Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Robotic kidney transplantation

Abstract

Kidney transplantation is the best treatment option for patients with end-stage renal disease owing to improved survival and quality of life compared with dialysis. The surgical approach to kidney transplantation has been somewhat stagnant in the past 50 years, with the open approach being the only available option. In this scenario, evidence of reduced surgery-related morbidity after the introduction of robotics into several surgical fields has induced surgeons to consider robot-assisted kidney transplantation (RAKT) as an alternative approach to these fragile and immunocompromised patients. Since 2014, when the RAKT technique was standardized thanks to the pioneering collaboration between the Vattikuti Urology Institute and the Medanta hospital (Vattikuti Urology Institute-Medanta), several centres worldwide implemented RAKT programmes, providing interesting results regarding the safety and feasibility of this procedure. However, RAKT is still considered an alternative procedure to be offered mainly in the living donor setting, owing to various possible drawbacks such as prolonged rewarming time, demanding learning curve, and difficulties in carrying out this procedure in challenging scenarios (such as patients with obesity, severe atherosclerosis of the iliac vessels, deceased donor setting, or paediatric recipients). Nevertheless, the refinement of robotic platforms through the implementation of novel technologies as well as the encouraging results from multicentre collaborations under the umbrella of the European Association of Urology Robotic Urology Section are currently expanding the boundaries of RAKT, making this surgical procedure a real alternative to the open approach.

Key points

  • Kidney transplantation is the best treatment option for patients with end-stage renal disease owing to improved survival and quality of life compared with dialysis.

  • Robot-assisted kidney transplantation (RAKT) is emerging as an alternative minimally invasive approach to patients with end-stage renal disease.

  • RAKT has been implemented in several clinical scenarios, such as living and deceased donors, patients with obesity, paediatric recipients, and graft with multiple vessels.

  • Remaining barriers to the widespread adoption of this technique include a demanding learning curve, possible higher costs than the open approach, a shortage of trained surgeons and a lack of robotic platforms in kidney transplantation centres.

  • The introduction of 3D models and virtual reality simulation could enhance RAKT programmes worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trocar placement for robot-assisted kidney transplantation and surgical access through a Gibson incision for open kidney transplantation.
Fig. 2: Main surgical steps of robot-assisted kidney transplantation.
Fig. 3: Decision-making process for the selection of RAKT candidates from deceased donors.

Similar content being viewed by others

References

  1. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  2. de Vries, E. F., Los, J., de Wit, G. A. & Hakkaart-van Roijen, L. Patient, family and productivity costs of end-stage renal disease in the Netherlands; exposing non-healthcare related costs. BMC Nephrol. 22, 1–9 (2021).

    Article  Google Scholar 

  3. Wang, V., Vilme, H., Maciejewski, M. L. & Boulware, L. E. The economic burden of chronic kidney disease and end-stage renal disease. Semin. Nephrol. 36, 319–330 (2016).

    Article  PubMed  Google Scholar 

  4. Cabrera, V. J., Hansson, J., Kliger, A. S. & Finkelstein, F. O. Symptom management of the patient with CKD: the role of dialysis. Clin. J. Am. Soc. Nephrol. 12, 687–693 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hariharan, S., Israni, A. K. & Danovitch, G. Long-term survival after kidney transplantation. N. Engl. J. Med. 385, 729–743 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Merrill, J. P., Murray, J. E., Harrison, J. H. & Guild, W. R. Successful homotransplantation of the human kidney between identical twins. J. Am. Med. Assoc. 160, 277–282 (1956).

    Article  CAS  PubMed  Google Scholar 

  7. Lanfranco, A. R., Castellanos, A. E., Desai, J. P. & Meyers, W. C. Robotic surgery: a current perspective. Ann. Surg. 239, 14 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zahid, A. et al. Robotic surgery in comparison to the open and laparoscopic approaches in the field of urology: a systematic review. J. Robot. Surg. 17, 11–29 (2023).

    PubMed  Google Scholar 

  9. Marzi, V. L. et al. Robot-assisted kidney transplantation: is it getting ready for prime time? World J. Transpl. 12, 163–174 (2022).

    Article  ADS  Google Scholar 

  10. Gallioli, A., Rivas, J. G., Larcher, A. & Breda, A. Living donor robot-assisted kidney transplantation: a new standard of care? Curr. Urol. Rep. 22, 58 (2021).

    Article  PubMed  Google Scholar 

  11. Pecoraro, A. et al. Urologists and kidney transplantation: the first European census. Eur. Urol. 82, 336–337 (2022).

    Article  PubMed  Google Scholar 

  12. Musquera, M. et al. Robot-assisted kidney transplantation: update from the European Robotic Urology Section (ERUS) series. BJU Int. 127, 222–228 (2021).

    Article  PubMed  Google Scholar 

  13. Breda, A. et al. Robot-assisted kidney transplantation: the European experience. Eur. Urol. 73, 273–281 (2018).

    Article  PubMed  Google Scholar 

  14. Breda, A. et al. Robotic kidney transplantation: one year after the beginning. World J. Urol. 35, 1507–1515 (2017).

    Article  PubMed  Google Scholar 

  15. Tzvetanov, I. G. et al. Robotic kidney transplantation in the obese patient: 10-year experience from a single center. Am. J. Transpl. 20, 430–440 (2020).

    Article  Google Scholar 

  16. Rosales, A. et al. Laparoscopic kidney transplantation. Eur. Urol. 57, 164–167 (2010).

    Article  PubMed  Google Scholar 

  17. Modi, P. et al. Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation 95, 100–105 (2013).

    Article  PubMed  Google Scholar 

  18. Benedetti, E. & Shapiro, R. Laparoscopic kidney transplantation-novel or novelty? Am. J. Transpl. 11, 1121–1122 (2011).

    Article  CAS  Google Scholar 

  19. Menon, M. et al. Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1). Eur. Urol. 65, 1001–1009 (2014).

    Article  PubMed  Google Scholar 

  20. Menon, M. et al. Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a). Eur. Urol. 65, 991–1000 (2014).

    Article  PubMed  Google Scholar 

  21. Ahlawat, R. et al. Robotic kidney transplantation with regional hypothermia versus open kidney transplantation for patients with end stage renal disease: an ideal stage 2b study. J. Urol. 205, 595–602 (2021).

    Article  PubMed  Google Scholar 

  22. Hoznek, A. et al. Robotic assisted kidney transplantation: an initial experience. J. Urol. 167, 1604–1606 (2002).

    Article  PubMed  Google Scholar 

  23. Giulianotti, P. et al. Robotic transabdominal kidney transplantation in a morbidly obese patient. Am. J. Transpl. 10, 1478–1482 (2010).

    Article  CAS  Google Scholar 

  24. Oberholzer, J. et al. Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am. J. Transpl. 13, 721–728 (2013).

    Article  CAS  Google Scholar 

  25. Pennell, C. P. et al. Practical guide to the Idea, Development and Exploration stages of the IDEAL Framework and Recommendations. Br. J. Surg. 103, 607–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Rodríguez Faba, O. et al. European Association of Urology guidelines on renal transplantation: update 2018. Eur. Urol. Focus 4, 208–215 (2018).

    Article  PubMed  Google Scholar 

  27. Merseburger, A. S. et al. EAU guidelines on robotic and single-site surgery in urology. Eur. Urol. 64, 277–291 (2013).

    Article  PubMed  Google Scholar 

  28. Queiroz, V. N. F. et al. Ventilation and outcomes following robotic-assisted abdominal surgery: an international, multicentre observational study. Br. J. Anaesth. 126, 533–543 (2021).

    Article  Google Scholar 

  29. Hazebroek, E. J. et al. Long-term impact of pneumoperitoneum used for laparoscopic donor nephrectomy on renal function and histomorphology in donor and recipient rats. Ann. Surg. 237, 351–357 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Piana, A. et al. Three-dimensional augmented reality-guided robotic-assisted kidney transplantation: breaking the limit of atheromatic plaques. Eur. Urol. 82, 419–426 (2022).

    Article  PubMed  Google Scholar 

  31. Campi, R. et al. Robotic versus open kidney transplantation from deceased donors: a prospective observational study. Eur. Urol. Open. Sci. 39, 36–46 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Peris, A. et al. Implementing a donation after circulatory death program in a setting of donation after brain death activity. Minerva Anestesiol. 84, 1387–1392 (2018).

    Article  PubMed  Google Scholar 

  33. The European Association of Urology. European Textbook on Kidney Transplantation https://www.researchgate.net/profile/SohrabArora/publication/332706188_Robotic_Kidney_Transplantation/links/5cc4fbee92851c8d220992a0/Robotic-Kidney-Transplantation.pdf (EAU, 2017).

  34. Siena, G. et al. Robot-assisted kidney transplantation with regional hypothermia using grafts with multiple vessels after extracorporeal vascular reconstruction: results from the European Association of Urology Robotic Urology Section Working Group. Eur. Urol. Focus. 4, 175–184 (2018).

    Article  PubMed  Google Scholar 

  35. Vignolini, G. et al. The University of Florence technique for robot-assisted kidney transplantation: 3-year experience. Front. Surg. 7, 583798 (2020).

  36. Spinoit, A. F. et al. Single-setting robot-assisted kidney transplantation consecutive to single-port laparoscopic nephrectomy in a child and robot-assisted living-related donor nephrectomy: initial Ghent experience. J. Pediatr. Urol. 15, 578–579 (2019).

    Article  PubMed  Google Scholar 

  37. Doumerc, N., Roumiguié, M., Rischmann, P. & Sallusto, F. Totally robotic approach with transvaginal insertion for kidney transplantation. Eur. Urol. 68, 1103–1104 (2015).

    Article  PubMed  Google Scholar 

  38. Vignolini, G. et al. Intraoperative assessment of ureteral and graft reperfusion during robotic kidney transplantation with indocyanine green fluorescence videography. Minerva Urol. Nefrol. 71, 79–84 (2019).

    Article  PubMed  Google Scholar 

  39. Basile, G. et al. Comparison between near-infrared fluorescence imaging with indocyanine green and infrared imaging: on-bench trial for kidney perfusion analysis. A project of the ESUT-YAUWP group. Minerva Urol. Nefrol. 71, 280–285 (2019).

    Article  PubMed  Google Scholar 

  40. Veneziano, D. et al. Preliminary evaluation of infrared imaging for real-time graft reperfusion assessment during kidney transplant: an ESUT-YAUWP project. Minerva Urol. Nephrol. 75, 126–129 (2023).

    Article  PubMed  Google Scholar 

  41. Alberts, V. P., Idu, M. M., Legemate, D. A., Laguna Pes, M. P. & Minnee, R. C. Ureterovesical anastomotic techniques for kidney transplantation: a systematic review and meta-analysis. Transpl. Int. 27, 593–605 (2014).

    Article  PubMed  Google Scholar 

  42. Campi, R. et al. Robotic kidney transplantation allows safe access for transplant renal biopsy and percutaneous procedures. Transpl. Int. 32, 1333–1335 (2019).

    Article  PubMed  Google Scholar 

  43. Boggi, U. et al. Robotic renal transplantation: first European case. Transpl. Int. 24, 213–218 (2011).

    Article  PubMed  Google Scholar 

  44. Breda, A. et al. Robotic-assisted kidney transplantation: our first case. World J. Urol. 34, 443–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Territo, A. et al. European experience of robot-assisted kidney transplantation: minimum of 1-year follow-up. BJU Int. 122, 255–262 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Ganpule, A. et al. Robotic-assisted kidney transplant: a single center experience with median follow-up of 2.8 years. World J. Urol. 38, 2651–2660 (2020).

    Article  PubMed  Google Scholar 

  47. Patil, A. et al. Robot-assisted versus conventional open kidney transplantation: a propensity matched comparison with median follow-up of 5 years. Am. J. Clin. Exp. Urol. 11, 168 (2023).

    PubMed  PubMed Central  Google Scholar 

  48. Garcia-Roca, R. et al. Single center experience with robotic kidney transplantation for recipients with BMI of 40 kg/m2 or greater: a comparison with the UNOS registry. Transplantation 101, 191–196 (2017).

    Article  PubMed  Google Scholar 

  49. Kishore, T. A. et al. Robotic assisted kidney transplantation in grafts with multiple vessels: single center experience. Int. Urol. Nephrol. 52, 247–252 (2020).

    Article  PubMed  Google Scholar 

  50. Ekşi, M. et al. Can robot-assisted kidney transplantation provide higher quality of life than open kidney transplantation during the early postoperative period? Int. J. Clin. Pract. 75, e14288 (2021).

    Article  PubMed  Google Scholar 

  51. Karadag, S. et al. Comparison of open and robot-assisted kidney transplantation in terms of perioperative and postoperative outcomes. Int. J. Clin. Pract. 2022, 2663108 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tinney, F. et al. Robotic-assisted versus open technique for living donor kidney transplantation: a comparison using propensity score matching for intention to treat. Transpl. Direct 8, E1320 (2022).

    Article  Google Scholar 

  53. Territo, A. et al. Prospective comparative study of postoperative systemic inflammatory syndrome in robot-assisted vs. open kidney transplantation. World J. Urol. 40, 2153–2159 (2022).

    Article  PubMed  Google Scholar 

  54. Maheshwari, R. et al. Prospective nonrandomized comparison between open and robot-assisted kidney transplantation: analysis of midterm functional outcomes. J. Endourol. 34, 939–945 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Pein, U. et al. Minimally invasive robotic versus conventional open living donor kidney transplantation. World J. Urol. 38, 795–802 (2020).

    Article  PubMed  Google Scholar 

  56. Tuğcu, V. et al. Robot-assisted kidney transplantation: comparison of the first 40 cases of open vs robot-assisted transplantations by a single surgeon. BJU Int. 121, 275–280 (2018).

    Article  PubMed  Google Scholar 

  57. Liu, G., Deng, Y., Zhang, S., Lin, T. & Guo, H. Robot-assisted versus conventional open kidney transplantation: a meta-analysis. Biomed. Res. Int. 2020, 2358028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Madhavan, K., Jena, R., Bhargava, P., Pradhan, A. & Bhandari, M. Comparison of outcomes after open versus robotic kidney transplantation: a systematic review and meta-analysis. Indian. J. Urol. 39, 186 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Checcucci, E. et al. The metaverse in urology: ready for prime time. The ESUT, ERUS, EULIS, and ESU perspective. Eur. Urol. Open. Sci. 46, 96–98 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dell’Oglio, P. et al. Definition of a structured training curriculum for robot-assisted radical cystectomy with intracorporeal ileal conduit in male patients: a Delphi consensus study led by the ERUS educational board. Eur. Urol. Focus. 8, 160–164 (2022).

    Article  PubMed  Google Scholar 

  61. Larcher, A. et al. The ERUS curriculum for robot-assisted partial nephrectomy: structure definition and pilot clinical validation. Eur. Urol. 75, 1023–1031 (2019).

    Article  PubMed  Google Scholar 

  62. Campi, R. et al. The first entirely 3D-printed training model for robot-assisted kidney transplantation: the RAKT box. Eur. Urol. Open. Sci. 53, 98–105 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pecoraro, A. et al. The learning curve for open and minimally-invasive kidney transplantation: a systematic review. Minerva Urol. Nephrol. 74, 669–679 (2022).

    PubMed  Google Scholar 

  64. Sood, A. et al. Application of the statistical process control method for prospective patient safety monitoring during the learning phase: robotic kidney transplantation with regional hypothermia (IDEAL phase 2a-b). Eur. Urol. 66, 371–378 (2014).

    Article  PubMed  Google Scholar 

  65. Bansal, D., Chaturvedi, S., Maheshwari, R., Bansal, A. & Kumar, A. Establishing a robot-assisted kidney transplant program: independent evaluation of the learning curve and surgical nuances. J. Endourol. 35, 1650–1658 (2021).

    Article  PubMed  Google Scholar 

  66. Gallioli, A. et al. Learning curve in robot-assisted kidney transplantation: results from the European Robotic Urological Society Working Group. Eur. Urol. 78, 239–247 (2020).

    Article  PubMed  Google Scholar 

  67. Ahlawat, R. K. et al. Learning curves and timing of surgical trials: robotic kidney transplantation with regional hypothermia. J. Endourol. 32, 1160–1165 (2018).

    Article  PubMed  Google Scholar 

  68. Collins, J. W. et al. Utilising the Delphi process to develop a proficiency-based progression train-the-trainer course for robotic surgery training. Eur. Urol. 75, 775–785 (2019).

    Article  PubMed  Google Scholar 

  69. Mazzone, E. et al. A systematic review and meta-analysis on the impact of proficiency-based progression simulation training on performance outcomes. Ann. Surg. 274, 281–289 (2021).

    Article  PubMed  Google Scholar 

  70. Tiong, H. Y., Goh, B. Y. S., Chiong, E., Tan, L. G. L. & Vathsala, A. Robotic kidney autotransplantation in a porcine model: a procedure-specific training platform for the simulation of robotic intracorporeal vascular anastomosis. J. Robot. Surg. 12, 693–698 (2018).

    Article  PubMed  Google Scholar 

  71. Denizet, G., Calame, P., Lihoreau, T., Kleinclauss, F. & Aubry, S. 3D multi-tissue printing for kidney transplantation. Quant. Imaging Med. Surg. 9, 101–106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Saba, P. et al. Development of a high-fidelity robot-assisted kidney transplant simulation platform using three-dimensional printing and hydrogel casting technologies. J. Endourol. 34, 1088–1094 (2020).

    Article  PubMed  Google Scholar 

  73. Grammens, J. et al. Pediatric challenges in robot-assisted kidney transplantation. Front. Surg. 8, 649418 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bansal, A., Maheshwari, R., Chaturvedi, S., Bansal, D. & Kumar, A. Comparative analysis of outcomes and long-term follow-up of robot-assisted pediatric kidney transplantation, with open counterpart. Pediatr. Transpl. 25, (2021).

  75. Casale, P. Laparoscopic and robotic approach to genitourinary anomalies in children. Urol. Clin. North. Am. 37, 279–286 (2010).

    Article  PubMed  Google Scholar 

  76. Segev, D. L. et al. Obesity impacts access to kidney transplantation. J. Am. Soc. Nephrol. 19, 349–355 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lynch, R. J. et al. Obesity, surgical site infection, and outcome following renal transplantation. Ann. Surg. 250, 1014–1020 (2009).

    Article  PubMed  Google Scholar 

  78. Spaggiari, M. et al. Robotic kidney transplantation from deceased donors: a single-center experience. Am. J. Transpl. 23, 642–648 (2023).

    Article  Google Scholar 

  79. Huang, E. & Bunnapradist, S. Pre-transplant weight loss and survival after kidney transplantation. Am. J. Nephrol. 41, 448–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Prudhomme, T. et al. Robotic-assisted kidney transplantation in obese recipients compared to non-obese recipients: the European experience. World J. Urol. 39, 1287–1298 (2021).

    Article  PubMed  Google Scholar 

  81. Orandi, B. J. et al. Obesity as an isolated contraindication to kidney transplantation in the end-stage renal disease population: a cohort study. Obesity 29, 1538–1546 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Spaggiari, M. et al. Minimally invasive, robot-assisted procedure for kidney transplantation among morbidly obese: positive outcomes at 5 years post-transplant. Clin. Transplant. 32, e13404 (2018).

    Article  PubMed  Google Scholar 

  83. Lee, S. D. et al. Robot-assisted kidney transplantation is a safe alternative approach for morbidly obese patients with end-stage renal disease. Int. J. Med. Robot. 17, e2293 (2021).

    Article  PubMed  Google Scholar 

  84. Spaggiari, M. et al. Simultaneous robotic kidney transplantation and bariatric surgery for morbidly obese patients with end-stage renal failure. Am. J. Transpl. 21, 1525–1534 (2021).

    Article  CAS  Google Scholar 

  85. Vignolini, G. et al. Development of a robot-assisted kidney transplantation programme from deceased donors in a referral academic centre: technical nuances and preliminary results. BJU Int. 123, 474–484 (2019).

    Article  PubMed  Google Scholar 

  86. Vignolini, G. et al. Robotic kidney transplantation from a brain-dead deceased donor in a patient with autosomal dominant polycystic kidney disease: first case report. J. Endourol. Case Rep. 4, 124–128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Klatte, T. et al. A Literature review of renal surgical anatomy and surgical strategies for partial nephrectomy. Eur. Urol. 68, 980–992 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Partin, A. W., Peters, C. A., Kavoussi, L. R., Dmochowski, R. R. & Wein, A. J. Campbell-Walsh-Wein Urology, Twelfth Ed. 4096 (2021).

  89. Nataraj, S. A., Zafar, F. A., Ghosh, P. & Ahlawat, R. Feasibility and functional outcome of robotic assisted kidney transplantation using grafts with multiple vessels: comparison to propensity matched contemporary open kidney transplants cohort. Front. Surg. 7, 51 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wotkowicz, C. & Libertino, J. A. Renal autotransplantation. BJU Int. 93, 253–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Gordon, Z. N., Angell, J. & Abaza, R. Completely intracorporeal robotic renal autotransplantation. J. Urol. 192, 1516–1522 (2014).

    Article  PubMed  Google Scholar 

  92. Alameddine, M. et al. Kidney autotransplantation: between the past and the future. Curr. Urol. Rep. 19, 7 (2018).

  93. Hardy, J. D. High ureteral injuries. Management by autotransplantation of the kidney. JAMA 184, 97–101 (1963).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, J. Y., Alzahrani, T. & Ordon, M. Intra-corporeal robotic renal auto-transplantation. Can. Urol. Assoc. J. 9, E748–E749 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sood, A. et al. Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes. Transplantation 99, 316–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Araki, M. et al. Robotic renal autotransplantation: first case outside of North America. Acta Med. Okayama 71, 351–355 (2017).

    PubMed  Google Scholar 

  97. Decaestecker, K. et al. Robot-assisted kidney autotransplantation: a minimally invasive way to salvage kidneys. Eur. Urol. Focus. 4, 198–205 (2018).

    Article  PubMed  Google Scholar 

  98. Breda, A. et al. Intracorporeal versus extracorporeal robot-assisted kidney autotransplantation: experience of the ERUS RAKT working group. Eur. Urol. 81, 168–175 (2022).

    Article  PubMed  Google Scholar 

  99. Vigués, F. et al. Orthotopic robot-assisted kidney transplantation: first case report. World J. Urol. 39, 2811–2813 (2021).

    Article  PubMed  Google Scholar 

  100. Serni, S. et al. Robot-assisted laparoscopic living donor nephrectomy: the University of Florence technique. Front. Surg. 7, 588215 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Territo, A. et al. Step-by-step development of a cold ischemia device for open and robotic-assisted renal transplantation. Eur. Urol. 80, 738–745 (2021).

    Article  PubMed  Google Scholar 

  102. Garisto, J. et al. Single port robot-assisted transperitoneal kidney transplant using the SP® surgical system in a pre-clinical model. Int. Braz. J. Urol. 46, 680–681 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Eltemamy, M., Garisto, J., Miller, E., Wee, A. & Kaouk, J. Single port robotic extra-peritoneal dual kidney transplantation: initial preclinical experience and description of the technique. Urology 134, 232–236 (2019).

    Article  PubMed  Google Scholar 

  104. Kaouk, J. et al. Initial experience with single-port robotic-assisted kidney transplantation and autotransplantation. Eur. Urol. 80, 366–373 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Kaouk, J. et al. Single port robotic kidney autotransplantation: initial case series and description of technique. Urology 176, 87–93 (2023).

    Article  PubMed  Google Scholar 

  106. Meier, R. P. H. et al. Intra-abdominal cooling system limits ischemia-reperfusion injury during robot-assisted renal transplantation. Am. J. Transpl. 18, 53–62 (2018).

    Article  CAS  Google Scholar 

  107. Fan, Y. et al. Robot-assisted kidney transplantation: initial experience with a modified hypothermia technique. Urol. Int. 106, 504–511 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Checcucci, E. et al. 3D imaging applications for robotic urologic surgery: an ESUT YAUWP review. World J. Urol. 38, 869–881 (2020).

    Article  PubMed  Google Scholar 

  109. Checcucci, E. et al. Metaverse surgical planning with three-dimensional virtual models for minimally invasive partial nephrectomy. Eur. Urol. https://doi.org/10.1016/J.EURURO.2023.07.015 (2023).

  110. Porpiglia, F. et al. Current use of three-dimensional model technology in urology: a road map for personalised surgical planning. Eur. Urol. Focus. 4, 652–656 (2018).

    Article  PubMed  Google Scholar 

  111. Song, C., Cheng, L., Li, Y., Kreaden, U. & Snyder, S. R. Systematic literature review of cost-effectiveness analyses of robotic-assisted radical prostatectomy for localised prostate cancer. BMJ Open 12, e058394 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Labban, M. et al. Cost-effectiveness of robotic-assisted radical prostatectomy for localized prostate cancer in the UK. JAMA Netw. Open. 5, e225740–e225740 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Bravo, G.B., A.P., A.G., J.R. and A. Breda, researched data for the article. A. Bravo, G.B., A.P., A.G., A.T., C.B., J.H., O.R.F., P.G., C.F., L.G., J.M.G. and J.P. contributed substantially to discussion of the content. A. Bravo, G.B., A.P. and A.G. wrote the article. A. Bravo, G.B., A.P. and A.G. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alberto Breda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Amit Sharma; Jeff Veale, who co-reviewed with Michael Chen; and Mani Menon, who co-reviewed with Akshay Sood, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basile, G., Pecoraro, A., Gallioli, A. et al. Robotic kidney transplantation. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-024-00865-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-024-00865-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing