Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

Clinical application of bladder MRI and the Vesical Imaging-Reporting And Data System

Abstract

Diagnostic work-up and risk stratification in patients with bladder cancer before and after treatment must be refined to optimize management and improve outcomes. MRI has been suggested as a non-invasive technique for bladder cancer staging and assessment of response to systemic therapy. The Vesical Imaging-Reporting And Data System (VI-RADS) was developed to standardize bladder MRI image acquisition, interpretation and reporting and enables accurate prediction of muscle-wall invasion of bladder cancer. MRI is available in many centres but is not yet recommended as a first-line test for bladder cancer owing to a lack of high-quality evidence. Consensus-based evidence on the use of MRI-VI-RADS for bladder cancer care is needed to serve as a benchmark for formulating guidelines and research agendas until further evidence from randomized trials becomes available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barentsz, J. O., Jager, G. J., Witjes, J. A. & Ruijs, J. H. J. Primary staging of urinary bladder carcinoma: the role of MRI and a comparison with CT. Eur. Radiol. 6, 129–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Barentsz, J. O. et al. Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 207, 791–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Barentsz, J. O. et al. Staging urinary bladder cancer after transurethral biopsy: value of fast dynamic contrast-enhanced MR imaging. Radiology 201, 185–193 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Barentsz, J. O., Ruijs, S. H. & Strijk, S. P. The role of MR imaging in carcinoma of the urinary bladder. Am. J. Roentgenol. 160, 937–947 (1993).

    Article  CAS  Google Scholar 

  5. Fisher, M. R., Hricak, H. & Tanagho, E. A. Urinary bladder MR imaging. Part II. Neoplasm. Radiology 157, 471–477 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Verma, S. et al. Urinary bladder cancer: role of MR imaging. RadioGraphics 32, 371–387 (2012).

    Article  PubMed  Google Scholar 

  7. Panebianco, V. et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur. Urol. 74, 294–306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weinreb, J. C. et al. PI-RADS prostate imaging — reporting and data system: 2015, version 2. Eur. Urol. 69, 16–40 (2016).

    Article  PubMed  Google Scholar 

  10. Turkbey, B. et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur. Urol. 76, 340–351 (2019).

    Article  PubMed  Google Scholar 

  11. Jazayeri, S. B. et al. Inter-reader reliability of the vesical imaging-reporting and data system (VI-RADS) for muscle-invasive bladder cancer: a systematic review and meta-analysis. Abdom. Radiol. 47, 4173–4185 (2022).

    Article  Google Scholar 

  12. Luo, C., Huang, B., Wu, Y., Chen, J. & Chen, L. Use of vesical imaging-reporting and data system (VI-RADS) for detecting the muscle invasion of bladder cancer: a diagnostic meta-analysis. Eur. Radiol. 30, 4606–4614 (2020).

    Article  PubMed  Google Scholar 

  13. Del Giudice, F. et al. The accuracy of vesical imaging-reporting and data system (VI-RADS): an updated comprehensive multi-institutional, multi-readers systematic review and meta-analysis from diagnostic evidence into future clinical recommendations. World J. Urol. 40, 1617–1628 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Feng, Y., Zhong, K., Chen, R. & Zhou, W. Diagnostic accuracy of vesical imaging-reporting and data system (VI-RADS) for the detection of muscle-invasive bladder cancer: a meta-analysis. Abdom. Radiol. 47, 1396–1405 (2022).

    Article  Google Scholar 

  15. Jazayeri, S. B. et al. Diagnostic accuracy of vesical imaging-reporting and data system (VI-RADS) in suspected muscle invasive bladder cancer: a systematic review and diagnostic meta-analysis. Urol. Oncol. 40, 45–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Del Giudice, F. et al. Systematic review and meta-analysis of vesical imaging-reporting and data system (VI-RADS) inter-observer reliability: an added value for muscle invasive bladder cancer detection. Cancers 12, 2994 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Woo, S. et al. Diagnostic performance of vesical imaging reporting and data system for the prediction of muscle-invasive bladder cancer: a systematic review and meta-analysis. Eur. Urol. Oncol. 3, 306–315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Messina, E. et al. Seeing is believing: state of the art imaging of bladder cancer. Semin. Radiat. Oncol. 33, 12–20 (2023).

    Article  PubMed  Google Scholar 

  19. Panebianco, V. et al. VI-RADS for bladder cancer: current applications and future developments. J. Magn. Reson. Imaging 55, 23–36 (2022).

    Article  PubMed  Google Scholar 

  20. Del Giudice, F. et al. Prospective assessment of vesical imaging reporting and data system (VI-RADS) and its clinical impact on the management of high-risk non–muscle-invasive bladder cancer patients candidate for repeated transurethral resection. Eur. Urol. 77, 101–109 (2020).

    Article  PubMed  Google Scholar 

  21. Cao, B. et al. Preliminary exploration of the application of vesical imaging reporting and data system (VI‐RADS) in post‐treatment patients with bladder cancer: a prospective single‐center study. Magn. Reson. Imaging 55, 275–286 (2022).

    Article  Google Scholar 

  22. Del Giudice, F. et al. Preoperative detection of VI-RADS (Vesical Imaging-Reporting and Data System) score 5 reliably identifies extravesical extension of urothelial carcinoma of the urinary bladder and predicts significant delayed time-to-cystectomy: time to reconsider the nee. BJU Int. 126, 610–619 (2020).

    Article  PubMed  Google Scholar 

  23. Kimura, K. et al. Novel utility of vesical imaging-reporting and data system in multimodal treatment for muscle-invasive bladder cancer. Eur. Radiol. 33, 6245–6255 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, X. et al. Muscle-invasive bladder cancer: pretreatment prediction of response to neoadjuvant chemotherapy with diffusion-weighted MR imaging. Abdom. Radiol. 47, 2148–2157 (2022).

    Article  Google Scholar 

  25. Pecoraro, M. et al. Vesical imaging-reporting and data system (VI-RADS) for assessment of response to systemic therapy for bladder cancer: preliminary report. Abdom. Radiol. 47, 763–770 (2022).

    Article  Google Scholar 

  26. Witjes, A. et al. EAU guidelines on muscle-invasive and metastatic bladder cancer. uroweb https://uroweb.org/guidelines/muscle-invasive-and-metastatic-bladder-cancer (2023).

  27. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Whiting, P. F. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155, 529 (2011).

    Article  PubMed  Google Scholar 

  29. Trevelyan, E. G. & Robinson, P. N. Delphi methodology in health research: how to do it? Eur. J. Integr. Med. 7, 423–428 (2015).

    Article  Google Scholar 

  30. Yeh, J. S., Van Hoof, T. J. & Fischer, M. A. Key features of academic detailing: development of an expert consensus using the Delphi method. Am. Health Drug. Benefits 9, 42–50 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Wang, H. et al. Multiparametric MRI for bladder cancer: validation of VI-RADS for the detection of detrusor muscle invasion. Radiology 291, 668–674 (2019).

    Article  PubMed  Google Scholar 

  32. Kim, S. H. Validation of vesical imaging reporting and data system for assessing muscle invasion in bladder tumor. Abdom. Radiol. 45, 491–498 (2019).

    Article  Google Scholar 

  33. Liu, S. et al. Evaluation of vesical imaging-reporting and data system (VI-RADS) scoring system in predicting muscle invasion of bladder cancer. Transl. Androl. Urol. 9, 445–451 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang, Z. et al. Evaluation of the value of the VI-RADS scoring system in assessing muscle infiltration by bladder cancer. Cancer Imaging 20, 26 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang, X. et al. Detecting muscle invasion of bladder cancer using a proposed magnetic resonance imaging strategy. J. Magn. Reson. Imaging 54, 1212–1221 (2021).

    Article  PubMed  Google Scholar 

  36. Arita, Y. et al. Diagnostic value of the vesical imaging-reporting and data system in bladder urothelial carcinoma with variant histology. Eur. Urol. Oncol. S2588-9311, 00136–5 (2022).

    Google Scholar 

  37. Noh, T. I. et al. Comparison between biparametric and multiparametric MRI in predicting muscle invasion by bladder cancer based on the VI-RADS. Sci. Rep. 12, 20689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Makboul, M., Farghaly, S. & Abdelkawi, I. F. Multiparametric MRI in differentiation between muscle invasive and non-muscle invasive urinary bladder cancer with vesical imaging reporting and data system (VI-RADS) application. Br J Radiol 92, 20190401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Taguchi, S. et al. Prospective validation of vesical imaging-reporting and data system using a next-generation magnetic resonance imaging scanner-is denoising deep learning reconstruction useful? J. Urol. 205, 686–692 (2021).

    Article  PubMed  Google Scholar 

  40. Akcay, A. et al. VI-RADS score and tumor contact length in MRI: a potential method for the detection of muscle invasion in bladder cancer. Clin. Imaging 77, 25–36 (2021).

    Article  PubMed  Google Scholar 

  41. Metwally, M. I. et al. The validity, reliability, and reviewer acceptance of VI-RADS in assessing muscle invasion by bladder cancer: a multicenter prospective study. Eur. Radiol. 31, 6949–6961 (2021).

    Article  PubMed  Google Scholar 

  42. Erkoc, M. et al. The efficacy and reliability of VI-RADS in determining candidates for repeated transurethral resection in patients with high-risk non-muscle invasive bladder cancer. Int. J. Clin. Pract. 75, e14584 (2021).

    Article  PubMed  Google Scholar 

  43. Ghanshyam, K. et al. Validation of vesical imaging reporting and data system score for the diagnosis of muscle-invasive bladder cancer: a prospective cross-sectional study. Asian J. Urol. 9, 467–472 (2022).

    Article  PubMed  Google Scholar 

  44. Aslan, S., Cakir, I. M., Oguz, U., Bekci, T. & Demirelli, E. Comparison of the diagnostic accuracy and validity of biparametric MRI and multiparametric MRI-based VI-RADS scoring in bladder cancer; is contrast material really necessary in detecting muscle invasion? Abdom. Radiol. 47, 771–780 (2022).

    Article  Google Scholar 

  45. Bicchetti, M. et al. A novel pathway to detect muscle-invasive bladder cancer based on integrated clinical features and VI-RADS score on MRI: results of a prospective multicenter study. Radiol. Med. 127, 881–890 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oğuz, U. et al. Prospective assessment of VI-RADS score in multiparametric MRI in bladder cancer: accuracy and the factors affecting the results. Diagn. Interv. Radiol. 28, 396–402 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bryan, R. T. et al. Comparing an imaging-guided pathway with the standard pathway for staging muscle-invasive bladder cancer: preliminary data from the BladderPath study. Eur. Urol. 80, 12–15 (2021).

    Article  PubMed  Google Scholar 

  48. Yang, X. et al. Quantitative multiparametric MRI as a promising tool for the assessment of early response to neoadjuvant chemotherapy in bladder cancer. Eur. J. Radiol. 157, 110587 (2022).

    Article  PubMed  Google Scholar 

  49. Ahmed, S. A., Taher, M. G. A., Ali, W. A. & Ebrahem, M. A. E. S. Diagnostic performance of contrast-enhanced dynamic and diffusion-weighted MR imaging in the assessment of tumor response to neoadjuvant therapy in muscle-invasive bladder cancer. Abdom. Radiol. 46, 2712–2721 (2021).

    Article  Google Scholar 

  50. Nguyen, H. T. et al. Prediction of chemotherapeutic response in bladder cancer using K-means clustering of dynamic contrast-enhanced (DCE)-MRI pharmacokinetic parameters: chemotherapeutic response in bladder cancer. J. Magn. Reson. Imaging 41, 1374–1382 (2015).

    Article  PubMed  Google Scholar 

  51. Choueiri, T. K. et al. Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J Clin Oncol 32, 1889–1894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Donaldson, S. B. et al. Dynamic contrast-enhanced MRI in patients with muscle-invasive transitional cell carcinoma of the bladder can distinguish between residual tumour and post-chemotherapy effect. Eur. J. Radiol. 82, 2161–2168 (2013).

    Article  PubMed  Google Scholar 

  53. Ph. Schrier, B., Peters, M., Barentsz, J. O. & Witjes, J. A. Evaluation of chemotherapy with magnetic resonance imaging in patients with regionally metastatic or unresectable bladder cancer. Eur. Urol. 49, 698–703 (2006).

    Article  PubMed  Google Scholar 

  54. Hafeez, S. et al. Assessing bladder radiotherapy response with quantitative diffusion-weighted magnetic resonance imaging analysis. Clin. Oncol. 34, 630–641 (2022).

    Article  CAS  Google Scholar 

  55. Yoshida, S. et al. Initial experience of diffusion-weighted magnetic resonance imaging to assess therapeutic response to induction chemoradiotherapy against muscle-invasive bladder cancer. Urology 75, 387–391 (2010).

    Article  PubMed  Google Scholar 

  56. Choudhury, A. et al. Phase II study of conformal hypofractionated radiotherapy with concurrent gemcitabine in muscle-invasive bladder cancer. J. Clin. Oncol. 29, 733–738 (2011).

    Article  PubMed  Google Scholar 

  57. Bandini, M. et al. The value of multiparametric magnetic resonance imaging sequences to assist in the decision making of muscle-invasive bladder cancer. Eur. Urol. Oncol. 4, 829–833 (2020).

    Article  PubMed  Google Scholar 

  58. Proietti, S. Introducing the EAU Equality, Diversity, Inclusion Taskforce. uroweb https://uroweb.org/news/eau-launches-equality-diversity-inclusion-taskforce (2022).

  59. Kufukihara, R. et al. Diagnostic performance of the vesical imaging-reporting and data system for detecting muscle-invasive bladder cancer in real clinical settings: comparison with diagnostic cystoscopy. Urol. Oncol. 40, 61.e1–61.e8 (2022).

    Article  PubMed  Google Scholar 

  60. University of Birmingham. UOB BladderPath: Image Directed Redesign of Bladder Cancer Treatment Pathway. University of Birmingham https://www.birmingham.ac.uk/research/crctu/trials/bladder-path/index.aspx (2023).

  61. Murali, S. et al. Bringing MRI to low‐ and middle‐income countries: directions, challenges and potential solutions. NMR Biomed. https://doi.org/10.1002/nbm.4992 (2023).

  62. da Silva, M. C. et al. The learning curve in bladder MRI using VI-RADS assessment score during an interactive dedicated training program. Eur. Radiol. 32, 7494–7503 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bryan, R. T. et al. Reply to Trey Durdin, Alvin Goh, and Eugene Pietzak. Can an imaging-guided pathway replace the current paradigm for muscle-invasive bladder cancer? Eur. Urol. 80, 18–19 (2021).

    Article  PubMed  Google Scholar 

  64. Nguyen, H. T. et al. Quantitative assessment of heterogeneity in bladder tumor MRI diffusivity: can response be predicted prior to neoadjuvant chemotherapy? Bladder Cancer 3, 237–244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. V.P., A.B., M.P., D.S., J.B. and J.A.W. contributed substantially to discussion of the content. V.B. and M.P. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Valeria Panebianco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Sima Porten, Joseph Liao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panebianco, V., Briganti, A., Boellaard, T.N. et al. Clinical application of bladder MRI and the Vesical Imaging-Reporting And Data System. Nat Rev Urol 21, 243–251 (2024). https://doi.org/10.1038/s41585-023-00830-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-023-00830-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer