Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Forearc carbon sink reduces long-term volatile recycling into the mantle

An Author Correction to this article was published on 12 November 2019

An Author Correction to this article was published on 28 June 2019

This article has been updated

Abstract

Carbon and other volatiles in the form of gases, fluids or mineral phases are transported from Earth’s surface into the mantle at convergent margins, where the oceanic crust subducts beneath the continental crust. The efficiency of this transfer has profound implications for the nature and scale of geochemical heterogeneities in Earth’s deep mantle and shallow crustal reservoirs, as well as Earth’s oxidation state. However, the proportions of volatiles released from the forearc and backarc are not well constrained compared to fluxes from the volcanic arc front. Here we use helium and carbon isotope data from deeply sourced springs along two cross-arc transects to show that about 91 per cent of carbon released from the slab and mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition. Around an additional three per cent is incorporated into the biomass through microbial chemolithoautotrophy, whereby microbes assimilate inorganic carbon into biomass. We estimate that between 1.2 × 108 and 1.3 × 1010 moles of carbon dioxide per year are released from the slab beneath the forearc, and thus up to about 19 per cent less carbon is being transferred into Earth’s deep mantle than previously estimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the northwest coast of Costa Rica.
Fig. 2: Helium and carbon isotopes across the Costa Rican convergent margin.
Fig. 3: Carbon isotopes as a function of DIC concentrations for northern (blue filled symbols) and central (orange filled symbols) DIC, along with the isotope fractionation model (solid lines).
Fig. 4: Schematic cross-section of carbon fluxes across the Costa Rican convergent margin.

Similar content being viewed by others

Data availability

All raw data needed to make the plots are available in Supplementary Tables 1 and 2 as well as in the Source Data file provided. All data are archived through EarthChem (https://doi.org/10.1594/IEDA/111271 at http://get.iedadata.org/doi/111271).

Code availability

The freely distributed software PhreeqC (United States Geological Survey) was used to calculate geochemical solubilities, and is available for download at https://www.usgs.gov/software/phreeqc-version-3.

Change history

  • 12 November 2019

    An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 28 June 2019

    Change history: In this Article, the original affiliation 2 was not applicable and has been removed. In addition, in the Acknowledgements there was a statement missing and an error in a name. These errors have been corrected online.

References

  1. Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shaw, A. M., Hilton, D. R., Fischer, T. P., Walker, J. A. & Alvarado, G. E. Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet. Sci. Lett. 214, 499–513 (2003).

    ADS  CAS  Google Scholar 

  3. Füri, E. et al. Carbon release from submarine seeps at the Costa Rica fore arc: implications for the volatile cycle at the Central America convergent margin. Geochem. Geophys. Geosyst. 11, Q04S21 (2010).

    Google Scholar 

  4. Schwarzenbach, E. M., Früh-Green, G. L., Bernasconi, S. M., Alt, J. C. & Plas, A. Serpentinization and carbon sequestration: a study of two ancient peridotite-hosted hydrothermal systems. Chem. Geol. 351, 115–133 (2013).

    ADS  CAS  Google Scholar 

  5. McCollom, T. M. & Seewald, J. S. Serpentinites, hydrogen, and life. Elements 9, 129–134 (2013).

    CAS  Google Scholar 

  6. Hilton, D. R., Fischer, T. P. & Marty, B. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002).

    CAS  Google Scholar 

  7. de Leeuw, G. A. M., Hilton, D. R., Fischer, T. P. & Walker, J. A. The He–CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: new constraints on volatile mass balance of the Central American Volcanic Arc. Earth Planet. Sci. Lett. 258, 132–146 (2007).

    ADS  Google Scholar 

  8. de Moor, J. M. et al. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: the importance of accurate time-series data sets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions. Geochem. Geophys. Geosyst. 18, 4437–4468 (2017).

    ADS  Google Scholar 

  9. Fryer, P., Ambos, E. L. & Hussong, D. M. Origin and emplacement of Mariana forearc seamounts. Geology 13, 774–777 (1985).

    ADS  Google Scholar 

  10. Brown, K. M. The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. J. Geophys. Res. Solid Earth 95, 8969–8982 (1990).

    Google Scholar 

  11. Naif, S., Key, K., Constable, S. & Evans, R. L. Water-rich bending faults at the Middle America Trench. Geochem. Geophys. Geosyst. 16, 2582–2597 (2015).

    ADS  Google Scholar 

  12. Gorman, P. J., Kerrick, D. M. & Connolly, J. A. D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

    ADS  Google Scholar 

  13. Vaca, L., Alvarado, A. & Corrales, R. Calcite deposition at Miravalles geothermal field Costa Rica. Geothermics 18, 305–312 (1989).

    CAS  Google Scholar 

  14. Corrigan, J., Mann, P. & Ingle, J. C. Jr. Forearc response to subduction of the Cocos ridge, Panama–Costa Rica. Geol. Soc. Am. Bull. 102, 628–652 (1990).

    ADS  Google Scholar 

  15. Pacton, M. et al. Viruses as new agents of organomineralization in the geological record. Nat. Commun. 5, 4298 (2014).

    ADS  CAS  PubMed  Google Scholar 

  16. Zhu, T. & Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front. Bioeng. Biotechnol. 4, https://doi.org/10.3389/fbioe.2016.00004 (2016).

  17. Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Colwell, F. S. & D’Hondt, S. Nature and extent of the deep biosphere. Rev. Mineral. Geochem. 75, 547–574 (2013).

    CAS  Google Scholar 

  19. Emerson, J. B., Thomas, B. C., Alvarez, W. & Banfield, J. F. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ. Microbiol. 18, 1686–1703 (2016).

    CAS  PubMed  Google Scholar 

  20. Harris, R. N. & Wang, K. Thermal models of the middle America trench at the Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 29, 2010 (2002).

  21. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

    ADS  CAS  Google Scholar 

  22. McCollom, T. M. & Seewald, J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401 (2007).

    CAS  PubMed  Google Scholar 

  23. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 2002).

  24. Hilton, D. R. The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studies at Long Valley caldera (California, U.S.A.). Chem. Geol. 127, 269–295 (1996).

    ADS  CAS  Google Scholar 

  25. Mook, W. G., Bommerson, J. C. & Stavermann, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).

    ADS  CAS  Google Scholar 

  26. Vogel, J. C., Grootes, P. M. & Mook, W. G. Isotopic fractionation between gaseous and dissolved carbon dioxide. Z. Phys. A 230, 225–238 (1970).

    CAS  Google Scholar 

  27. Barry, P. H. et al. Helium and carbon isotope systematics of cold “mazuku” CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania. Chem. Geol. 339, 141–156 (2013).

    ADS  CAS  Google Scholar 

  28. Audet, P. & Schwartz, S. Y. Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone. Nat. Geosci. 6, 852–855 (2013).

    ADS  CAS  Google Scholar 

  29. Wheat, C. G. & Fisher, A. T. Massive, low-temperature hydrothermal flow from a basaltic outcrop on 23 Ma seafloor of the Cocos Plate: chemical constraints and implications. Geochem. Geophys. Geosyst. 9, Q12O14 (2008).

  30. Aiuppa, A. et al. Gas measurements from the Costa Rica–Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry. Earth Planet. Sci. Lett. 407, 134–147 (2014).

    ADS  CAS  Google Scholar 

  31. Alt, J. C. et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256. Geochem. Geophys. Geosyst. 11, Q10010 (2010).

    ADS  Google Scholar 

  32. Carr, M. J., Feigenson, M. D. & Bennett, E. A. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib. Mineral. Petrol. 105, 369–380 (1990).

    ADS  CAS  Google Scholar 

  33. Leeman, W. P., Carr, M. J. & Morris, J. D. Boron geochemistry of the Central American volcanic arc: constraints on the genesis of subduction-related magmas. Geochim. Cosmochim. Acta 58, 149–168 (1994).

    ADS  CAS  Google Scholar 

  34. Zimmer, M. M. et al. Nitrogen systematics and gas fluxes of subduction zones: insights from Costa Rica arc volatiles. Geochem. Geophys. Geosyst. 5, Q05J11 (2004).

    Google Scholar 

  35. Hilton, D. R. et al. Monitoring of temporal and spatial variations in fumarole helium and carbon dioxide characteristics at Poás and Turrialba volcanoes, Costa Rica (2001–2009). Geochem. J. 44, 431–440 (2010).

    ADS  CAS  Google Scholar 

  36. Lee, H. et al. Nitrogen recycling at the Costa Rican subduction zone: the role of incoming plate structure. Sci. Rep. 7, 13933 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  37. House, C. H., Schopf, J. W. & Stetter, K. O. Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org. Geochem. 34, 345–356 (2003).

    CAS  Google Scholar 

  38. Alvarado, G. E. & Vargas, A. G. History of discovery and exploitation of thermal water in Costa Rica. Rev. Geol. Am. Cent. 57, 55–84 (2017).

    Google Scholar 

  39. Marty, B. & Dauphas, N. The nitrogen record of crust–mantle interaction and mantle convection from Archean to present. Earth Planet. Sci. Lett. 206, 397–410 (2003).

    ADS  CAS  Google Scholar 

  40. Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    ADS  CAS  Google Scholar 

  41. Jelen, B. I., Giovannelli, D. & Falkowski, P. G. The role of microbial electron transfer in the coevolution of the biosphere and geosphere. Annu. Rev. Microbiol. 70, 45–62 (2016).

    CAS  PubMed  Google Scholar 

  42. Li, Z. H., Xu, Z. Q. & Gerya, T. V. Flat versus steep subduction: contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65–77 (2011).

    ADS  CAS  Google Scholar 

  43. Smithies, R. H., Champion, D. C. & Cassidy, K. F. Formation of Earth’s early Archean continental crust. Precambr. Res. 127, 89–101 (2003).

    ADS  CAS  Google Scholar 

  44. Abbott, D., Drury, R. & Smith, W. H. F. Flat to steep transition in subduction style. Geology 22, 937–940 (1994).

    ADS  Google Scholar 

  45. Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    ADS  CAS  Google Scholar 

  46. Kump, L. R., Kasting, J. F. & Barley, M. E. Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem. Geophys. Geosyst. 2, 2000GC000114 (2001).

    Google Scholar 

  47. Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110, 26–57 (2012).

    ADS  CAS  Google Scholar 

  48. Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    ADS  Google Scholar 

  49. Protti, M., Gündel, F. & McNally, K. The geometry of the Wadati–Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network. Phys. Earth Planet. Inter. 84, 271–287 (1994).

    ADS  Google Scholar 

  50. Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, Q03014 (2009).

    ADS  Google Scholar 

  51. Giggenbach, W. F. & Goguel, R. L. Methods for the Collection and Analysis of Geothermal and Volcanic Water and Gas Samples. Report CD 2387 53 (Department of Scientific and Industrial Research (Chemistry Division), 1989).

    Google Scholar 

  52. Trull, T. Influx and age constraints on the recycled cosmic dust explanation for high 3He/4He ratios at hotspot volcanos. Noble Gas Geochem. Cosmochem. 77–88 (1994).

  53. Kulongoski, J. T. & Hilton, D. R. A quadrupole-based mass spectrometric system for the determination of noble gas abundances in fluids. Geochem. Geophys. Geosyst. 3, 1–10 (2002).

    Google Scholar 

  54. Barry, P. H. et al. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field. Geochim. Cosmochim. Acta 194, 291–309 (2016).

    ADS  CAS  Google Scholar 

  55. Braun, S. et al. Cellular content of biomolecules in sub-seafloor microbial communities. Geochim. Cosmochim. Acta 188, 330–351 (2016).

    ADS  CAS  Google Scholar 

  56. Giovannelli, D. et al. Diversity and distribution of prokaryotes within a shallow-water pockmark field. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00941 (2016).

  57. McMahon, S. & Parnell, J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87, 113–120 (2014).

    CAS  PubMed  Google Scholar 

  58. Sano, Y. & Marty, B. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274 (1995).

    ADS  CAS  Google Scholar 

  59. Snyder, G., Poreda, R., Hunt, A. & Fehn, U. Regional variations in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc. Geochem. Geophys. Geosyst. 2, 1057 (2001).

  60. Snyder, G., Poreda, R., Fehn, U., & Hunt, A. The geothermal fields of Central America: influence of the subduction process on its volatile composition. Geol. Mag. Central Am. 30, 137–148 (2004).

    Google Scholar 

  61. Wehrmann, H., Hoernle, K., Portnyagin, M., Wiedenbeck, M. & Heydolph, K. Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras. Geochem. Geophys. Geosyst. 12, Q06003 (2011).

  62. de Moor, J. M. et al. Turmoil at Turrialba Volcano (Costa Rica): degassing and eruptive processes inferred from high-frequency gas monitoring. J. Geophys. Res. Solid Earth 121, 5761–5775 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  63. Dawson, P., Chouet, B. & Pitt, A. Tomographic image of a seismically active volcano: Mammoth Mountain, California. J. Geophys. Res. Solid Earth 121, 114–133 (2016).

    ADS  CAS  Google Scholar 

  64. Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357, 290–294 (2017).

    ADS  CAS  PubMed  Google Scholar 

  65. Chiodini, G., Pappalardo, L., Aiuppa, A. & Caliro, S. The geological CO2 degassing history of a long-lived caldera. Geology 43, 767–770 (2015).

    ADS  CAS  Google Scholar 

  66. Berrangé, J. P. & Thorpe, R. S. The geology, geochemistry and emplacement of the Cretaceous—Tertiary ophiolitic Nicoya Complex of the Osa Peninsula, southern Costa Rica. Tectonophysics 147, 193–220 (1988).

    ADS  Google Scholar 

  67. Giggenbach, W. F. Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary basins. Geochim. Cosmochim. Acta 61, 3763–3785 (1997).

    ADS  CAS  Google Scholar 

  68. Kuijpers, E. P. The geologic history of the Nicoya Ophiolite Complex, Costa Rica, and its geotectonic significance. Tectonophysics 68, 233–255 (1980).

    ADS  Google Scholar 

  69. Schwarzenbach, E. M. et al. Sources and cycling of carbon in continental, serpentinite-hosted alkaline springs in the Voltri Massif, Italy. Lithos 177, 226–244 (2013).

    ADS  CAS  Google Scholar 

  70. Torgersen, T. Terrestrial helium degassing fluxes and the atmospheric helium budget: implications with respect to the degassing processes of continental crust. Chem. Geol. Isotope Geosci. Sect. 79, 1–14 (1989).

    CAS  Google Scholar 

  71. Walther, C. H. E., Flueh, E. R., Ranero, C. R., Von Huene, R. & Strauch, W. Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver. Geophys. J. Int. 141, 759–777 (2000).

    ADS  Google Scholar 

  72. Gazel, E., Denyer, P., & Baumgartner, P. O. Magmatic and geotectonic significance of Santa Elena peninsula, Costa Rica. Geol. Acta 4, 0193-202 (2006).

    CAS  Google Scholar 

  73. Gazel, E. et al. Plume–subduction interaction in southern Central America: mantle upwelling and slab melting. Lithos 121, 117–134 (2011).

    ADS  CAS  Google Scholar 

  74. Gazel, E. et al. Continental crust generated in oceanic arcs. Nat. Geosci. 8, 321 (2015).

    ADS  CAS  Google Scholar 

  75. Madrigal, P. et al. A melt-focusing zone in the lithospheric mantle preserved in the Santa Elena ophiolite, Costa Rica. Lithos 230, 189–205 (2015).

    ADS  CAS  Google Scholar 

  76. Madrigal, P., Gazel, E., Flores, K. E., Bizimis, M. & Jicha, B. Record of massive upwellings from the Pacific large low shear velocity province. Nat. Commun. 7, 13309 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, L. & Bebout, G. E. Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: Insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J. Geophys. Res. Solid Earth 110, B11202 (2005).

  78. Holloway, J. R. & Blank, J. G. Application of experimental results to COH species in natural melts. Rev. Mineral. 30, 187–230 (1994).

    CAS  Google Scholar 

  79. Ohmoto, H. & Rye, R. O. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 509–567 (1979).

  80. de Moor, J. M. et al. Short-period volcanic gas precursors to phreatic eruptions: insights from Poás Volcano, Costa Rica. Earth Planet. Sci. Lett. 442, 218–227 (2016).

    ADS  Google Scholar 

  81. Kimura, G. et al. (eds) in Proceedings of the Ocean Drilling Program, Initial Reports Vol. 170 Initial Reports, Costa Rica Accretionary Wedge (ODP, 1997).

  82. Barckhausen, U., Ranero, C. R., Huene, R. V., Cande, S. C. & Roeser, H. A. Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models. J. Geophys. Res. Solid Earth 106, 19207–19220 (2001).

    Google Scholar 

  83. DeMets, C. A new estimate for present day Cocos Caribbean plate motion: Implications for slip along the Central American volcanic arc. Geophys. Res. Lett. 28, 4043–4046 (2001).

    ADS  Google Scholar 

  84. Patino, L. C., Carr, M. J. & Feigenson, M. D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib. Mineral. Petrol. 138, 265–283 (2000).

    ADS  CAS  Google Scholar 

  85. Von Huene, R., Langseth, M., Nasu, N. & Okada, H. A summary of Cenozoic tectonic history along the IPOD Japan Trench transect. Geol. Soc. Am. Bull. 93, 829–846 (1982).

    Google Scholar 

  86. Parkes, R. J., Cragg, B. A., Fry, J. C., Herbert, R. A. & Wimpenny, J. W. T. Bacterial biomass and activity in deep sediment layers from the Peru margin. Phil. Trans. R. Soc. Lond. A 331, 139–153 (1990).

    ADS  CAS  Google Scholar 

  87. Biddle, J. F. et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl Acad. Sci. USA 103, 3846–3851 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vannucchi, P. & Tobin, H. Deformation structures and implications for fluid flow at the Costa Rica convergent margin, ODP Sites 1040 and 1043, Leg 170. J. Struct. Geol. 22, 1087–1103 (2000).

    ADS  Google Scholar 

  89. Spinelli, G. A. & Underwood, M. B. Character of sediments entering the Costa Rica subduction zone: implications for partitioning of water along the plate interface. Island Arc 13, 432–451 (2004).

    Google Scholar 

  90. Ranero, C. R. et al. Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem. Geophys. Geosyst. 9, Q03S04 (2008).

    Google Scholar 

  91. Spinelli, G. A. & Saffer, D. M. Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity. Geophys. Res. Lett. 31, L04613 (2004).

    ADS  Google Scholar 

  92. Lloyd, K. G. et al. Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic archaea. Appl. Environ. Microbiol. 71, 6383–6387 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Edgcomb, V. P. et al. Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes. Extremophiles 11, 329–342 (2007).

    CAS  PubMed  Google Scholar 

  94. Marlow, J. J. et al. Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat. Commun. 5, 5094 (2014).

    ADS  CAS  PubMed  Google Scholar 

  95. Boetius, A. & Wenzhöfer, F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6, 725 (2013).

    ADS  CAS  Google Scholar 

  96. Hensen, C., Wallmann, K., Schmidt, M., Ranero, C. R. & Suess, E. Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32, 201–204 (2004).

    ADS  CAS  Google Scholar 

  97. Colwell, F. S. et al. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Appl. Environ. Microbiol. 74, 3444–3452 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sánchez-Murillo, R. et al. Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: an analog of a humid early Earth? Geochem. Geophys. Geosyst. 15, 1783–1800 (2014).

    Google Scholar 

  99. Crespo-Medina, M. et al. Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach. Front. Microbiol. 5, 604 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was principally supported by grant G-2016-7206 from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B., K.G.L., D.G., K.P., T.L., J.M.d.M. and D. R. Hummer. In addition, P.H.B. was supported by NSF grant 1144559 during a portion of this project. D.G. was supported by an NSF grant (MCB 15–17567), a Deep Life Modelling and Visualization Fellowship from the Deep Carbon Observatory and an ELSI Origins Network (EON) Research Fellowship, which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. This work was further supported in part by JSPS KAKENHI grants JP17K14412, JP17H06105 and JP17H02989 (awarded to M.N.), an NSF grant OCE-1431598 and a NASA Exobiology grant NNX16AL59G (awarded to K.G.L.), NSF grants 0206113, 0711533 and 1049713 (awarded to T.P.F.), and NSF grants 0003628 and 1049748 (awarded to D. R. Hilton). M.Y. was supported by DEKOSIM grant BAP-08-11-DPT.2012K120880, financed by the Ministry of Development of Turkey. J.M.d.M. acknowledges funding from Universidad Nacional Costa Rica, the World Bank, and the Costa Rican Ley Transitorio 8933 used to acquire a laser carbon isotope system in collaboration with R. Sánchez-Murillo and G. Esquivel-Hernandez. M.N. produced the most data. We thank P. Barcala Dominguez for assistance with figure illustration. We thank B. Deck, M. Wahlen and K. Blackmon for analytical assistance at Scripps Institution of Oceanography. We thank B. Marty, G. Alvarado, M. Broadley, D. Byrne, D. Bekaert, J. Labidi and J. Wade for discussions about the project.

Reviewer information

Nature thanks Lorraine Ruzie and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

P.H.B. originally conceived the idea for the project, was lead Principal Investigator (PI) on the Sloan (Deep Carbon Observatory) grant that supported the work, and prepared the first draft of the manuscript. J.M.d.M., D.G. and K.G.L. were co-PIs on the grant and contributed (and equally) to modelling these data and to the writing process. M.S. contributed to modelling and writing. D. R. Hummer, T.L. and C.A.P. were co-PIs on the Sloan grant and contributed to the writing process. Noble gas analysis was conducted in the laboratory of C.J.B. at Oxford. DIC and DOC isotope analysis were conducted by M.N. in the ELSI laboratories (Japan). Gas compositional and C isotope analyses were conducted by J.M.d.M and T.I. in the UNA laboratories (Costa Rica). T.P.F. and D. R. Hilton were the senior PIs who first brought P.H.B. and J.M.d.M. to Costa Rica as PhD students, and were instrumental in the conception of this project. In addition, a portion of the data reported in this contribution was generated from those early expeditions. All other authors (listed alphabetically) provided comments on the manuscript and either assisted in sample collection (as part of the ‘Biology Meets Subduction’ team or on previous expeditions) and/or analysed samples in their respective laboratories. This project was inspired by D. R. Hilton, who was a great mentor and friend.

Corresponding author

Correspondence to P. H. Barry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 CO2/3He versus δ13C for all samples collected, together with mixing lines between mantle (M), organic sediment (S) and carbonate (C) endmembers.

We argue that such mixing relationships cannot easily explain the water data, and that instead carbon isotope fractionation associated with calcite precipitation and chemolithoautotrophy introduces the observed δ13C variations.

Source data

Extended Data Fig. 2 Helium isotopes (3He/4He) versus X values.

The X values are air-normalized 4He/20Ne; considering solubility in water for fluid samples23. The majority of samples have high (>5) X values, indicating minimal air-contributions to samples.

Source data

Extended Data Fig. 3 Relationship between DC and DIC concentrations and δ13C.

Values for northern Costa Rica (a and b) are shown with blue symbols and central Costa Rica (c and d), with yellow symbols. Strong correlations allow prediction of DC concentrations and δ13C values for the sites for which DIC compositions are lacking. The slope of the concentration plots (y) is used to calculate the fraction of DIC and DOC in the sample suites.

Source data

Supplementary information

41586_2019_1131_MOESM1_ESM.xlsx

Supplementary Table Supplementary Table 1 – Sample collection information, as well as helium and carbon isotope data. X-values represent air-normalized 4He/20Ne values (considering solubility in water for fluid samples23), which are used to determine air-corrected 3He/4He values (RC/RA) of the samples24. CO2/3He is calculated using raw He-isotope values (R/RA).

41586_2019_1131_MOESM2_ESM.xlsx

Supplementary Table Supplementary Table 2 – Sample location information, cell counts and polycyclic aromatic hydrocarbon (PAH) data.

Supplementary Table Supplementary Table 3 – Flux calculations used in the text and to make Figure 4.

41586_2019_1131_MOESM4_ESM.xlsx

Supplementary Table Supplementary Table 4 – Water chemistry data, PhreeqC calculations and saturation index (SI) values.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barry, P.H., de Moor, J.M., Giovannelli, D. et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature 568, 487–492 (2019). https://doi.org/10.1038/s41586-019-1131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1131-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing