grade metamorphism and partial melting of basic and intermediate rocks. J. Metamorph. Geol. 34, 871–892 (2016).

    Article  ADS  CAS  Google Scholar 

  44. Kendrick, J. & Yakymchuk, C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: complications for interpreting the geodynamic significance of TTGs. Geosci. Front. 11, 745–763 (2020).

    Article  CAS  Google Scholar 

  45. Hernández-Montenegro, J. D., Palin, R. M., Zuluaga, C. A. & Hernández-Uribe, D. Archean continental crust formed by magma hybridization and voluminous partial melting. Sci. Rep. 11, 5263 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. Solid Earth 91, 9367–9382 (1986).

    Article  CAS  Google Scholar 

  47. Tomlinson, E. L., Kamber, B. S., Hoare, B. C., Stead, C. V. & Ildefonse, B. An exsolution origin for Archean mantle garnet. Geology 46, 123–126 (2018).

    Article  ADS  CAS  Google Scholar 

  48. Jennings, E. S. & Holland, T. J. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892 (2015).

    Article  ADS  CAS  Google Scholar 

  49. Klemme, S. & O’Neill, H. S. The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib. Mineral. Petrol. 138, 237–248 (2000).

    Article  ADS  CAS  Google Scholar 

  50. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  CAS  Google Scholar 

  51. Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).

    Article  ADS  CAS  Google Scholar 

  52. Sun, C. & Liang, Y. Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib. Mineral. Petrol. 163, 807–823 (2012).

    Article  ADS  CAS  Google Scholar 

  53. Sun, C. & Liang, Y. Distribution of REE and HFSE between low-Ca pyroxene and lunar picritic melts around multiple saturation points. Geochim. Cosmochim. Acta 119, 340–358 (2013).

    Article  ADS  CAS  Google Scholar 

  54. Sun, C. & Liang, Y. The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts. Chem. Geol. 358, 23–36 (2013).

    Article  ADS  CAS  Google Scholar 

  55. Sun, C. & Liang, Y. An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites. Chem. Geol. 372, 80–91 (2014).

    Article  ADS  CAS  Google Scholar 

  56. Yao, L., Sun, C. & Liang, Y. A parameterized model for REE distribution between low-Ca pyroxene and basaltic melts with applications to REE partitioning in low-Ca pyroxene along a mantle adiabat and during pyroxenite-derived melt and peridotite interaction. Contrib. Mineral. Petrol. 164, 261–280 (2012).

    Article  ADS  CAS  Google Scholar 

  57. Lehnert, K., Su, Y., Langmuir, C. H., Sarbas, B. & Nohl, U. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1, 1012 (2000).

    Article  ADS  Google Scholar 

  58. Banas, A. et al. Ancient metasomatism recorded by ultra-depleted garnet inclusions in diamonds from DeBeers Pool, South Africa. Lithos 112, 736–746 (2009).

    Article  ADS  Google Scholar 

  59. Davies, R. M., Griffin, W. L., O’Reilly, S. Y. & Doyle, B. J. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos 77, 39–55 (2004).

    Article  ADS  CAS  Google Scholar 

  60. Donnelly, C. L., Stachel, T., Creighton, S., Muehlenbachs, K. & Whiteford, S. Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. Lithos 98, 160–176 (2007).

    Article  ADS  CAS  Google Scholar 

  61. Harris, J. W., Stachel, T., Léost, I. & Brey, G. P. Peridotitic diamonds from Namibia: constraints on the composition and evolution of their mantle source. Lithos 77, 209–223 (2004).

    Article  ADS  CAS  Google Scholar 

  62. Logvinova, A. M., Taylor, L. A., Floss, C. & Sobolev, N. V. Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. Int. Geol. Rev. 47, 1223–1233 (2005).

    Article  Google Scholar 

  63. Motsamai, T., Harris, J. W., Stachel, T., Pearson, D. G. & Armstrong, J. Mineral inclusions in diamonds from Karowe Mine, Botswana: super-deep sources for super-sized diamonds? Mineral. Petrol. 112, 169–180 (2018).

    Article  ADS  CAS  Google Scholar 

  64. Pokhilenko, N., Sobolev, N., Reutsky, V., Hall, A. & Taylor, L. Crystalline inclusions and C isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched lithospheric mantle. Lithos 77, 57–67 (2004).

    Article  ADS  CAS  Google Scholar 

  65. Sobolev, N. V. et al. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77, 225–242 (2004).

    Article  ADS  CAS  Google Scholar 

  66. Stachel, T. et al. The trace element composition of silicate inclusions in diamonds: a review. Lithos 77, 1–19 (2004).

    Article  ADS  CAS  Google Scholar 

  67. Stachel, T., Brey, G. P. & Harris, J. W. Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone. Contrib. Mineral. Petrol. 140, 1–15 (2000).

    Article  ADS  CAS  Google Scholar 

  68. Stachel, T. & Harris, J. W. Diamond precipitation and mantle metasomatism–evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib. Mineral. Petrol. 129, 143–154 (1997).

    Article  ADS  CAS  Google Scholar 

  69. Stachel, T., Viljoen, K., McDade, P. & Harris, J. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton—the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contrib. Mineral. Petrol. 147, 32–47 (2004).

    Article  ADS  CAS  Google Scholar 

  70. Tappert, R., Stachel, T., Harris, J. W., Shimizu, N. & Brey, G. P. Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur. J. Mineral. 17, 423–440 (2005).

    Article  ADS  CAS  Google Scholar 

  71. Tappert, R., Stachel, T., Harris, J. W., Muehlenbachs, K. & Brey, G. P. Placer diamonds from Brazil: indicators of the composition of the earth’s mantle and the distance to their kimberlitic sources. Econ. Geol. 101, 453–470 (2006).

    Article  CAS  Google Scholar 

  72. Viljoen, K., Harris, J., Ivanic, T., Richardson, S. & Gray, K. Trace element chemistry of peridotitic garnets in diamonds from the Premier (Cullinan) and Finsch kimberlites, South Africa: contrasting styles of mantle metasomatism. Lithos 208–209, 1–15 (2014).

    Article  ADS  Google Scholar 

  73. Wang, W., Sueno, S., Takahashi, E., Yurimoto, H. & Gasparik, T. Enrichment processes at the base of the Archean lithospheric mantle: observations from trace element characteristics of pyropic garnet inclusions in diamonds. Contrib. Mineral. Petrol. 139, 720–733 (2000).

    Article  ADS  CAS  Google Scholar 

  74. Creighton, S. et al. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petrol. 157, 491 (2009).

    Article  ADS  CAS  Google Scholar 

  75. Wasch, L. J. et al. An alternative model for silica enrichment in the Kaapvaal subcontinental lithospheric mantle. Geochim. Cosmochim. Acta 73, 6894–6917 (2009).

    Article  ADS  CAS  Google Scholar 

  76. Lazarov, M., Brey, G. P. & Weyer, S. Time steps of depletion and enrichment in the Kaapvaal craton as recorded by subcalcic garnets from Finsch (SA). Earth Planet. Sci. Lett. 279, 1–10 (2009).

    Article  ADS  CAS  Google Scholar 

  77. Lazarov, M., Woodland, A. B. & Brey, G. P. Thermal state and redox conditions of the Kaapvaal mantle: a study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913–923 (2009).

    Article  ADS  Google Scholar 

  78. Lazarov, M., Brey, G. P. & Weyer, S. Evolution of the South African mantle—a case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); Part 2: multiple depletion and re-enrichment processes. Lithos 154, 210–223 (2012).

    Article  ADS  CAS  Google Scholar 

  79. Grégoire, M., Bell, D. & Le Roex, A. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J. Petrol. 44, 629–657 (2003).

    Article  ADS  Google Scholar 

  80. Peslier, A., Woodland, A., Bell, D., Lazarov, M. & Lapen, T. Metasomatic control of water contents in the Kaapvaal cratonic mantle. Geochim. Cosmochim. Acta 97, 213–246 (2012).

    Article  ADS  CAS  Google Scholar 

  81. Schmädicke, E., Gose, J., Reinhardt, J., Will, T. M. & Stalder, R. Garnet in cratonic and non-cratonic mantle and lower crustal xenoliths from southern Africa: composition, water incorporation and geodynamic constraints. Precambrian Res. 270, 285–299 (2015).

    Article  ADS  Google Scholar 

  82. Shu, Q., Brey, G. P., Gerdes, A. & Hoefer, H. E. Geochronological and geochemical constraints on the formation and evolution of the mantle underneath the Kaapvaal craton: Lu–Hf and Sm–Nd systematics of subcalcic garnets from highly depleted peridotites. Geochim. Cosmochim. Acta 113, 1–20 (2013).

    Article  ADS  CAS  Google Scholar 

  83. Hanger, B. J., Yaxley, G. M., Berry, A. J. & Kamenetsky, V. S. Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa. Lithos 212–215, 443–452 (2015).

    Article  ADS  Google Scholar 

  84. Hin, R. C. et al. Formation and temporal evolution of the Kalahari sub-cratonic lithospheric mantle: constraints from Venetia xenoliths, South Africa. Lithos 112, 1069–1082 (2009).

    Article  ADS  Google Scholar 

  85. Boyd, F. et al. Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77, 573–592 (2004).

    Article  ADS  CAS  Google Scholar 

  86. Luchs, T., Brey, G., Gerdes, A. & Höfer, H. The lithospheric mantle underneath the Gibeon Kimberlite field (Namibia): a mix of old and young components—evidence from Lu–Hf and Sm–Nd isotope systematics. Precambrian Res. 231, 263–276 (2013).

    Article  ADS  CAS  Google Scholar 

  87. Gibson, S., McMahon, S., Day, J. & Dawson, J. Highly refractory lithospheric mantle beneath the Tanzanian craton: evidence from Lashaine pre-metasomatic garnet-bearing peridotites. J. Petrol. 54, 1503–1546 (2013).

    Article  ADS  CAS  Google Scholar 

  88. Tappert, R., Foden, J., Muehlenbachs, K. & Wills, K. Garnet peridotite xenoliths and xenocrysts from the Monk Hill kimberlite, South Australia: insights into the lithospheric mantle beneath the Adelaide Fold Belt. J. Petrol. 52, 1965–1986 (2011).

    Article  ADS  CAS  Google Scholar 

  89. Creighton, S. et al. Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib. Mineral. Petrol. 155, 541–554 (2008).

    Article  ADS  CAS  Google Scholar 

  90. Creighton, S., Stachel, T., Eichenberg, D. & Luth, R. W. Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib. Mineral. Petrol. 159, 645–657 (2010).

    Article  ADS  CAS  Google Scholar 

  91. Aulbach, S., Griffin, W. L., Pearson, N. J., O’Reilly, S. Y. & Doyle, B. J. Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion? Contrib. Mineral. Petrol. 154, 409–427 (2007).

    Article  CAS  Google Scholar 

  92. Aulbach, S., Griffin, W. L., Pearson, N. J. & O’Reilly, S. Y. Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem. Geol. 352, 153–169 (2013).

    Article  ADS  CAS  Google Scholar 

  93. Klein-BenDavid, O. & Pearson, D. G. Origins of subcalcic garnets and their relation to diamond forming fluids—case studies from Ekati (NWT-Canada) and Murowa (Zimbabwe). Geochim. Cosmochim. Acta 73, 837–855 (2009).

    Article  ADS  CAS  Google Scholar 

  94. Westerlund, K. et al. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib. Mineral. Petrol. 152, 275–294 (2006).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  95. Schmidberger, S. & Francis, D. Constraints on the trace element composition of the Archean mantle root beneath Somerset Island, Arctic Canada. J. Petrol. 42, 1095–1117 (2001).

    Article  ADS  CAS  Google Scholar 

  96. Hunt, L. et al. Small mantle fragments from the Renard kimberlites, Quebec: powerful recorders of mantle lithosphere formation and modification beneath the Eastern Superior Craton. J. Petrol. 53, 1597–1635 (2012).

    Article  ADS  CAS  Google Scholar 

  97. Smit, K., Pearson, D., Stachel, T. & Seller, M. Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior superterrane. J. Petrol. 55, 1829–1863 (2014).

    Article  ADS  CAS  Google Scholar 

  98. Zheng, J. et al. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J. Petrol. 47, 2233–2256 (2006).

    Article  ADS  CAS  Google Scholar 

  99. Lehtonen, M. L. Analytical geochemistry from “Electron microprobe and LA-ICP-MS analyses of garnet xenocrysts from Kaavi-Kuopio area kimberlites”, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA), https://doi.org/10.1594/IEDA/100264 (2013).

  100. Lehtonen, M. & O’Brien, H. Mantle transect of the Karelian Craton from margin to core based on PT data from garnet and clinopyroxene xenocrysts in kimberlites. Bull. Geol. Soc. Finl. 81, 79–102 (2009).

    Article  CAS  Google Scholar 

  101. Lehtonen, M., O’Brien, H., Johanson, B. & Pakkanen, L. Electron microprobe and LA-ICP-MS analyses of mantle xenocrysts from the Arkhangelskaya kimberlite, NW Russia. Geological Survey of Finland, Open File Report M41.2 (2008).

  102. Riches, A. J., Liu, Y., Day, J. M., Spetsius, Z. V. & Taylor, L. A. Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120, 368–378 (2010).

    Article  ADS  CAS  Google Scholar 

  103. Howarth, G. H. et al. Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187, 209–224 (2014).

    Article  ADS  Google Scholar 

  104. Agashev, A. et al. Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161, 201–215 (2013).

    Article  ADS  Google Scholar 

  105. Doucet, L. S., Ionov, D. A. & Golovin, A. V. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 165, 1225–1242 (2013).

    Article  ADS  CAS  Google Scholar 

  106. Ionov, D. A., Doucet, L. S. & Ashchepkov, I. V. Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51, 2177–2210 (2010).

    Article  ADS  CAS  Google Scholar 

  107. Pokhilenko, N., Agashev, A., Litasov, K. & Pokhilenko, L. Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russ. Geol. Geophys. 56, 280–295 (2015).

    Article  ADS  Google Scholar 

  108. Solov’eva, L., Yasnygina, T. & Egorov, K. Metasomatic parageneses in deep-seated xenoliths from pipes Udachnaya and Komsomol’skaya-Magnitnaya as indicators of fluid transfer through the mantle lithosphere of the Siberian craton. Russ. Geol. Geophys. 53, 1304–1323 (2012).

    Article  ADS  Google Scholar 

  109. Shchukina, E., Agashev, A., Kostrovitsky, S. & Pokhilenko, N. Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia). Russ. Geol. Geophys. 56, 1701–1716 (2015).

    Article  ADS  Google Scholar 

  110. Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A. & Sobolev, N. V. Metasomatic processes in the central Siberian cratonic mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite. J. Petrol. 54, 2379–2409 (2013).

    Article  ADS  CAS  Google Scholar 

  111. Sun, S.-S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).

    Article  ADS  Google Scholar 

  112. Salters, V. J. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Murphy, S. Tappe, C. Gaina and C. Herzberg for discussions on this research topic. Constructive reviews from the journal reviewers (M. Kopylova and anonymous) helped to improve the original manuscript. C.W. thanks O. Lexa for developing and updating pypsbuilder to run the most recent version of THERMOCALC and R. Emo for input on thermodynamic modelling. C.W. acknowledges support from a QUT Postgraduate Research Award.

Author information

Authors and Affiliations

Authors

Contributions

C.W. performed all the THERMOCALC and final trace element modelling, drafted most figures, wrote a manuscript outline and prepared the methods, extended data and supplementary data files and revised all of these. B.S.K. wrote most of the paper, edited several iterations and the methods and extended data files, and drafted Fig. 3 and revised the manuscript. E.L.T. conceived the original idea, collated literature data, performed preliminary trace element modelling and edited iterations of the full and revised manuscript. B.S.K. and E.L.T. discussed and advanced the research ideas.

Corresponding author

Correspondence to Balz S. Kamber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Cr in garnet and olivine Fo distribution from compiled literature with model results.

Histograms of: Cr concentrations in global cratonic peridotite garnet and garnet DIs (a)18,37,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110; forsterite component in cratonic peridotite olivine and olivine DIs (b)8,24; garnet Cr2O3 concentrations in incremental melt model residues and batch KR4003 melt model residues during melting (c); garnet Cr2O3 over the melting interval of hybrid compositions (d). Note that DI versus peridotite distinction in a and b is more pronounced on a craton-by-craton basis than in the global database.

Source Data

Extended Data Fig. 2 THERMOCALC pressure–temperature pseudosections of the four incremental model systems whose chemical compositions are listed in Extended Data Table 1.

Equilibrium phase assemblage is shown for 1,000–2,000 °C, 20–60 kbar for KR4003 (a), Ext1 (b), Ext2 (c) and Ext2.5 (d). Each subsequent composition is more refractory than the last, reflected in the increasing simplicity of the phase assemblages and higher liquidus temperatures.

Extended Data Fig. 3 THERMOCALC pressure–temperature pseudosections of open-system models.

Hybrids #1 (a) and #2 (b) are 1:2 mixtures of experimental AUK22,46 with Ext2 of the incremental model. Hybrid #3 (c) uses the more refractory Ext2.5 composition at a 1:4 ratio (see Methods for details). The pyroxene structure stabilized by THERMOCALC is sensitive to compositional ‘starting guesses’ illustrated in a and b, in which low-Ca clinopyroxene and high-Ca orthopyroxene have the same composition and are effectively interchangeable.

Extended Data Fig. 4 Effect of open versus closed systems on forsterite and Cr2O3 in garnet during advanced melting.

Open-system and batch models show similar evolution in forsterite during progressive melting characterized by a continuous steep increase in forsterite until orthopyroxene is exhausted compared with delayed increase in forsterite component associated with incremental melt extraction. Maximum Cr2O3 in garnet is <15 wt% in hybrid-system models compared with >17 wt% during incremental melt extraction without komatiite input (incremental model).

Source Data

Extended Data Fig. 5 THERMOCALC pressure–temperature pseudosections of the incremental model components after KR4003 with spinel enabled.

a, Ext1. b, Ext2. c, Ext2.5. Progressively more refractory compositions show increased spinel stability up to almost 7 GPa in Ext2.5, albeit at very low modal abundances (<0.007 at 5 GPa). Below 7 GPa, spinel replaces garnet or orthopyroxene as the last phase to coexist with olivine and melt. This unexpected high-pressure-stability spinel is attributed to increased MgO and Cr2O3 in the residue (over)stabilizing picrochromite in THERMOCALC21 (see Methods for more details). The effect on Cr2O3 in garnet is only observed close to garnet exhaustion, in which Cr-rich garnet (<13 wt% Cr2O3) converts to a spinel structure.

Extended Data Fig. 6 Effect of selection of partition coefficients on HREE concentration in modelled residues.

The red line shows the trajectory of the 7-GPa isobaric melt model redrafted from Wittig et al.7 starting at primitive mantle (PM)111. In their model, both Lu and Yb become more enriched with increasing melt fraction until garnet-out (g-out; black dot). We used partition coefficients from references given in Wittig et al.7 to fit a simple modal batch melting model to their 7-GPa isobaric trajectory. This model used a generic set of partition coefficients for mantle phases to yield bulk partition coefficients of DYb = 8.47 and DLu = 9.46. These result in retention of Lu and Yb in garnet-bearing residues. Individually calculated coefficients for the specific P–T–X conditions (see Methods for details) are considerably lower. They result in an opposite Lu versus Yb trajectory (shown in orange) for an otherwise identical model. Melt fractions are annotated for both models. It is noted that the garnet partition coefficients used in the 7-GPa isobaric model were experimentally derived for a very different tectonic setting—decompression melting beneath a mid-ocean ridge112.

Source Data

Extended Data Fig. 7 Covariation in Al over Mg depletion versus ytterbium depletion.

Whole-rock data for n = 183 cratonic xenoliths from various cratons7,18,106 (colour-coded as per legend) show a positive correlation between depletion in Al (relative to Mg) and Yb concentration. Superimposed on the observed data is the trend modelled for the restite after isobaric 5-GPa incremental melt loss. This shows the decreasing fertility as the composition trends away from primitive-mantle-like solid composition as gradual consumption of garnet through the series of melting reactions (Fig. 2 inset) reduced Al and increased Mg (see Extended Data Table 1). The gradual consumption of garnet, clinopyroxene and orthopyroxene cause the concomitant decrease in Yb concentration in the restite. The incremental model follows the trend of cratonic xenolith data away from primitive mantle, unlike high-pressure trends suggested in other studies6.

Source Data

Extended Data Fig. 8 Comparison of major element composition of Commondale parental melt with incremental melt model liquid at 5 GPa and 1,827 °C.

There is a generally very strong similarity with oxides plotting above the line slightly enriched in the model (Supplementary Data 1) compared with Commondale komatiite parental melt12. Oxides below the theoretical 1:1 line are underestimated in the model.

Source Data

Extended Data Table 1 Major element compositions of experimental starting materials and modelled compositions
Extended Data Table 2 Incremental model HREE concentrations at 5 GPa

Supplementary information

Supplementary Data 1

Isochemical incremental model outputs as phase proportions and chemistries in mass units at 2 °C increments at 5 GPa from solidus to liquidus.

Supplementary Data 2

Isochemical single-batch model outputs as phase proportions and chemistries in mass units at 2 °C increments at 5 GPa from solidus to liquidus.

Supplementary Data 3

Open-system hybrid #1 model outputs as phase proportions and chemistry in mass units at 1 °C increments at 5 GPa from solidus to liquidus.

Supplementary Data 4

Open-system hybrid #3 model outputs as phase proportions and chemistry in mass units at 1 °C increments at 5 GPa from solidus to liquidus.

Supplementary Data 5

Contains inputs for the HREE incongruent dynamic melting model. Includes partition coefficients, melting stoichiometry and starting proportions of each melting reaction (Fig. 2 inset) in the incremental model at 5 GPa.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, C., Kamber, B.S. & Tomlinson, E.L. Deep, ultra-hot-melting residues as cradles of mantle diamond. Nature 615, 450–454 (2023). https://doi.org/10.1038/s41586-022-05665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05665-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing