Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Low-frequency and rare genetic variants associated with rheumatoid arthritis risk

Abstract

Rheumatoid arthritis (RA) has an estimated heritability of nearly 50%, which is particularly high in seropositive RA. HLA alleles account for a large proportion of this heritability, in addition to many common single-nucleotide polymorphisms with smaller individual effects. Low-frequency and rare variants, such as those captured by next-generation sequencing, can also have a large role in heritability in some individuals. Rare variant discovery has informed the development of drugs such as inhibitors of PCSK9 and Janus kinases. Some 34 low-frequency and rare variants are currently associated with RA risk. One variant (19:10352442G>C in TYK2) was identified in five separate studies, and might therefore represent a promising therapeutic target. Following a set of best practices in future studies, including studying diverse populations, using large sample sizes, validating RA and serostatus, replicating findings, adjusting for other variants and performing functional assessment, could help to ensure the relevance of identified variants. Exciting opportunities are now on the horizon for genetics in RA, including larger datasets and consortia, whole-genome sequencing and direct applications of findings in the management, and especially treatment, of RA.

Key points

  • The greatest contributors to RA heritability are the major histocompatibility complex (MHC) proteins, encoded by the human leukocyte antigen (HLA) region on chromosome 6.

  • Low-frequency and rare variants captured by next-generation sequencing can have large effects on both individual-level heritability and population-level drug discovery.

  • Thus far, 34 low-frequency and rare variants have been associated with RA, including variants in immune-related genes such as TYK2 that might represent therapeutic targets.

  • Best practice for identifying rare variants in RA includes studying diverse populations, including ≥3,000 affected individuals, validating RA, examining serostatus, replicating findings, adjusting for known variants and performing functional assessment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromosomal location of the 32 genes with identified low-frequency and rare variants associated with RA.
Fig. 2: Detectable rare-variant effect size as a function of sample size and number of controls.

Similar content being viewed by others

References

  1. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gaziano, J. M. et al. Million veteran program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    PubMed  Google Scholar 

  3. Denny, J. C. et al. The “All of Us” research program. N. Engl. J. Med. 381, 668–676 (2019).

    PubMed  Google Scholar 

  4. Consortium, I. M. S. G. Low-frequency and rare-coding variation contributes to multiple sclerosis risk. Cell 175, 1679–1687.e1677 (2018).

    Google Scholar 

  5. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Curtis, D. Construction of an exome-wide risk score for schizophrenia based on a weighted burden test. Ann. Hum. Genet. 82, 11–22 (2018).

    CAS  PubMed  Google Scholar 

  8. Biddinger, K. J. et al. Rare and common genetic variation underlying the risk of hypertrophic cardiomyopathy in a national biobank. JAMA Cardiol. 7, 715–722 (2022).

    PubMed  PubMed Central  Google Scholar 

  9. Wright, C. F. et al. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland. N. Engl. J. Med. 388, 1559–1571 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS  PubMed  Google Scholar 

  13. Whiffin, N. et al. The effect of LRRK2 loss-of-function variants in humans. Nat. Med. 26, 869–877 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  16. Myasoedova, E., Davis, J., Matteson, E. L. & Crowson, C. S. Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985-2014. Ann. Rheum. Dis. 79, 440–444 (2020).

    PubMed  Google Scholar 

  17. Frisell, T. et al. Familial risks and heritability of rheumatoid arthritis: role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 65, 2773–2782 (2013).

    CAS  PubMed  Google Scholar 

  18. Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes — a population based twin study. PLoS One 8, e57304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stastny, P. Mixed lymphocyte cultures in rheumatoid arthritis. J. Clin. Invest. 57, 1148–1157 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gough, S. C. & Simmonds, M. J. The HLA region and autoimmune disease: associations and mechanisms of action. Curr. Genomics 8, 453–465 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kulski, J. K., Suzuki, S. & Shiina, T. Human leukocyte antigen super-locus: nexus of genomic supergenes, SNPs, indels, transcripts, and haplotypes. Hum. Genome Var. 9, 49 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    CAS  PubMed  Google Scholar 

  23. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rieck, M. et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol. 179, 4704–4710 (2007).

    CAS  PubMed  Google Scholar 

  26. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678 (2007).

  27. Ishigaki, K. et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640–1651 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sparks, J. A. et al. Improved performance of epidemiologic and genetic risk models for rheumatoid arthritis serologic phenotypes using family history. Ann. Rheum. Dis. 74, 1522–1529 (2015).

    PubMed  Google Scholar 

  29. Rostami, S., Hoff, M., Brown, M. A., Hveem, K. & Videm, V. Comparison of methods to construct a genetic risk score for prediction of rheumatoid arthritis in the population-based Nord-Trondelag Health Study, Norway. Rheumatology 59, 1743–1751 (2020).

    CAS  PubMed  Google Scholar 

  30. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rapaport, F. et al. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc. Natl Acad. Sci. USA 118, e2001248118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis: study designs and statistical tests. Am. J. Hum. Genet. 95, 5–23 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Momozawa, Y. & Mizukami, K. Unique roles of rare variants in the genetics of complex diseases in humans. J. Hum. Genet. 66, 11–23 (2021).

    PubMed  Google Scholar 

  35. Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS One 10, e0122271 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. National Human Genome Research Institute. Human Genomic Variation. https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genomic-variation (2023).

  37. Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Eichler, E. E. Genetic variation, comparative genomics, and the diagnosis of disease. N. Engl. J. Med. 381, 64–74 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. National Library of Medicine. Overview of Structural Variation. https://www.ncbi.nlm.nih.gov/dbvar/content/overview/ (2022).

  40. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  41. Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A. & Gilissen, C. Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum. Mutat. 36, 815–822 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Diogo, D. et al. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 92, 15–27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, T., Chitnis, N., Monos, D. & Dinh, A. Next-generation sequencing technologies: an overview. Hum. Immunol. 82, 801–811 (2021).

    CAS  PubMed  Google Scholar 

  44. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gudmundsson, S. et al. Variant interpretation using population databases: lessons from gnomAD. Hum. Mutat. 43, 1012–1030 (2022).

    PubMed  Google Scholar 

  46. Simpfendorfer, K. R. et al. Autoimmune disease-associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class-switched B cells. Arthritis Rheumatol. 67, 2866–2876 (2015).

    CAS  PubMed  Google Scholar 

  47. Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genom. 2, 100168 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Saevarsdottir, S. et al. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann. Rheum. Dis. 81, 1085–1095 (2022).

    CAS  PubMed  Google Scholar 

  49. González-Serna, D. et al. Association of a rare variant of the TNFSF13B gene with susceptibility to rheumatoid arthritis and systemic lupus erythematosus. Sci. Rep. 8, 8195 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Mitsunaga, S. et al. Exome sequencing identifies novel rheumatoid arthritis-susceptible variants in the BTNL2. J. Hum. Genet. 58, 210–215 (2013).

    CAS  PubMed  Google Scholar 

  51. Mitsunaga, S. et al. Aggregation of rare/low-frequency variants of the mitochondria respiratory chain-related proteins in rheumatoid arthritis patients. J. Hum. Genet. 60, 449–454 (2015).

    CAS  PubMed  Google Scholar 

  52. Bang, S. Y. et al. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis. Arthritis Res. Ther. 16, 447 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pang Leong, K. et al. Missense variant in interleukin-6 signal transducer identified as susceptibility locus for rheumatoid arthritis in Chinese patients. Arch. Rheumatol. 36, 603–610 (2021).

    PubMed  PubMed Central  Google Scholar 

  55. Pernaa, N. et al. Heterozygous premature termination in zinc-finger domain of Krüppel-like factor 2 gene associates with dysregulated immunity. Front. Immunol. 13, 819929 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y. et al. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren’s syndrome highlight T cell-initiated autoimmunity. Ann. Rheum. Dis. 79, 268–275 (2020).

    CAS  PubMed  Google Scholar 

  57. Veyssiere, M. et al. A novel nonsense variant in SUPT20H gene associated with rheumatoid arthritis identified by whole exome sequencing of multiplex families. PLoS One 14, e0213387 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Okada, Y. et al. Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene. PLoS One 9, e87645 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).

    CAS  PubMed  Google Scholar 

  60. Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    PubMed  Google Scholar 

  61. Barbulescu, A. et al. Effectiveness of baricitinib and tofacitinib compared with bDMARDs in RA: results from a cohort study using nationwide Swedish register data. Rheumatology 61, 3952–3962 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal. Transduct. Target. Ther. 6, 402 (2021).

    PubMed  PubMed Central  Google Scholar 

  63. Muromoto, R., Oritani, K. & Matsuda, T. Current understanding of the role of tyrosine kinase 2 signaling in immune responses. World J. Biol. Chem. 13, 1–14 (2022).

    PubMed  PubMed Central  Google Scholar 

  64. López-López, S. et al. NOTCH4 exhibits anti-inflammatory activity in activated macrophages by interfering with interferon-γ and TLR4 signaling. Front. Immunol. 12, 734966 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Yang, K. et al. The mammalian SKIV2L RNA exosome is essential for early B cell development. Sci. Immunol. 7, eabn2888 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Matsumoto, Y. et al. Tankyrase represses autoinflammation through the attenuation of TLR2 signaling. J. Clin. Invest. 132, e140869 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lapenna, A., Omar, I. & Berger, M. A novel spontaneous mutation in the TAP2 gene unravels its role in macrophage survival. Immunology 150, 432–443 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoff, N. P., Degrandi, D., Hengge, U., Pfeffer, K. & Wurthner, J. U. Carboxypeptidase D: a novel TGF-β target gene dysregulated in patients with lupus erythematosus. J. Clin. Immunol. 27, 568–579 (2007).

    PubMed  Google Scholar 

  69. Wang, S., Wang, S., Li, H., Zhu, L. & Wang, Y. Inhibition of the TGF-β/Smads signaling pathway attenuates pulmonary fibrosis and induces anti-proliferative effect on synovial fibroblasts in rheumatoid arthritis. Int. J. Clin. Exp. Pathol. 12, 1835–1845 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Xing, S. et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J. Exp. Med. 216, 847–866 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilson, K. R., Villadangos, J. A. & Mintern, J. D. Dendritic cell Flt3 — regulation, roles and repercussions for immunotherapy. Immunol. Cell Biol. 99, 962–971 (2021).

    CAS  PubMed  Google Scholar 

  72. Fan, H. et al. Plasma TNFSF13B and TNFSF14 function as inflammatory indicators of severe adenovirus pneumonia in pediatric patients. Front. Immunol. 11, 614781 (2020).

    CAS  PubMed  Google Scholar 

  73. Simpfendorfer, K. R. et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum. Mol. Genet. 21, 3918–3925 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Morris, A. P., Zeggini, E. & Lindgren, C. M. Identification of novel putative rheumatoid arthritis susceptibility genes via analysis of rare variants. BMC Proc. 3, S131 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Bowes, J. et al. Rare variation at the TNFAIP3 locus and susceptibility to rheumatoid arthritis. Hum. Genet. 128, 627–633 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Franke, L. et al. Association analysis of copy numbers of FC-γ receptor genes for rheumatoid arthritis and other immune-mediated phenotypes. Eur. J. Hum. Genet. 24, 263–270 (2016).

    CAS  PubMed  Google Scholar 

  77. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Carress, H., Lawson, D. J. & Elhaik, E. Population genetic considerations for using biobanks as international resources in the pandemic era and beyond. BMC Genomics 22, 351 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Y. R. & Keating, B. J. Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations. Genome Med. 6, 91 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnson, J. L. Genetic Association Study Power Calculator. University of Michigan http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/index.html (2017).

  84. Chung, C. P., Rohan, P., Krishnaswami, S. & McPheeters, M. L. A systematic review of validated methods for identifying patients with rheumatoid arthritis using administrative or claims data. Vaccine 31, K41–K61 (2013).

    PubMed  Google Scholar 

  85. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    CAS  PubMed  Google Scholar 

  86. Xiao, R. & Boehnke, M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet. Epidemiol. 33, 453–462 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Zeggini, E. & Ioannidis, J. P. Meta-analysis in genome-wide association studies. Pharmacogenomics 10, 191–201 (2009).

    PubMed  Google Scholar 

  88. Hunt, K. A. et al. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 498, 232–235 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jiang, S. H. et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat. Commun. 10, 2201 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Bhagwat, M. Searching NCBI’s dbSNP database. Curr. Protoc. Bioinformatics https://doi.org/10.1002/0471250953.bi0119s32 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kocher, J. P. et al. The Biological Reference Repository (BioR): a rapid and flexible system for genomics annotation. Bioinformatics 30, 1920–1922 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Münz, M. et al. CSN and CAVA: variant annotation tools for rapid, robust next-generation sequencing analysis in the clinical setting. Genome Med. 7, 76 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Yang, H. & Wang, K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 10, 1556–1566 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–d894 (2019).

    CAS  PubMed  Google Scholar 

  96. de Sainte Agathe, J. M. et al. SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation. Hum. Genomics 17, 7 (2023).

    Google Scholar 

  97. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0720s76 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    CAS  PubMed  Google Scholar 

  99. Wai, H. A. et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet. Med. 22, 1005–1014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wiel, L. et al. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum. Mutat. 40, 1030–1038 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, X. et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat. Genet. 48, 4–6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chattopadhyay, S. et al. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc. Natl Acad. Sci. USA 106, 12412–12417 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ying, P. et al. Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk. Nat. Commun. 14, 5958 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    PubMed  Google Scholar 

  105. GTEx Portal. Bulk tissue gene expression for PTPN22 (ENSG00000134242.15). https://gtexportal.org/home/gene/PTPN22 (2021).

  106. Simmons, D. P. et al. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci. Immunol. 7, eabf2846 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. National Institutes of Health. Accelerating Medicines Partnership (AMP). https://www.nih.gov/research-training/accelerating-medicines-partnership-amp#:~:text=Launched%20in%202014%2C%20the%20Accelerating,to%20transform%20the%20current%20model (2022).

  108. The Arthritis and Autoimmune and Related Diseases Portal. Rheumatoid Arthritis Phase II (RA_PhaseII). ARK https://arkportal.synapse.org/Explore/Projects/DetailsPage?Project=RA_PhaseII (2024).

  109. Kronzer, V. L. et al. Timing of sinusitis and other respiratory tract diseases and risk of rheumatoid arthritis. Semin. Arthritis Rheum. 52, 151937 (2022).

    PubMed  Google Scholar 

  110. Kronzer, V. L., Crowson, C. S., Sparks, J. A., Vassallo, R. & Davis, J. M. III Investigating asthma, allergic disease, passive smoke exposure, and risk of rheumatoid arthritis. Arthritis Rheumatol. 71, 1217–1224 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. National Human Genome Research Institute. The Cost of Sequencing a Human Genome. https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost [online] (2021).

  112. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu, C. et al. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis. Arthritis Res. Ther. 23, 38 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Asquith, M. et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 71, 1642–1650 (2019).

    CAS  PubMed  Google Scholar 

  115. van Nies, J. A., Tsonaka, R., Gaujoux-Viala, C., Fautrel, B. & van der Helm-van Mil, A. H. Evaluating relationships between symptom duration and persistence of rheumatoid arthritis: does a window of opportunity exist? Results on the Leiden early arthritis clinic and ESPOIR cohorts. Ann. Rheum. Dis. 74, 806–812 (2015).

    PubMed  Google Scholar 

  116. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug. Discov. 13, 419–431 (2014).

    CAS  PubMed  Google Scholar 

  117. Koskinas, K. C. et al. Eligibility for PCSK9 inhibitors based on the 2019 ESC/EAS and 2018 ACC/AHA guidelines. Eur. J. Prev. Cardiol. 28, 59–65 (2021).

    PubMed  Google Scholar 

  118. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    CAS  PubMed  Google Scholar 

  119. Hasni, S. A. et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 12, 3391 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by the Rheumatology Research Foundation Scientist Development Award (V.L.K.).

Author information

Authors and Affiliations

Authors

Contributions

V.L.K., J.A.S. & J.R.C. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Vanessa L. Kronzer.

Ethics declarations

Competing interests

J.A.S. reports consulting fees from AbbVie, Amgen, Boehringer Ingelheim, Bristol Myers Squibb, Gilead, Inova Diagnostics, Janssen, Optum and Pfizer. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Mikael Benson, Saedis Saevarsdottir and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ABC: https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction

ANNOVAR: https://annovar.openbioinformatics.org/en/latest/user-guide/download/

CADD: https://cadd.gs.washington.edu/

CAVA: https://www.rdm.ox.ac.uk/research/lunter-group/lunter-group/cava-clinical-annotation-of-variants

gnomAD: https://gnomad.broadinstitute.org/

GTEx: https://gtexportal.org/home/

MetaDome: https://stuart.radboudumc.nl/metadome/

Polyphen-2: http://genetics.bwh.harvard.edu/pph2/

ProteinPaint: https://proteinpaint.stjude.org/

REVEL: https://sites.google.com/site/revelgenomics/about

SCENT: https://github.com/immunogenomics/SCENT

SIFT: https://sift.bii.a-star.edu.sg/

Single-Nucleotide Polymorphism database: https://www.ncbi.nlm.nih.gov/snp/

SpliceAI: https://spliceailookup.broadinstitute.org/

Glossary

Allele

One of two or more alternative forms at the same location of a gene or intergenic region.

Common variants

Genetic variants with a minor allele frequency >5%.

Copy number variation

Variation owing to insertions and deletions of sequences >1,000 base pairs, with copies at least 90% identical.

Exome

The small fraction of the genome (1% in humans) that directly encodes proteins.

Functional annotation

The process of attaching biological information to genetic variants.

Gene-based tests

A statistical approach to genetic analysis that conserves power by combining both the strength and the number of multiple variant associations into one test.

Genome

The complete set of genetic material in any organism.

Genome-wide association study

A study to determine the association of genetic variants throughout the genome with phenotypic traits.

Germline variants

Variants in germ-cell DNA that are inherited at conception.

Heritability

The proportion of a phenotype attributable to genetic factors.

Indel

Insertion or deletion of base pairs from a genetic sequence.

Low-frequency variants

Genetic variants with minor-allele frequency 1–5%.

Minor allele frequency

The frequency of the second most common allele in a given population.

Missing heritability

The gap between predicted and observed heritability, which is observed across many phenotypes.

Next-generation sequencing

(also known as massive parallel sequencing). A group of technologies for DNA sequencing that sequence many reads in parallel.

Phenome-wide association study

A study design for examination of the association between a variant of interest and a large number of phenotypes.

Phenotype

An observable trait that is influenced by genetics and environment.

Rare variants

Genetic variants with minor-allele frequency <1%.

Sanger sequencing

Also known as ‘first-generation sequencing’. A method of DNA sequencing that uses chain-terminating dideoxyneucleotides to produce labelled fragments corresponding to a DNA template.

Single-nucleotide polymorphism

(SNP). A genetic substitution at a single base pair that occurs in at least 1% of the population.

Single-nucleotide variant

(SNV). A genetic substitution at a single base pair.

Somatic variants

Variants that occur in DNA after conception.

Structural variation

Large-scale genomic variation, usually involving >50 base pairs.

Targeted sequencing

DNA sequencing targeting only specific genes.

Transcriptome

The set of all RNA transcripts generated from the genome.

Ultra-rare variants

Genetic variants with very low minor-allele frequency, often defined as <0.1%.

Whole-exome sequencing

DNA sequencing of the full exome.

Whole-genome sequencing

DNA sequencing of the full genome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronzer, V.L., Sparks, J.A., Raychaudhuri, S. et al. Low-frequency and rare genetic variants associated with rheumatoid arthritis risk. Nat Rev Rheumatol 20, 290–300 (2024). https://doi.org/10.1038/s41584-024-01096-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01096-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research