Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers of disease recurrence in stage I testicular germ cell tumours

Abstract

Stage I testicular cancer is a disease restricted to the testicle. After orchiectomy, patients are considered to be without disease; however, the tumour is prone to relapse in ~4–50% of patients. Current predictive markers of relapse, which are tumour size and invasion to rete testis (in seminoma) or lymphovascular invasion (in non-seminoma), have limited clinical utility and are unable to correctly predict relapse in a substantial proportion of patients. Adjuvant therapeutic strategies based on available biomarkers can lead to overtreatment of 50–85% of patients. Discovery and implementation of novel biomarkers into treatment decision making will help to reduce the burden of adjuvant treatments and improve patient selection for adjuvant therapy.

Key points

  • Relapse in clinical stage I germ cell tumour (CSI GCT) occurs in ~4–50% of patients after orchiectomy.

  • Currently available adjuvant treatment approaches to GCT lead to overtreatment in >50% of patients depending on the histology subtype as well as on the prevalence of risk factors.

  • Current predictive factors of relapse are lymphovascular invasion (for patients with non-seminoma GCT) and rete testis invasion and primary tumour size (for patients with seminoma GCT); however, these markers have a limited role in treatment decision making.

  • MicroRNA 371a-3p is a new diagnostic biomarker that showed the ability to detect tumour relapse earlier than radiological methods and could, therefore, be used to diagnose micrometastatic disease.

  • New biomarkers are urgently needed to improve patient stratification and reduce overtreatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental biomarkers in stage I germ cell tumour.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article  PubMed  Google Scholar 

  2. Amin, M. B., et al. AJCC Cancer Staging Manual (Springer, 2017).

  3. Kamran, S. C. et al. A review of clinical stage 1 testicular cancer mortality in a high-volume center. J. Clin. Oncol. 33, 390–390 (2015).

    Article  Google Scholar 

  4. Dong, W., Gang, W., Liu, M. & Zhang, H. Analysis of the prognosis of patients with testicular seminoma. Oncol. Lett. 11, 1361–1366 (2016).

    Article  PubMed  Google Scholar 

  5. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    Article  PubMed  Google Scholar 

  6. Skakkebaek, N. E. Possible carcinoma-in-situ of the testis. Lancet 2, 516–517 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. Looijenga, L. H. Testicular germ cell tumors. Pediatr. Endocrinol. Rev. 11 (Suppl. 2), 251–262 (2014).

    PubMed  Google Scholar 

  8. Yamashita, S. et al. Trends in age and histology of testicular cancer from 1980–2019: a single-center study. Tohoku J. Exp. Med. 252, 219–224 (2020).

    Article  PubMed  Google Scholar 

  9. Dieckmann, K. P. et al. Testicular germ-cell tumours: a descriptive analysis of clinical characteristics at first presentation. Urol. Int. 100, 409–419 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Rothermundt, C. et al. Baseline characteristics and patterns of care in testicular cancer patients: first data from the Swiss Austrian German Testicular Cancer Cohort Study (SAG TCCS). Swiss Med. Wkly. 148, w14640 (2018).

    PubMed  Google Scholar 

  11. Arturo Enrique, M. G., Joel, J. A., Luis Eduardo, S. S., Arturo, D. H. & Laura Denisse, R. G. Embryonal carcinoma metastasis from pure testicular teratoma mimicking a complex renal cyst. Urol. Case Rep. 34, 101481 (2021).

    Article  PubMed  Google Scholar 

  12. Vugrin, D., Chen, A., Feigl, P. & Laszlo, J. Embryonal carcinoma of the testis. Cancer 61, 2348–2352 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Talerman, A., Haije, W. G. & Baggerman, L. Serum alphafetoprotein (AFP) in patients with germ cell tumors of the gonads and extragonadal sites: correlation between endodermal sinus (yolk sac) tumor and raised serum AFP. Cancer 46, 380–385 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Howitt, B. E. & Berney, D. M. Tumors of the testis: morphologic features and molecular alterations. Surg. Pathol. Clin. 8, 687–716 (2015).

    Article  PubMed  Google Scholar 

  15. Hedinger, C., von Hochstetter, A. R. & Egloff, B. Seminoma with syncytiotrophoblastic giant cells. A special form of seminoma. Virchows Arch. A Pathol. Anat. Histol. 383, 59–67 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. Niehans, G. A., Manivel, J. C., Copland, G. T., Scheithauer, B. W. & Wick, M. R. Immunohistochemistry of germ cell and trophoblastic neoplasms. Cancer 62, 1113–1123 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Khan, S., Jetley, S., Pujani, M. & Neogi, S. Pure yolk sac tumor of testis in an adult: a rare occurrence. J. Postgrad. Med. 60, 351–353 (2014).

    CAS  PubMed  Google Scholar 

  18. Kattuoa, M. & Kumar, A. in StatPearls (2021).

  19. Schmoll, H. J. et al. European consensus on diagnosis and treatment of germ cell cancer: a report of the European Germ Cell Cancer Consensus Group (EGCCCG). Ann. Oncol. 15, 1377–1399 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Alvarado-Cabrero, I., Hernandez-Toriz, N. & Paner, G. P. Clinicopathologic analysis of choriocarcinoma as a pure or predominant component of germ cell tumor of the testis. Am. J. Surg. Pathol. 38, 111–118 (2014).

    Article  PubMed  Google Scholar 

  21. Simmonds, P. D. et al. Primary pure teratoma of the testis. J. Urol. 155, 939–942 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Stevens, M. J. et al. Prognosis of testicular teratoma differentiated. Br. J. Urol. 73, 701–706 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Ueno, T. et al. Spectrum of germ cell tumors: from head to toe. Radiographics 24, 387–404 (2004).

    Article  PubMed  Google Scholar 

  24. Taza, F. et al. Prognostic value of teratoma in primary tumor and postchemotherapy retroperitoneal lymph node dissection specimens in patients with metastatic germ cell tumor. J. Clin. Oncol. 38, 1338–1345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carver, B. S., Al-Ahmadie, H. & Sheinfeld, J. Adult and pediatric testicular teratoma. Urol. Clin. North. Am. 34, 245–251 (2007).

    Article  PubMed  Google Scholar 

  26. Chakrabarti, P. R. et al. Histopathological trends of testicular neoplasm: an experience over a decade in a tertiary care centre in the Malwa belt of Central India. J. Clin. Diagn. Res. 10, EC16–EC18 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. Krag Jacobsen, G. et al. Testicular germ cell tumours in Denmark 1976–1980. Pathology of 1058 consecutive cases. Acta Radiol. Oncol. 23, 239–247 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Go, J. H. Pure choriocarcinoma of testis with tumor-infiltrating lymphocytes and granulomas. Yonsei Med. J. 47, 887–891 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sheikine, Y. et al. Molecular genetics of testicular germ cell tumors. Am. J. Cancer Res. 2, 153–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nicholls, P. K. & Page, D. C. Germ cell determination and the developmental origin of germ cell tumors. Development https://doi.org/10.1242/dev.198150 (2021).

    Article  PubMed  Google Scholar 

  31. Muller, M. R., Skowron, M. A., Albers, P. & Nettersheim, D. Molecular and epigenetic pathogenesis of germ cell tumors. Asian J. Urol. 8, 144–154 (2021).

    Article  PubMed  Google Scholar 

  32. Baroni, T., Arato, I., Mancuso, F., Calafiore, R. & Luca, G. On the origin of testicular germ cell tumors: from gonocytes to testicular cancer. Front. Endocrinol. 10, 343 (2019).

    Article  Google Scholar 

  33. Skakkebaek, N. E., Berthelsen, J. G., Giwercman, A. & Muller, J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl. 10, 19–28 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Boileau, M. A. & Steers, W. D. Testis tumors: the clinical significance of the tumor-contaminated scrotum. J. Urol. 132, 51–54 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Markland, C., Kedia, K. & Fraley, E. E. Inadequate orchiectomy for patients with testicular tumors. JAMA 224, 1025–1026 (1973).

    Article  CAS  PubMed  Google Scholar 

  36. Werntz, R. P. & Eggener, S. E. Defining risk of micrometastatic disease and tumor recurrence in patients with stage I testicular germ cell tumors. Transl. Androl. Urol. 9, S31–S35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gilligan, T. et al. Testicular cancer, version 2.2020, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 17, 1529–1554 (2019).

    Article  CAS  Google Scholar 

  38. Oldenburg, J. et al. Testicular seminoma and non-seminoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6), vi125–vi132 (2013).

    Article  PubMed  Google Scholar 

  39. M.P. Laguna (Chair), et al. EAU Guidelines. Edn. presented at the EAU Annual Congress Milan (EAU, 2021).

  40. Mazzone, E. et al. Contemporary assessment of long-term survival rates in patients with stage I nonseminoma germ-cell tumor of the testis: population-based comparison between surveillance and active treatment after initial orchiectomy. Clin. Genitourin. Cancer 17, e1153–e1162 (2019).

    Article  PubMed  Google Scholar 

  41. Petrelli, F. et al. Surveillance or adjuvant treatment with chemotherapy or radiotherapy in stage I seminoma: a systematic review and meta-analysis of 13 studies. Clin. Genitourin. Cancer 13, 428–434 (2015).

    Article  PubMed  Google Scholar 

  42. Cummins, S., Yau, T., Huddart, R., Dearnaley, D. & Horwich, A. Surveillance in stage I seminoma patients: a long-term assessment. Eur. Urol. 57, 673–678 (2010).

    Article  PubMed  Google Scholar 

  43. Sogani, P. C. et al. Clinical stage I testis cancer: long-term outcome of patients on surveillance. J. Urol. 159, 855–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Kollmannsberger, C. et al. Non-risk-adapted surveillance for patients with stage I nonseminomatous testicular germ-cell tumors: diminishing treatment-related morbidity while maintaining efficacy. Ann. Oncol. 21, 1296–1301 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Kollmannsberger, C. et al. Patterns of relapse in patients with clinical stage I testicular cancer managed with active surveillance. J. Clin. Oncol. 33, 51–57 (2015).

    Article  PubMed  Google Scholar 

  46. Sturgeon, J. F. et al. Non-risk-adapted surveillance in clinical stage I nonseminomatous germ cell tumors: the Princess Margaret Hospital’s experience. Eur. Urol. 59, 556–562 (2011).

    Article  PubMed  Google Scholar 

  47. Tandstad, T. et al. Treatment of stage I seminoma, with one course of adjuvant carboplatin or surveillance, risk-adapted recommendations implementing patient autonomy: a report from the Swedish and Norwegian Testicular Cancer Group (SWENOTECA). Ann. Oncol. 27, 1299–1304 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Nappi, L., Nichols, C. R. & Kollmannsberger, C. K. New treatments for stage I testicular cancer. Clin. Adv. Hematol. Oncol. 15, 626–631 (2017).

    PubMed  Google Scholar 

  49. Groll, R. J., Warde, P. & Jewett, M. A. A comprehensive systematic review of testicular germ cell tumor surveillance. Crit. Rev. Oncol. Hematol. 64, 182–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Kersh, C. R. et al. Primary malignant extragonadal germ cell tumors. An analysis of the effect of the effect of radiotherapy. Cancer 65, 2681–2685 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Leman, E. S. & Gonzalgo, M. L. Prognostic features and markers for testicular cancer management. Indian. J. Urol. 26, 76–81 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Albers, P. et al. Risk factors for relapse in clinical stage I nonseminomatous testicular germ cell tumors: results of the German Testicular Cancer Study Group Trial. J. Clin. Oncol. 21, 1505–1512 (2003).

    Article  PubMed  Google Scholar 

  53. Fung, C. Y., Kalish, L. A., Brodsky, G. L., Richie, J. P. & Garnick, M. B. Stage I nonseminomatous germ cell testicular tumor: prediction of metastatic potential by primary histopathology. J. Clin. Oncol. 6, 1467–1473 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Gilbert, D. C. et al. Defining a new prognostic index for stage I nonseminomatous germ cell tumors using CXCL12 expression and proportion of embryonal carcinoma. Clin. Cancer Res. 22, 1265–1273 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Li, X. et al. Surveillance for patients with clinical stage I nonseminomatous testicular germ cell tumors. World J. Urol. 33, 1351–1357 (2015).

    Article  PubMed  Google Scholar 

  56. Akaza, H., Kameyama, S. & Aso, Y. [Significance of tumor markers in the treatment of urological malignancies]. Gan To Kagaku Ryoho 14, 3034–3040 (1987).

    CAS  PubMed  Google Scholar 

  57. Gels, M. E. et al. Detection of recurrence in patients with clinical stage I nonseminomatous testicular germ cell tumors and consequences for further follow-up: a single-center 10-year experience. J. Clin. Oncol. 13, 1188–1194 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Azizi, M., Peyton, C. C., Boulware, D. C., Gilbert, S. M. & Sexton, W. J. Primary tumor size thresholds in stage IA testicular seminoma: Implications for adjuvant therapy after orchiectomy and survival. Urol. Oncol. 38, 7.e9–7.e18 (2020).

    Article  Google Scholar 

  59. Blok, J. M. et al. Lymphovascular invasion and presence of embryonal carcinoma as risk factors for occult metastatic disease in clinical stage I nonseminomatous germ cell tumour: a systematic review and meta-analysis. BJU Int. 125, 355–368 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Daugaard, G. et al. Surveillance for stage I nonseminoma testicular cancer: outcomes and long-term follow-up in a population-based cohort. J. Clin. Oncol. 32, 3817–3823 (2014).

    Article  PubMed  Google Scholar 

  61. Read, G. et al. Medical Research Council prospective study of surveillance for stage I testicular teratoma. Medical Research Council Testicular Tumors Working Party. J. Clin. Oncol. 10, 1762–1768 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Mortensen, M. S. et al. A nationwide cohort study of stage I seminoma patients followed on a surveillance program. Eur. Urol. 66, 1172–1178 (2014).

    Article  PubMed  Google Scholar 

  63. Nichols, C. R. et al. Active surveillance is the preferred approach to clinical stage I testicular cancer. J. Clin. Oncol. 31, 3490–3493 (2013).

    Article  PubMed  Google Scholar 

  64. Yu, H. Y., Madison, R. A., Setodji, C. M. & Saigal, C. S. Quality of surveillance for stage I testis cancer in the community. J. Clin. Oncol. 27, 4327–4332 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hamilton, R. J. et al. Treatment of relapse of clinical stage I nonseminomatous germ cell tumors on surveillance. J. Clin. Oncol. 37, 1919–1926 (2019).

    Article  PubMed  Google Scholar 

  66. Chandran, E. A., Chindewere, A., North, R. & Jameson, M. B. Two cycles of adjuvant carboplatin for clinical stage 1 testicular seminoma in New Zealand centres: a retrospective analysis of efficacy and long-term events. Cancer Rep. 4, e1310 (2021).

    CAS  Google Scholar 

  67. Chau, C. et al. Treatment outcome and patterns of relapse following adjuvant carboplatin for stage I testicular seminomatous germ-cell tumour: results from a 17-year UK experience. Ann. Oncol. 26, 1865–1870 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Dieckmann, K. P. et al. Adjuvant treatment of clinical stage I seminoma: is a single course of carboplatin sufficient? Urology 55, 102–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Dieckmann, K. P. et al. Testicular seminoma clinical stage 1: treatment outcome on a routine care level. J. Cancer Res. Clin. Oncol. 142, 1599–1607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Diminutto, A. et al. Adjuvant carboplatin treatment in 115 patients with stage I seminoma: retrospective multicenter survey. Clin. Genitourin. Cancer 14, e161–e169 (2016).

    Article  PubMed  Google Scholar 

  71. Oliver, R. T. et al. Randomized trial of carboplatin versus radiotherapy for stage I seminoma: mature results on relapse and contralateral testis cancer rates in MRC TE19/EORTC 30982 study (ISRCTN27163214). J. Clin. Oncol. 29, 957–962 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Powles, T. et al. The long-term risks of adjuvant carboplatin treatment for stage I seminoma of the testis. Ann. Oncol. 19, 443–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Ruf, C. G. et al. Adjuvant carboplatin therapy in patients with clinical stage 1 testicular seminoma: is long-term morbidity increased? J. Cancer Res. Clin. Oncol. 145, 2335–2342 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Albers, P. et al. Randomized phase III trial comparing retroperitoneal lymph node dissection with one course of bleomycin and etoposide plus cisplatin chemotherapy in the adjuvant treatment of clinical stage I Nonseminomatous testicular germ cell tumors: AUO trial AH 01/94 by the German Testicular Cancer Study Group. J. Clin. Oncol. 26, 2966–2972 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Tandstad, T. et al. One course of adjuvant BEP in clinical stage I nonseminoma mature and expanded results from the SWENOTECA group. Ann. Oncol. 25, 2167–2172 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Hiester, A. et al. Late toxicities and recurrences in patients with clinical stage I non-seminomatous germ cell tumours after 1 cycle of adjuvant bleomycin, etoposide and cisplatin versus primary retroperitoneal lymph node dissection — a 13-year follow-up analysis of a phase III trial cohort. Eur. J. Cancer 155, 64–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Hiester, A. et al. Late toxicities and recurrences in patients with clinical stage I nonseminomatous germ cell tumor after one cycle of adjuvant BEP versus primary retroperitoneal lymph node dissection: a 13-years follow-up analysis of a phase III trial cohort. J. Clin. Oncol. 38, 5512–5512 (2020).

    Article  Google Scholar 

  78. Capocaccia, R., Gatta, G. & Dal Maso, L. Life expectancy of colon, breast, and testicular cancer patients: an analysis of US-SEER population-based data. Ann. Oncol. 26, 1263–1268 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Fischer, S. et al. Outcome of men with relapses after adjuvant bleomycin, etoposide, and cisplatin for clinical stage I nonseminoma. J. Clin. Oncol. 38, 1322–1331 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Stutzman, R. E. & McLeod, D. G. Radiation therapy: a primary treatment modality for seminoma. Urol. Clin. North. Am. 7, 757–764 (1980).

    Article  CAS  PubMed  Google Scholar 

  81. De Felice, F., Musio, D., Gravina, G. L., Marampon, F. & Tombolini, V. Adjuvant radiation therapy in stage I seminoma: 20 years of oncologic results. Oncotarget 7, 80077–80082 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Soper, M. S. et al. Observation versus adjuvant radiation or chemotherapy in the management of stage I seminoma: clinical outcomes and prognostic factors for relapse in a large US cohort. Am. J. Clin. Oncol. 37, 356–359 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Leung, E. et al. Treatment burden in stage I seminoma: a comparison of surveillance and adjuvant radiation therapy. BJU Int. 112, 1088–1095 (2013).

    Article  PubMed  Google Scholar 

  84. Chan, R. Randomized trial of 30 versus 20 Gy in the adjuvant treatment of stage I testicular seminoma: a report on Medical Research Council Trial TE18, European Organisation for Research and Treatment of Cancer Trial 30942 (ISRCTN18525328). J. Clin. Oncol. 23, 6806 (2005). author reply 6806-6807.

    Article  PubMed  Google Scholar 

  85. Fung, C., Fossa, S. D., Beard, C. J. & Travis, L. B. Second malignant neoplasms in testicular cancer survivors. J. Natl Compr. Cancer Netw. 10, 545–556 (2012).

    Article  Google Scholar 

  86. Travis, L. B. et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J. Natl Cancer Inst. 97, 1354–1365 (2005).

    Article  PubMed  Google Scholar 

  87. Chovanec, M. et al. Late adverse effects and quality of life in survivors of testicular germ cell tumour. Nat. Rev. Urol. 18, 227–245 (2021).

    Article  PubMed  Google Scholar 

  88. Chovanec, M. et al. Long-term sexual functioning in germ-cell tumor survivors. BMC Cancer 20, 779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van den Belt-Dusebout, A. W. et al. Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. J. Clin. Oncol. 25, 4370–4378 (2007).

    Article  PubMed  Google Scholar 

  90. Donohue, J. P. & Foster, R. S. Retroperitoneal lymphadenectomy in staging and treatment. The development of nerve-sparing techniques. Urol. Clin. North. Am. 25, 461–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Donohue, J. P., Thornhill, J. A., Foster, R. S., Rowland, R. G. & Bihrle, R. Retroperitoneal lymphadenectomy for clinical stage A testis cancer (1965 to 1989): modifications of technique and impact on ejaculation. J. Urol. 149, 237–243 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Donohue, J. P., Thornhill, J. A., Foster, R. S., Rowland, R. G. & Bihrle, R. Clinical stage B non-seminomatous germ cell testis cancer: the Indiana University experience (1965–1989) using routine primary retroperitoneal lymph node dissection. Eur. J. Cancer 31A, 1599–1604 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Hermans, B. P., Sweeney, C. J., Foster, R. S., Einhorn, L. E. & Donohue, J. P. Risk of systemic metastases in clinical stage I nonseminoma germ cell testis tumor managed by retroperitoneal lymph node dissection. J. Urol. 163, 1721–1724 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Klepp, O. et al. Prognostic factors in clinical stage I nonseminomatous germ cell tumors of the testis: multivariate analysis of a prospective multicenter study. Swedish-Norwegian Testicular Cancer Group. J. Clin. Oncol. 8, 509–518 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. McLeod, D. G. et al. Staging relationships and outcome in early stage testicular cancer: a report from the Testicular Cancer Intergroup Study. J. Urol. 145, 1178–1183 (1991). discussion 1182–1183.

    Article  CAS  PubMed  Google Scholar 

  96. Nicolai, N. et al. Retroperitoneal lymph node dissection with no adjuvant chemotherapy in clinical stage I nonseminomatous germ cell tumours: long-term outcome and analysis of risk factors of recurrence. Eur. Urol. 58, 912–918 (2010).

    Article  PubMed  Google Scholar 

  97. Nicolai, N. et al. A simple model for predicting nodal metastasis in patients with clinical stage I nonseminomatous germ cell testicular tumors undergoing retroperitoneal lymph node dissection only. J. Urol. 171, 172–176 (2004).

    Article  PubMed  Google Scholar 

  98. Beck, S. D., Bey, A. L., Bihrle, R. & Foster, R. S. Ejaculatory status and fertility rates after primary retroperitoneal lymph node dissection. J. Urol. 184, 2078–2080 (2010).

    Article  PubMed  Google Scholar 

  99. Mayer, F., Honecker, F., Looijenga, L. H. & Bokemeyer, C. Towards an understanding of the biological basis of response to cisplatin-based chemotherapy in germ-cell tumors. Ann. Oncol. 14, 825–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Sheinfeld, J. & Motzer, R. J. Stage I testicular cancer management and necessity for surgical expertise. J. Clin. Oncol. 26, 2934–2936 (2008).

    Article  PubMed  Google Scholar 

  101. Stephenson, A. J. et al. Retroperitoneal lymph node dissection for nonseminomatous germ cell testicular cancer: impact of patient selection factors on outcome. J. Clin. Oncol. 23, 2781–2788 (2005).

    Article  PubMed  Google Scholar 

  102. Warde, P. et al. Prognostic factors for relapse in stage I testicular seminoma treated with surveillance. J. Urol. 157, 1705–1709 (1997). discussion 1709–1710.

    Article  CAS  PubMed  Google Scholar 

  103. Warde, P. et al. Prognostic factors for relapse in stage I seminoma managed by surveillance: a pooled analysis. J. Clin. Oncol. 20, 4448–4452 (2002).

    Article  PubMed  Google Scholar 

  104. Pierorazio, P. M. et al. Comparative effectiveness of surveillance, primary chemotherapy, radiotherapy and retroperitoneal lymph node dissection for the management of early stage testicular germ cell tumors: a systematic review. J. Urol. 205, 370–382 (2021).

    Article  PubMed  Google Scholar 

  105. Boormans, J. L. et al. Testicular tumour size and rete testis invasion as prognostic factors for the risk of relapse of clinical stage I seminoma testis patients under surveillance: a systematic review by the Testicular Cancer Guidelines Panel. Eur. Urol. 73, 394–405 (2018).

    Article  PubMed  Google Scholar 

  106. Chung, P. et al. Evaluation of a prognostic model for risk of relapse in stage I seminoma surveillance. Cancer Med. 4, 155–160 (2015).

    Article  PubMed  Google Scholar 

  107. Parker, C. et al. The prognostic significance of the tumour infiltrating lymphocyte count in stage I testicular seminoma managed by surveillance. Eur. J. Cancer 38, 2014–2019 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Aparicio, J. et al. Prognostic factors for relapse in stage I seminoma: a new nomogram derived from three consecutive, risk-adapted studies from the Spanish Germ Cell Cancer Group (SGCCG). Ann. Oncol. 25, 2173–2178 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Tandstad, T. et al. Management of seminomatous testicular cancer: a binational prospective population-based study from the Swedish Norwegian testicular cancer study group. J. Clin. Oncol. 29, 719–725 (2011).

    Article  PubMed  Google Scholar 

  110. Zengerling, F. et al. Prognostic factors for tumor recurrence in patients with clinical stage I seminoma undergoing surveillance — a systematic review. Urol. Oncol. 36, 448–458 (2018).

    Article  PubMed  Google Scholar 

  111. Fontes-Sousa, M. et al. Clinical implications of the American Joint Committee on Cancer (AJCC) 8th edition update in seminoma pT1 subclassification. BMC Urol. 20, 127 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nayan, M. et al. Conditional risk of relapse in surveillance for clinical stage I testicular cancer. Eur. Urol. 71, 120–127 (2017).

    Article  PubMed  Google Scholar 

  113. von der Maase, H. et al. Surveillance following orchidectomy for stage I seminoma of the testis. Eur. J. Cancer 29A, 1931–1934 (1993).

    Article  PubMed  Google Scholar 

  114. Scandura, G. et al. Pathological risk factors for metastatic disease at presentation in testicular seminomas with focus on the recent pT changes in AJCC TNM eighth edition. Hum. Pathol. 94, 16–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Perry, A., Wiley, E. L. & Albores-Saavedra, J. Pagetoid spread of intratubular germ cell neoplasia into rete testis: a morphologic and histochemical study of 100 orchiectomy specimens with invasive germ cell tumors. Hum. Pathol. 25, 235–239 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Berney, D. M. et al. Handling and reporting of orchidectomy specimens with testicular cancer: areas of consensus and variation among 25 experts and 225 European pathologists. Histopathology 67, 313–324 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Charitopoulos, K. et al. in Clinical Genitourinary Pathology: a case-based learning approach (ed. Lazaris, A. C.) 397–530 (Springer International Publishing, 2018).

  118. French, B. L. & Zynger, D. L. Do histopathologic variables affect the reporting of lymphovascular invasion in testicular germ cell tumors? Am. J. Clin. Pathol. 145, 341–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Verrill, C. et al. Reporting and staging of testicular germ cell tumors: the international society of urological pathology (ISUP) testicular cancer consultation conference recommendations. Am. J. Surg. Pathol. 41, e22–e32 (2017).

    Article  PubMed  Google Scholar 

  120. Sharma, P., Dhillon, J., Agarwal, G., Zargar-Shoshtari, K. & Sexton, W. J. Disparities in interpretation of primary testicular germ cell tumor pathology. Am. J. Clin. Pathol. 144, 289–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Verrill, C. et al. Intraoperative consultation and macroscopic handling: the international society of urological pathology (ISUP) Testicular cancer consultation conference recommendations. Am. J. Surg. Pathol. 42, e33–e43 (2018).

    Article  PubMed  Google Scholar 

  122. Nicolai, N. et al. Concordance and prediction ability of original and reviewed vascular invasion and other prognostic parameters of clinical stage I nonseminomatous germ cell testicular tumors after retroperitoneal lymph node dissection. J. Urol. 186, 1298–1302 (2011).

    Article  PubMed  Google Scholar 

  123. Purshouse, K. et al. Value of supraregional multidisciplinary review for the contemporary management of testicular tumors. Clin. Genitourin. Cancer 15, 152–156 (2017).

    Article  PubMed  Google Scholar 

  124. van Leenders, G. et al. The 2019 international society of urological pathology (ISUP) consensus conference on grading of prostatic carcinoma. Am. J. Surg. Pathol. 44, e87–e99 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sato, Y. Role of ETS family transcription factors in vascular development and angiogenesis. Cell Struct. Funct. 26, 19–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Udager, A. M. et al. Utility of ERG immunohistochemistry for evaluation of lymphovascular invasion in testicular germ cell tumors: a retrospective pilot study. Appl. Immunohistochem. Mol. Morphol. 27, 392–401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lobo, J., Stoop, H., Gillis, A. J. M., Looijenga, L. H. J. & Oosterhuis, W. Interobserver agreement in vascular invasion scoring and the added value of immunohistochemistry for vascular markers to predict disease relapse in stage I testicular nonseminomas. Am. J. Surg. Pathol. 43, 1711–1719 (2019).

    Article  PubMed  Google Scholar 

  128. Wobser, M. et al. Expression pattern of the lymphatic and vascular markers VEGFR-3 and CD31 does not predict regional lymph node metastasis in cutaneous melanoma. Arch. Dermatol. Res. 297, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Fukunaga, M. Expression of D2-40 in lymphatic endothelium of normal tissues and in vascular tumours. Histopathology 46, 396–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Ghosh, A. et al. The potential of artificial intelligence to detect lymphovascular invasion in testicular cancer. Cancers https://doi.org/10.3390/cancers13061325 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Andrews, P. W. et al. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem. Soc. Trans. 33, 1526–1530 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Li, S. & Li, Q. Cancer stem cells and tumor metastasis (Review). Int. J. Oncol. 44, 1806–1812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Aparicio, J. et al. Multicenter study evaluating a dual policy of postorchiectomy surveillance and selective adjuvant single-agent carboplatin for patients with clinical stage I seminoma. Ann. Oncol. 14, 867–872 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Aparicio, J. et al. Risk-adapted management for patients with clinical stage I seminoma: the Second Spanish Germ Cell Cancer Cooperative Group study. J. Clin. Oncol. 23, 8717–8723 (2005).

    Article  PubMed  Google Scholar 

  135. Aparicio, J. et al. Risk-adapted treatment in clinical stage I testicular seminoma: the third Spanish Germ Cell Cancer Group study. J. Clin. Oncol. 29, 4677–4681 (2011).

    Article  PubMed  Google Scholar 

  136. Aparicio, J. et al. A risk-adapted approach to patients with stage I seminoma according to the status of rete testis: the fourth Spanish Germ Cell Cancer Group Study. Oncology 95, 8–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Mrinakova, B. et al. Stage I testicular seminoma risk-adapted therapeutic management. Neoplasma https://doi.org/10.4149/neo_2021_200630N677 (2021).

    Article  PubMed  Google Scholar 

  138. Maroto, P. et al. Multicentre risk-adapted management for stage I non-seminomatous germ cell tumours. Ann. Oncol. 16, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Tandstad, T. et al. Risk-adapted treatment in clinical stage I nonseminomatous germ cell testicular cancer: the SWENOTECA management program. J. Clin. Oncol. 27, 2122–2128 (2009).

    Article  PubMed  Google Scholar 

  140. Ondrusova, M., Waczulikova, I., Lehotska, V., Zeleny, T. & Ondrus, D. Management of clinical stage I nonseminomatous germ cell testicular tumors: a 25-year single-center experience. Clin. Genitourin. Cancer 15, e1015–e1019 (2017).

    Article  PubMed  Google Scholar 

  141. Kamel, M. H. et al. Insurance status and differences in treatment and survival of testicular cancer patients. Urology 87, 140–145 (2016).

    Article  PubMed  Google Scholar 

  142. Kuronya, Z. et al. Low socioeconomic position is a risk factor for delay to treatment and mortality of testicular cancer patients in Hungary, a prospective study. BMC Public Health 21, 1707 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wymer, K. M. et al. Adherence to national comprehensive cancer network® guidelines for testicular cancer. J. Urol. 197, 684–689 (2017).

    Article  PubMed  Google Scholar 

  144. Ilijazi, D., Shariat, S. F., Hassler, M. R., Lemberger, U. & Ertl, I. E. Epigenetic alterations of testicular germ cell tumours. Curr. Opin. Urol. 30, 264–270 (2020).

    Article  PubMed  Google Scholar 

  145. Boccellino, M. et al. Testicular cancer from diagnosis to epigenetic factors. Oncotarget 8, 104654–104663 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. la Rosa, A. H., Manoharan, M. & Goolam, A. S. Current concepts of epigenetics in testicular cancer. Indian. J. Surg. Oncol. 8, 169–174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dominguez, G. et al. p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin. Cancer Res. 8, 980–985 (2002).

    CAS  PubMed  Google Scholar 

  148. Park, J. Y. Promoter hypermethylation in prostate cancer. Cancer Control. 17, 245–255 (2010).

    Article  PubMed  Google Scholar 

  149. Chovanec, M. et al. Incorporating DNA methyltransferase Inhibitors (DNMTis) in the treatment of genitourinary malignancies: a systematic review. Target. Oncol. 13, 49–60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Dudziec, E., Gogol-Doring, A., Cookson, V., Chen, W. & Catto, J. Integrated epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells. PLoS One 7, e32750 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ramakrishnan, S. & Pili, R. Histone deacetylase inhibitors and epigenetic modifications as a novel strategy in renal cell carcinoma. Cancer J. 19, 333–340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Argiropoulos, B. & Humphries, R. K. Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–6776 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Li, B., Huang, Q. & Wei, G. H. The role of HOX transcription factors in cancer predisposition and progression. Cancers https://doi.org/10.3390/cancers11040528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Song, M. S. et al. The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat. Cell Biol. 6, 129–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Markulin, D. et al. Association between RASSF1A promoter methylation and testicular germ cell tumor: a meta-analysis and a cohort study. Cancer Genomics Proteom. 14, 363–372 (2017).

    CAS  Google Scholar 

  156. Marchetti, A. et al. Down regulation of high in normal-1 (HIN-1) is a frequent event in stage I non-small cell lung cancer and correlates with poor clinical outcome. Clin. Cancer Res. 10, 1338–1343 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Krop, I. E. et al. HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc. Natl Acad. Sci. USA 98, 9796–9801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Costa, A. L. et al. DNA methylation profiling as a tool for testicular germ cell tumors subtyping. Epigenomics 10, 1511–1523 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Lobo, J. et al. Combining hypermethylated RASSF1A detection using ddPCR with miR-371a-3p testing: an improved panel of liquid biopsy biomarkers for testicular germ cell tumor patients. Cancers https://doi.org/10.3390/cancers13205228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ahmadi, H., Jang, T. L., Daneshmand, S. & Ghodoussipour, S. Editorial by Bendu K. Konneh, John T. Lafin and Aditya Bagrodia on pp. 341-342 of this issue: microRNA-371a-3p as a blood-based biomarker in testis cancer. Asian J. Urol. 8, 400–406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Hashemi Goradel, N., Najafi, M., Salehi, E., Farhood, B. & Mortezaee, K. Cyclooxygenase-2 in cancer: a review. J. Cell Physiol. 234, 5683–5699 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Joo, Y. E. et al. Cyclooxygenase-2 expression is associated with well-differentiated and intestinal-type pathways in gastric carcinogenesis. Digestion 66, 222–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Wolff, H. et al. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res. 58, 4997–5001 (1998).

    CAS  PubMed  Google Scholar 

  165. Hase, T. et al. Cyclooxygenase-1 and -2 in human testicular tumours. Eur. J. Cancer 39, 2043–2049 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Ellinger, J. et al. CpG island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. J. Urol. 182, 324–329 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Kobayashi, K. et al. Oncological outcomes in patients with stage I testicular seminoma and nonseminoma: pathological risk factors for relapse and feasibility of surveillance after orchiectomy. Diagn. Pathol. 8, 57 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Valdevenito, J. P., Gallegos, I., Fernandez, C., Acevedo, C. & Palma, R. Correlation between primary tumor pathologic features and presence of clinical metastasis at diagnosis of testicular seminoma. Urology 70, 777–780 (2007).

    Article  PubMed  Google Scholar 

  169. Trevino, K. E. et al. Pathological risk factors for higher clinical stage in testicular seminomas. Histopathology 73, 741–747 (2018).

    Article  PubMed  Google Scholar 

  170. Kaminska, K. et al. Prognostic and predictive epigenetic biomarkers in oncology. Mol. Diagn. Ther. 23, 83–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Thomas, M. L. & Marcato, P. Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the cancer care continuum. Cancers https://doi.org/10.3390/cancers10040101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chovanec, M. et al. Emerging prognostic biomarkers in testicular germ cell tumors: looking beyond established practice. Front. Oncol. 8, 571 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pileczki, V., Cojocneanu-Petric, R., Maralani, M., Neagoe, I. B. & Sandulescu, R. MicroRNAs as regulators of apoptosis mechanisms in cancer. Clujul Med. 89, 50–55 (2016).

    PubMed  PubMed Central  Google Scholar 

  176. Noguer-Dance, M. et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum. Mol. Genet. 19, 3566–3582 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Gillis, A. J. et al. High-throughput microRNAome analysis in human germ cell tumours. J. Pathol. 213, 319–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Palmer, R. D. et al. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res. 70, 2911–2923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Belge, G., Dieckmann, K. P., Spiekermann, M., Balks, T. & Bullerdiek, J. Serum levels of microRNAs miR-371-3: a novel class of serum biomarkers for testicular germ cell tumors? Eur. Urol. 61, 1068–1069 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Dieckmann, K. P. et al. MicroRNAs miR-371-3 in serum as diagnostic tools in the management of testicular germ cell tumours. Br. J. Cancer 107, 1754–1760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Radtke, A. et al. The novel biomarker of germ cell tumours, micro-RNA-371a-3p, has a very rapid decay in patients with clinical stage 1. Urol. Int. 100, 470–475 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Salem, M. & Gilligan, T. Serum tumor markers and their utilization in the management of germ-cell tumors in adult males. Expert. Rev. Anticancer. Ther. 11, 1–4 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Dieckmann, K. P. et al. Serum levels of microRNA-371a-3p (M371 Test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study. J. Clin. Oncol. 37, 1412–1423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gillis, A. J. et al. Targeted serum miRNA (TSmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol. Oncol. 7, 1083–1092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Leao, R. et al. Circulating microRNAs, the next-generation serum biomarkers in testicular germ cell tumours: a systematic review. Eur. Urol. 80, 456–466 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Almstrup, K. et al. Application of miRNAs in the diagnosis and monitoring of testicular germ cell tumours. Nat. Rev. Urol. 17, 201–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Morup, N., Rajpert-De Meyts, E., Juul, A., Daugaard, G. & Almstrup, K. Evaluation of circulating miRNA biomarkers of testicular germ cell tumors during therapy and follow-up — a Copenhagen experience. Cancers https://doi.org/10.3390/cancers12030759 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Anheuser, P. et al. Serum levels of microRNA371a-3p: a highly sensitive tool for diagnosing and staging testicular germ cell tumours: a clinical case series. Urol. Int. 99, 98–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. van Agthoven, T., Eijkenboom, W. M. H. & Looijenga, L. H. J. microRNA-371a-3p as informative biomarker for the follow-up of testicular germ cell cancer patients. Cell Oncol. 40, 379–388 (2017).

    Article  Google Scholar 

  190. Murray, M. J. et al. A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours. Br. J. Cancer 114, 151–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Nappi, L. et al. Developing a highly specific biomarker for germ cell malignancies: plasma miR371 expression across the germ cell malignancy spectrum. J. Clin. Oncol. 37, 3090–3098 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lobo, J. et al. Utility of serum miR-371a-3p in predicting relapse on surveillance in patients with clinical stage I testicular germ cell cancer. Eur. Urol. Oncol. https://doi.org/10.1016/j.euo.2020.11.004 (2020).

    Article  PubMed  Google Scholar 

  193. Fankhauser, C. D. et al. Detection of recurrences using serum miR-371a-3p during active surveillance in men with stage I testicular germ cell tumours. Br. J. Cancer https://doi.org/10.1038/s41416-021-01643-z (2021).

    Article  PubMed  Google Scholar 

  194. Dieckmann, K. P. et al. Associations of serum levels of microRNA-371a-3p (M371) with risk factors for progression in nonseminomatous testicular germ cell tumours clinical stage 1. World J. Urol. https://doi.org/10.1007/s00345-021-03876-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Bagrodia, A. et al. Impact of circulating microRNA test (miRNA-371a-3p) on appropriateness of treatment and cost outcomes in patients with Stage I non-seminomatous germ cell tumours. BJU Int. https://doi.org/10.1111/bju.15288 (2020).

    Article  PubMed  Google Scholar 

  196. Dieckmann, K. P. et al. Serum levels of microRNA miR-371a-3p: a sensitive and specific new biomarker for germ cell tumours. Eur. Urol. 71, 213–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Vigneron, N. et al. Towards a new standardized method for circulating miRNAs profiling in clinical studies: Interest of the exogenous normalization to improve miRNA signature accuracy. Mol. Oncol. 10, 981–992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Roest, H. P., IJzermans, J. N. M. & van der Laan, L. J. W. Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol. 21, 48 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Myklebust, M. P. et al. Quantitative PCR measurement of miR-371a-3p and miR-372-p is influenced by hemolysis. Front. Genet. 10, 463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Conduit, C. & Tran, B. Improving outcomes in germ cell cancers using miRNA. Ther. Adv. Med. Oncol. 13, 17588359211027826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Vilela-Salgueiro, B. et al. Germ cell tumour subtypes display differential expression of microRNA371a-3p. Philos. Trans. R. Soc. Lond. B Biol. Sci. https://doi.org/10.1098/rstb.2017.0338 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Belge, G. et al. Graded expression of microRNA-371a-3p in tumor tissues, contralateral testes, and in serum of patients with testicular germ cell tumor. Oncotarget 11, 1462–1473 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Belge, G., Grobelny, F., Matthies, C., Radtke, A. & Dieckmann, K. P. Serum level of microRNA-375-3p is not a reliable biomarker of teratoma. In Vivo 34, 163–168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lafin, J. T. et al. Serum small RNA sequencing and miR-375 assay do not identify the presence of pure teratoma at postchemotherapy retroperitoneal lymph node dissection. Eur. Urol. Open Sci. 26, 83–87 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Arneth, B. Tumor microenvironment. Medicina https://doi.org/10.3390/medicina56010015 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Sionov, R. V., Fridlender, Z. G. & Granot, Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 8, 125–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Wu, L., Saxena, S., Awaji, M. & Singh, R. K. Tumor-associated neutrophils in cancer: going pro. Cancers https://doi.org/10.3390/cancers11040564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Horzum, U. et al. CD66b+ monocytes represent a proinflammatory myeloid subpopulation in cancer. Cancer Immunol. Immunother. 70, 75–87 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Yamada, Y. et al. Prognostic value of CD66b positive tumor-infiltrating neutrophils in testicular germ cell tumor. BMC Cancer 16, 898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Mann, K. [Tumor markers in testicular cancer]. Urologe A 29, 77–86 (1990).

    CAS  PubMed  Google Scholar 

  212. Dieckmann, K. P. et al. Serum tumour markers in testicular germ cell tumours: frequencies of elevated levels and extents of marker elevation are significantly associated with clinical parameters and with response to treatment. Biomed. Res. Int. 2019, 5030349 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Kausitz, J., Ondrus, D., Belan, V. & Matoska, J. Monitoring of patients with non-seminomatous germ cell tumors of the testis by determination of alpha-fetoprotein and beta-human chorionic gonadotropin levels and by computed tomography. Neoplasma 39, 357–361 (1992).

    CAS  PubMed  Google Scholar 

  214. Norgaard-Pedersen, B. et al. Tumour markers in testicular germ cell tumours. Five-year experience from the DATECA Study 1976-1980. Acta Radiol. Oncol. 23, 287–294 (1984).

    Article  CAS  PubMed  Google Scholar 

  215. Venkitaraman, R. et al. The utility of lactate dehydrogenase in the follow-up of testicular germ cell tumours. BJU Int. 100, 30–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Ackers, C. & Rustin, G. J. Lactate dehydrogenase is not a useful marker for relapse in patients on surveillance for stage I germ cell tumours. Br. J. Cancer 94, 1231–1232 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Trigo, J. M. et al. Tumor markers at the time of recurrence in patients with germ cell tumors. Cancer 88, 162–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Milose, J. C., Filson, C. P., Weizer, A. Z., Hafez, K. S. & Montgomery, J. S. Role of biochemical markers in testicular cancer: diagnosis, staging, and surveillance. Open Access. J. Urol. 4, 1–8 (2011).

    PubMed  PubMed Central  Google Scholar 

  219. Li, D., Mallory, T. & Satomura, S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin. Chim. Acta 313, 15–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Leerapun, A. et al. The utility of lens culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population. Clin. Gastroenterol. Hepatol. 5, 394–402 (2007). quiz 267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhou, J. M., Wang, T. & Zhang, K. H. AFP-L3 for the diagnosis of early hepatocellular carcinoma: a meta-analysis. Medicine 100, e27673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kawai, K. et al. Lectin-reactive alpha-fetoprotein as a marker for testicular tumor activity. Int. J. Urol. 12, 284–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Kamoto, T. et al. Lectin-reactive alpha-fetoprotein (AFP-L3%) curability and prediction of clinical course after treatment of non-seminomatous germ cell tumors. Jpn. J. Clin. Oncol. 32, 472–476 (2002).

    Article  PubMed  Google Scholar 

  224. Beck, S. D., Foster, R. S., Bihrle, R. & Donohue, J. P. Significance of primary tumor size and preorchiectomy serum tumor marker level in predicting pathologic stage at retroperitoneal lymph node dissection in clinical stage A nonseminomatous germ cell tumors. Urology 69, 557–559 (2007).

    Article  PubMed  Google Scholar 

  225. Wishnow, K. I. et al. Identifying patients with low-risk clinical stage I nonseminomatous testicular tumors who should be treated by surveillance. Urology 34, 339–343 (1989).

    Article  CAS  PubMed  Google Scholar 

  226. Bruns, F., Raub, M., Schaefer, U. & Micke, O. No predictive value of beta-hCG in patients with stage I seminoma-results of a long-term follow-up study after adjuvant radiotherapy. Anticancer. Res. 25, 1543–1546 (2005).

    PubMed  Google Scholar 

  227. Weissbach, L. et al. Prognostic factors in seminomas with special respect to HCG: results of a prospective multicenter study. Seminoma Study Group. Eur. Urol. 36, 601–608 (1999).

    Article  CAS  PubMed  Google Scholar 

  228. Badia, R. R. et al. Pre-orchiectomy serum tumor markers as a predictor of recurrence in stage I germ cell tumors. J. Clin. Oncol. 39, 389–389 (2021).

    Article  Google Scholar 

  229. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aat4921 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Ellinger, J. et al. Cell-free circulating DNA: diagnostic value in patients with testicular germ cell cancer. J. Urol. 181, 363–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  231. Lo, Y. M. et al. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 64, 218–224 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ellinger, J., Albers, P., Muller, S. C., von Ruecker, A. & Bastian, P. J. Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker. BJU Int. 104, 48–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  233. Farci, F. & Shamsudeen, S. in StatPearls (2022).

  234. Yang, Q. E., Kim, D., Kaucher, A., Oatley, M. J. & Oatley, J. M. CXCL12-CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells. J. Cell Sci. 126, 1009–1020 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Gilbert, D. C. et al. Clinical and biological significance of CXCL12 and CXCR4 expression in adult testes and germ cell tumours of adults and adolescents. J. Pathol. 217, 94–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  236. Fankhauser, C. D. et al. CXCL12 expression is an adverse predictor for disease recurrence in patients with metastatic non-seminomatous testicular germ cell tumors. BMC Cancer 19, 802 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Lobo, J., Gillis, A. J. M., van den Berg, A. & Looijenga, L. H. J. Prediction of relapse in stage I testicular germ cell tumor patients on surveillance: investigation of biomarkers. BMC Cancer 20, 728 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Datta, M. W., Renshaw, A. A., Dutta, A., Hoffman, M. A. & Loughlin, K. R. Evaluation of cyclin expression in testicular germ cell tumors: cyclin E correlates with tumor type, advanced clinical stage, and pulmonary metastasis. Mod. Pathol. 13, 667–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  239. Albers, P. et al. MIB-1 immunohistochemistry in clinical stage I nonseminomatous testicular germ cell tumors predicts patients at low risk for metastasis. Cancer 79, 1710–1716 (1997).

    Article  CAS  PubMed  Google Scholar 

  240. Albers, P. et al. Prognostic significance of immunohistochemical proliferation markers (Ki-67/MIB-1 and proliferation-associated nuclear antigen), p53 protein accumulation, and neovascularization in clinical stage A nonseminomatous testicular germ cell tumors. Mod. Pathol. 8, 492–497 (1995).

    CAS  PubMed  Google Scholar 

  241. Sanmamed, M. F. et al. Epidermal growth factor receptor and epididymis invasion as prognostic biomarkers in clinical stage I testicular germ cell tumours. J. Transl. Med. 15, 62 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Miyoshi, E., Terao, M. & Kamada, Y. Physiological roles of N-acetylglucosaminyltransferase V(GnT-V) in mice. BMB Rep. 45, 554–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. Kyan, A. et al. Positive expressions of N-acetylglucosaminyltransferase-V (GnT-V) and beta1-6 branching N-linked oligosaccharides in human testicular germ cells diminish during malignant transformation and progression. Int. J. Oncol. 32, 129–134 (2008).

    CAS  PubMed  Google Scholar 

  244. Hatakeyama, S. et al. Core 2 N-acetylglucosaminyltransferase-1 expression induces aggressive potential of testicular germ cell tumor. Int. J. Cancer 127, 1052–1059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gagliardi, M., Strazzullo, M. & Matarazzo, M. R. DNMT3B functions: novel insights from human disease. Front. Cell Dev. Biol. 6, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Arai, E., Nakagawa, T., Wakai-Ushijima, S., Fujimoto, H. & Kanai, Y. DNA methyltransferase 3B expression is associated with poor outcome of stage I testicular seminoma. Histopathology 60, E12–E18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Moroy, T. & Geisen, C. Cyclin E. Int. J. Biochem. Cell Biol. 36, 1424–1439 (2004).

    Article  CAS  PubMed  Google Scholar 

  248. Furusato, B., Mohamed, A., Uhlen, M. & Rhim, J. S. CXCR4 and cancer. Pathol. Int. 60, 497–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  249. Martinet, L. et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res. 71, 5678–5687 (2011).

    Article  CAS  PubMed  Google Scholar 

  250. Okayama, H. et al. Ectopic expression of MECA-79 as a novel prognostic indicator in gastric cancer. Cancer Sci. 102, 1088–1094 (2011).

    Article  CAS  PubMed  Google Scholar 

  251. Planells-Palop, V. et al. Human germ/stem cell-specific gene TEX19 influences cancer cell proliferation and cancer prognosis. Mol. Cancer 16, 84 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Shang, S., Hua, F. & Hu, Z. W. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8, 33972–33989 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Azam, A. S. et al. Diagnostic concordance and discordance in digital pathology: a systematic review and meta-analysis. J. Clin. Pathol. 74, 448–455 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Colling, R. et al. Digital pathology transformation in a supraregional germ cell tumour network. Diagnostics https://doi.org/10.3390/diagnostics11122191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Lewin, J. et al. Gene expression signatures prognostic for relapse in stage I testicular germ cell tumours. BJU Int. 122, 814–822 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Cullen, M. et al. The 111 study: a single-arm, phase 3 trial evaluating one cycle of bleomycin, etoposide, and cisplatin as adjuvant chemotherapy in high-risk, stage 1 nonseminomatous or combined germ cell tumours of the testis. Eur. Urol. 77, 344–351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Oliver, R. T. et al. Radiotherapy versus single-dose carboplatin in adjuvant treatment of stage I seminoma: a randomised trial. Lancet 366, 293–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  258. Groot, H. J. et al. Risk of solid cancer after treatment of testicular germ cell cancer in the platinum era. J. Clin. Oncol. 36, 2504–2513 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Westermann, D. H. et al. Long-term followup results of 1 cycle of adjuvant bleomycin, etoposide and cisplatin chemotherapy for high risk clinical stage I nonseminomatous germ cell tumors of the testis. J. Urol. 179, 163–166 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Prof. James M. Reuben for English editing and thoughtful discussion. This work was supported by the Slovak Research and Development Agency (grant APVV-20-0158 and APVV-19-0411) and Comenius University (UK/195/2021). The sponsors had no direct role in the study.

Author information

Authors and Affiliations

Authors

Contributions

P.L. researched data for the article. M.M. and M.C. contributed substantially to discussion of the content. P.L. wrote the article. M.M. and M.C. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Michal Mego.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Joao Lobo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesko, P., Chovanec, M. & Mego, M. Biomarkers of disease recurrence in stage I testicular germ cell tumours. Nat Rev Urol 19, 637–658 (2022). https://doi.org/10.1038/s41585-022-00624-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00624-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer