Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precision medicine in systemic lupus erythematosus

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease that has diverse clinical manifestations, ranging from restricted cutaneous involvement to life-threatening systemic organ involvement. The heterogeneity of pathomechanisms that lead to SLE contributes to between-patient variation in clinical phenotype and treatment response. Ongoing efforts to dissect cellular and molecular heterogeneity in SLE could facilitate the future development of stratified treatment recommendations and precision medicine, which is a considerable challenge for SLE. In particular, some genes involved in the clinical heterogeneity of SLE and some phenotype-related loci (STAT4, IRF5, PDGF genes, HAS2, ITGAM and SLC5A11) have an association with clinical features of the disease. An important part is also played by epigenetic varation (in DNA methylation, histone modifications and microRNAs) that influences gene expression and affects cell function without modifying the genome sequence. Immune profiling can help to identify an individual’s specific response to a therapy and can potentially predict outcomes, using techniques such as flow cytometry, mass cytometry, transcriptomics, microarray analysis and single-cell RNA sequencing. Furthermore, the identification of novel serum and urinary biomarkers would enable the stratification of patients according to predictions of long-term outcomes and assessments of potential response to therapy.

Key points

  • Systemic lupus erythematosus (SLE) has heterogeneous clinical presentation, disease course and treatment response.

  • Several new treatments targeting various pathways have gained approval or are under investigation, and a precision-medicine approach to treatment choice is needed.

  • Precision medicine is an emerging approach for disease treatment and prevention that uses individual variability (genomic, transcriptomic, proteomic and metabolomic) to identify patient subgroups that can benefit from specific treatments.

  • Disease-relevant immune subsets identified by immune profiling (helped by recent technological advances) are now shedding light on the cellular and molecular basis of clinical symptoms in individual patients with SLE.

  • Peripheral blood immunophenotyping is identifying molecular networks associated with disease activity, subtype and future relapse, which might provide biomarkers to facilitate the development of stratified treatment recommendations and SLE precision medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genes whose variants are associated with specific manifestations in systemic lupus erythematosus.
Fig. 2: Proposed roadmap towards personalized therapy in systemic lupus erythematosus.

Similar content being viewed by others

References

  1. Lisnevskaia, L., Murphy, G. & Isenberg, D. A. Systemic lupus erythematosus. Lancet 384, 1878–1888 (2014).

    Article  PubMed  Google Scholar 

  2. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Arriens, C. et al. AURORA phase 3 study demonstrates voclosporin statistical superiority over standard of care in lupus nephritis (LN). Ann. Rheum. Dis. 79, 172–173 (2020).

    Article  Google Scholar 

  4. Fanouriakis, A. et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 78, 736–745 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Van Vollenhoven, R. F. et al. 2021 DORIS definition of remission in SLE: final recommendations from an international task force. Lupus Sci. Med. 8, e000538 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lorenzo-Vizcaya, A. & Isenberg, D. A. Clinical trials in systemic lupus erythematosus – the dilemma. Why have phase III trials failed to confirm the promising results of phase II trials. Ann. Rheum. Dis. 82, 169–174 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Pitzalis, C., Choy, E. H. S. & Buch, M. H. Transforming clinical trials in rheumatology: towards patient-centric precision medicine. Nat. Rev. Rheumatol. 16, 590–599 (2020).

    Article  PubMed  Google Scholar 

  8. Furie, R. A. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 1, 11 (2019).

    Article  Google Scholar 

  9. Postal, M. et al. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Immunol. 67, 87–94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weckerle, C. E. et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 63, 1044–1053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crow, M. K., Kirou, K. A. & Wohlgemuth, J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 36, 481–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Merrill, J. T. et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol. 70, 266–276 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gordon, C. et al. Post hoc analysis of the phase II/III APRIL-SLE study: association between response to atacicept and serum biomarkers including BLyS and APRIL. Arthritis Rheumatol. 69, 122–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Morand, E. F. et al. Attainment of treat-to-target endpoints in SLE patients with high disease activity in the atacicept phase 2b ADDRESS II study. Rheumatology 59, 2930–2938 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wallace, D. J. et al. Safety and clinical activity of atacicept in the long-term extension of the phase 2b ADDRESS II study in systemic lupus erythematosus. Rheumatology 60, 5379–5389 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Furie, R. A. et al. Cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 100–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab (LUNAR) study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Reddy, V. et al. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology 56, 1227–1237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rivas-Larrauri, F. & Yamazaki-Nakashimada, M. A. Systemic lupus erythematosus: is it one disease? Reumatol. Clin. 12, 274–281 (2016).

    Article  PubMed  Google Scholar 

  22. Delgado-Vega, A. et al. Recent findings on genetics of systemic autoimmune diseases. Curr. Opin. Immunol. 22, 698–705 (2011).

    Article  Google Scholar 

  23. Alarcon-Segovia, D. et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 52, 1138–1147 (2005).

    Article  PubMed  Google Scholar 

  24. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN). Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  Google Scholar 

  25. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Deng, Y. & Tsao, B. P. Advances in lupus genetics and epigenetics. Curr. Opin. Rheumatol. 26, 482–492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kamitaki, N. et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582, 577–581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manolio, T. A. Bringing genome-wide association findings into clinical use. Nat. Rev. Genet. 14, 549–558 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brierley, M. M. & Fish, E. N. IFN-alpha/beta receptor interactions to biologic outcomes: understanding the circuitry. J. Interferon Cytokine Res. 22, 835–845 (2022).

    Article  Google Scholar 

  32. Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 4, e1000084 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sigurdsson, S. et al. A risk haplotype of STAT4 for systemic lupus erythematosus is over-expressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum. Mol. Genet. 17, 2868–2876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Svenungsson, E. et al. A STAT4 risk allele is associated with ischaemic cerebrovascular events and anti-phospholipid antibodies in systemic lupus erythematosus. Ann. Rheum. Dis. 69, 834–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Restivo, V. et al. Systematic review and meta-analysis of cardiovascular risk in rheumatological disease: symptomatic and non-symptomatic events in rheumatoid arthritis and systemic lupus erythematosus. Autoimmun. Rev. 21, 102925 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Barnes, B., Lubyova, B. & Pitha, P. M. On the role of IRF in host defense. J. Interferon Cytokine Res. 22, 59–71 (2022).

    Article  Google Scholar 

  37. Feng, D. et al. Irf5-deficient mice are protected from pristane-induced lupus via increased Th2 cytokines and altered IgG class switching. Eur. J. Immunol. 42, 1477–1487 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, S. et al. Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J. Clin. Invest. 130, 6700–6717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watkins, A. A. et al. IRF5 deficiency ameliorates lupus but promotes atherosclerosis and metabolic dysfunction in a mouse model of lupus-associated atherosclerosis. J. Immunol. 194, 1467–1479 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Ostendorf, T., Eitner, F. & Floege, J. The PDGF family in renal fibrosis. Pediatr. Nephrol. 27, 1041–1050 (2011).

    Article  PubMed  Google Scholar 

  41. Chung, S. A. et al. International Consortium for Systemic Lupus Erythematosus Genetics. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J. Am. Soc. Nephrol. 25, 2859–2870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kurogi, Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Med. Res. Rev. 23, 15–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Zoja, C. et al. Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney Int. 70, 97–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Feusi, E. et al. Enhanced hyaluronan synthesis in the MRL-Fas(lpr) kidney: role of cytokines. Nephron 83, 66–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Fagerholm, S. C. et al. The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus 22, 657–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Järvinen, T. M. et al. Polymorphisms of the ITGAM gene confer higher risk of discoid cutaneous than of systemic lupus erythematosus. PLoS ONE 5, e14212 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim-Howard, X. et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann. Rheum. Dis. 69, 1329–1332 (2010).

    Article  PubMed  Google Scholar 

  48. Taylor, K. E. et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 7, e1001311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chung, S. A. et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 7, e1001323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ho, R. C. et al. Genetic variants that are associated with neuropsychiatric systemic lupus erythematosus. J. Rheumatol. 43, 541–551 (2016).

    Article  PubMed  Google Scholar 

  51. Tsai, L. J. et al. The sodium-dependent glucose cotransporter SLC5A11 as an autoimmune modifier gene in SLE. Tissue Antigens 71, 14–26 (2008).

    Google Scholar 

  52. Zan, H. Epigenetics in lupus. Autoimmunity 47, 213–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. De Oliveira, N. F. P., de Souza, B. F. & de Castro Coêlho, M. UV radiation and its relation to DNA methylation in epidermal cells: a review. Epigenomes 4, 23 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sawalha, A. H. et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun. 9, 368–378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adams, D. E. & Shao, W. H. Epigenetic alterations in immune cells of systemic lupus erythematosus and therapeutic implications. Cells 11, 506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Perez-Hernandez, J. et al. Increased urinary exosomal microRNAs in patients with systemic lupus erythematosus. PLoS ONE 10, e0138618 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. So, B. Y. F., Yap, D. Y. H. & Chan, T. M. MicroRNAs in lupus nephritis—role in disease pathogenesis and clinical applications. Int. J. Mol. Sci. 22, 10737 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chi, M. et al. Immunological involvement of microRNAs in the key events of systemic lupus erythematosus. Front. Immunol. 12, 699684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, R., Hu, Y. & Bo, L. Genome variation and precision medicine in systemic lupus erythematosus. Methods Mol. Biol. 2204, 193–203 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shobha, V. et al. Identification and stratification of systemic lupus erythematosus patients into two transcriptionally distinct clusters based on IFN-I signature. Lupus 30, 762–774 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Haynes, W. A. et al. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 5, e122312 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Piga, M. et al. Risk factors of damage in early diagnosed systemic lupus erythematosus: results of the Italian multicentre Early Lupus Project inception cohort. Rheumatology 59, 2272–2281 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Morgan, C. et al. Individuals living with lupus: findings from the LUPUS UK Members Survey 2014. Lupus 27, 681–687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Billi, A. C. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl Med. 14, eabn2263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fava, A. et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight 5, e138345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang, M. et al. Diverse roles of NETosis in the pathogenesis of lupus. Front. Immunol. 13, 895216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Decout, A. et al. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petri, M. et al. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med. Genomics 12, 4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Northcott, M. et al. Glucocorticoid gene signatures in systemic lupus erythematosus and the effects of type I interferon: a cross-sectional and in-vitro study. Lancet Rheumatol. 3, e357–e370 (2021).

    Article  CAS  Google Scholar 

  75. Northcott, M. et al. Type 1 interferon status in systemic lupus erythematosus: a longitudinal analysis. Lupus Sci. Med. 9, e000625 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dörner, T. et al. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J. Immunol. Methods 363, 187–197 (2011).

    Article  PubMed  Google Scholar 

  77. Md Yusof, M. Y. et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1829–1836 (2017).

    Article  PubMed  Google Scholar 

  78. Von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Article  Google Scholar 

  79. Scalapino, K. J. et al. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J. Immunol. 177, 1451–1459 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Kubo, S. et al. Peripheral immunophenotyping identifies three subgroups based on T cell heterogeneity in lupus patients. Arthritis Rheumatol. 69, 2029–2037 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Sasaki, T. et al. Longitudinal immune cell profiling in early systemic lupus erythematosus. Arthritis Rheumatol. 74, 1808–1821 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. O’Gorman, W. E. et al. Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J. Autoimmun. 81, 74–89 (2017).

    Article  Google Scholar 

  83. Panousis, N. I. et al. Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity. Ann. Rheum. Dis. 78, 1079–1089 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Der, E. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2, e93009 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dunlap, G. S. et al. Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight 7, e156341 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Robinson, G. A. et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. Lancet Rheumatol. 2, e485–e496 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nakano, M. et al. Distinct transcriptome architectures underlying lupus establishment and exacerbation. Cell 185, 3375–3389 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Yu, H., Nagafuchi, Y. & Fujio, K. Clinical and immunological biomarkers for systemic lupus erythematosus. Biomolecules 11, 928 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 78, 1151–1159 (2019).

    Article  PubMed  Google Scholar 

  92. Zhang, R. et al. Increased expression of hub gene CXCL10 in peripheral blood mononuclear cells of patients with systemic lupus erythematosus. Exp. Ther. Med. 18, 4067–4075 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Narumi, S. et al. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine 12, 1561–1565 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Capecchi, R. et al. New biomarkers in SLE: from bench to bedside. Rheumatology 59, v12–v18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fragoso-Loyo, H. et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum. 56, 1242–1250 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Matsuoka, N. et al. Galectin-9 as a biomarker for disease activity in systemic lupus erythematosus. PLoS ONE 15, e0227069 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van den Hoogen, L. L. et al. Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 77, 1810–1814 (2018).

    Article  PubMed  Google Scholar 

  98. Oliveira, J. J. et al. The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Res. Ther. 20, 152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. El-Sherbiny, Y. M. et al. B cell tetherin: a flow cytometric cell-specific assay for response to type I interferon predicts clinical features and flares in systemic lupus erythematosus. Arthritis Rheumatol. 72, 769–779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zollars, E. et al. BAFF (B cell activating factor) transcript level in peripheral blood of patients with SLE is associated with same-day disease activity as well as global activity over the next year. Lupus Sci. Med. 2, e000063 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Theodorou, E. et al. B-cell activating factor and related genetic variants in lupus related atherosclerosis. J. Autoimmun. 92, 87–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Chun, H. Y. et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J. Clin. Immunol. 27, 461–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, Q., Sun, L. & Jin, L. Spot urine protein/creatinine ratio is unreliable estimate of 24 h proteinuria in lupus nephritis when the histological scores of activity index are higher. Lupus 24, 943–947 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Guedes Marques, M. et al. Random spot urine protein/creatinine ratio: a reliable method for monitoring lupus nephritis? Clin. Kidney J. 6, 590–594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, Y. H. & Song, G. G. Urinary MCP-1 as a biomarker for lupus nephritis: a meta-analysis. Z. Rheumatol. 76, 357–363 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Campbell, S. et al. Proinflammatory effects of TWEAK/Fn14 interactions in glomerular mesangial cells. J. Immunol. 176, 1889–1898 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Xuejing, Z. et al. Urinary TWEAK level as a marker of lupus nephritis activity in 46 cases. J. Biomed. Biotechnol. 2012, 359647 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Suttichet, T. B. et al. Urine TWEAK level as a biomarker for early response to treatment in active lupus nephritis: a prospective multicentre study. Lupus Sci. Med. 6, e000298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhao, Z. et al. TWEAK/Fn14 interactions are instrumental in the pathogenesis of nephritis in the chronic graft-versus-host model of systemic lupus erythematosus. J. Immunol. 179, 7949–7958 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Supavekin, S. et al. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 63, 1714–1724 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Rubinstein, T. et al. Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis. Rheumatology 49, 960–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mok, C. C. et al. Urinary angiostatin, CXCL4 and VCAM-1 as biomarkers of lupus nephritis. Arthritis Res. Ther. 20, 6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fasano, S. et al. Biomarker panels may be superior over single molecules in prediction of renal flares in systemic lupus erythematosus: an exploratory study. Rheumatology 59, 3193–3200 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Garantziotis, P. et al. Molecular taxonomy of systemic lupus erythematosus through data-driven patient stratification: molecular endotypes and cluster-tailored drugs. Front. Immunol. 13, 860726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, Y. F. et al. Identification of ST3AGL4, MFHAS1, CSNK2A2 and CD226 as loci associated with systemic lupus erythematosus (SLE) and evaluation of SLE genetics in drug repositioning. Ann. Rheum. Dis. 77, 1078–1084 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Toro-Domínguez, D., Carmona-Sáez, P. & Alarcón-Riquelme, M. E. Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis. Arthritis Res. Ther. 19, 54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lai, Z. W. et al. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet 391, 1186–1196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Toro-Domínguez, D. et al. Differential treatments based on drug-induced gene expression signatures and longitudinal systemic lupus erythematosus stratification. Sci. Rep. 9, 15502 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hubbard, E. L. et al. Analysis of gene expression from systemic lupus erythematosus synovium reveals myeloid cell-driven pathogenesis of lupus arthritis. Sci. Rep. 10, 17361 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.F. and A.M. researched data for the article. S.F., A.M., D.A.I. and F.C. contributed substantially to the discussion of content. S.F. wrote the article. All authors contributed to review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Serena Fasano or Francesco Ciccia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Antonis Fanouriakis, Mariele Gatto and Keishi Fujio for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasano, S., Milone, A., Nicoletti, G.F. et al. Precision medicine in systemic lupus erythematosus. Nat Rev Rheumatol 19, 331–342 (2023). https://doi.org/10.1038/s41584-023-00948-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00948-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing