Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission

Abstract

Synovial tissue macrophages (STMs) were principally recognized as having a pro-inflammatory role in rheumatoid arthritis (RA), serving as the main producers of pathogenic tumour necrosis factor (TNF). Recent advances in single-cell omics have facilitated the discovery of distinct STM populations, providing an atlas of discrete phenotypic clusters in the context of healthy and inflamed joints. Interrogation of the functions of distinct STM populations, via ex vivo and experimental mouse models, has re-defined our understanding of STM biology, opening up new opportunities to better understand the pathology of the arthritic joint. These works have identified STM subpopulations that form a protective lining barrier within the synovial membrane and actively participate in the remission of RA. We discuss how distinct functions of STM clusters shape the synovial tissue environment in health, during inflammation and in disease remission, as well as how an increased understanding of STM heterogeneity might aid the prediction of clinical outcomes and inform novel treatments for RA.

Key points

  • New technologies have identified macrophage populations in both the human and mouse joint synovium, with distinct homeostatic, protective and inflammatory functions.

  • Tissue-resident synovial tissue macrophages (STMs) form an immune-protective lining barrier, control the development of experimental arthritis, and actively participate in maintaining RA in remission.

  • The progression of RA is associated with phenotypic changes in resident STMs and the influx of monocytes that differentiate into STMs with pro-inflammatory functions, driving chronic pathology.

  • Capitalizing on the joint-protective and inflammation-resolving biology of newly identified STM clusters might assist the development of novel therapeutics that are aimed at treating arthritis and maintaining disease remission.

  • The relative proportions of STM clusters can predict a flare of arthritis following treatment tapering or cessation and might be a useful component of flare prediction algorithms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A novel taxonomy of human and mouse STMs defined by single cell omics.
Fig. 2: Diverse functions of STM clusters in health, inflammation and remission in RA.
Fig. 3: STM clusters as novel biomarkers of treatment-response in RA.

Similar content being viewed by others

References

  1. Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe, S., Alexander, M., Misharin, A. V. & Budinger, G. R. S. The role of macrophages in the resolution of inflammation. J. Clin. Invest. 129, 2619–2628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001 (2018).

    Article  PubMed  Google Scholar 

  4. Mulherin, D., Fitzgerald, O. & Bresnihan, B. Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheumatol. 39, 115–124 (1996).

    Article  CAS  Google Scholar 

  5. Tak, P. P. et al. Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheumatol. 40, 217–225 (1997).

    Article  CAS  Google Scholar 

  6. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature https://doi.org/10.1038/s41586-019-1471-1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Misharin, A. V. et al. Nonclassical Ly6C monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 9, 591–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lemke, G. & Rothlin, C. V. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8, 327–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Wood, M. J. et al. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight https://doi.org/10.1172/jci.insight.125325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yager, N. et al. Ex vivo mass cytometry analysis reveals a profound myeloid proinflammatory signature in psoriatic arthritis synovial fluid. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2021-220280 (2021).

    Article  PubMed  Google Scholar 

  15. Alivernini, S. et al. Tapering and discontinuation of TNF-alpha blockers without disease relapse using ultrasonography as a tool to identify patients with rheumatoid arthritis in clinical and histological remission. Arthritis Res. Ther. 18, 39 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Firestein, G. S., Budd, R. C., Gabriel, S. E., McInnes, I. B. & O’Dell, J. R. Kelley and Firestein’s textbook of rheumatology. 10th edn. (Elsevier Health Sciences, 2016).

  17. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith, I. D. et al. Rapid in situ chondrocyte death induced by Staphylococcus aureus toxins in a bovine cartilage explant model of septic arthritis. Osteoarthritis Cartilage 21, 1755–1765 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, Q. Q. et al. Critical role of synovial tissue-resident macrophage niche in joint homeostasis and suppression of chronic inflammation. Sci. Adv. https://doi.org/10.1126/sciadv.abd0515 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chakarov, S. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science https://doi.org/10.1126/science.aau0964 (2019).

    Article  PubMed  Google Scholar 

  24. Ural, B. B. et al. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aax8756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pfefferle, M. et al. Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes. J. Clin. Invest. 130, 5576–5590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 326–341.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Lawrance, W., Banerji, S., Day, A. J., Bhattacharjee, S. & Jackson, D. G. Binding of hyaluronan to the native lymphatic vessel endothelial receptor LYVE-1 is critically dependent on receptor clustering and hyaluronan organization. J. Biol. Chem. 291, 8014–8030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alivernini, S. et al. Inclusion of synovial tissue-derived characteristics in a nomogram for the prediction of treatment response in treatment-naive rheumatoid arthritis patients. Arthritis Rheumatol. 73, 1601–1613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Firestein, G. S. & McInnes, I. B. Immunopathogenesis of rheumatoid arthritis. Immunity 46, 183–196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013).

    Article  PubMed  Google Scholar 

  33. Yeo, L. et al. Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Ann. Rheum. Dis. 75, 763–771 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Smiljanovic, B. et al. Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint. Ann. Rheum. Dis. 77, 300–308 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Thurlings, R. M. et al. Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease. PLoS ONE 4, e7865 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Herenius, M. M. et al. Monocyte migration to the synovium in rheumatoid arthritis patients treated with adalimumab. Ann. Rheum. Dis. 70, 1160–1162 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Weiss, M. et al. IRF5 controls both acute and chronic inflammation. Proc. Natl Acad. Sci. USA 112, 11001–11006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kahles, F., Findeisen, H. M. & Bruemmer, D. Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab. 3, 384–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. MacDonald, L. et al. COVID-19 and RA share an SPP1 myeloid pathway that drives PD-L1+ neutrophils and CD14+ monocytes. JCI Insight https://doi.org/10.1172/jci.insight.147413 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Simmons, D. P. et al. SLAMF7 engagement superactivates macrophages in acute and chronic inflammation. Sci. Immunol. 7, eabf2846 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Cooles, F. A. H. et al. The interferon gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer response to initial therapy. J. Allergy Clin. Immunol. 141, 445–448 e444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olsson, A. M. et al. miR-155-overexpressing monocytes resemble HLAhighISG15+ synovial tissue macrophages from patients with rheumatoid arthritis and induce polyfunctional CD4+ T-cell activation. Clin. Exp. Immunol. 207, 188–198 (2022).

    Article  PubMed  Google Scholar 

  43. Kurowska-Stolarska, M. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA 108, 11193–11198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aau8587 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roberts, C. A., Dickinson, A. K. & Taams, L. S. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis. Front. Immunol. 6, 571 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. van der Heijde, D. et al. Comparison of different definitions to classify remission and sustained remission: 1 year TEMPO results. Ann. Rheum. Dis. 64, 1582–1587 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alivernini, S. et al. Synovial features of patients with rheumatoid arthritis and psoriatic arthritis in clinical and ultrasound remission differ under anti-TNF therapy: a clue to interpret different chances of relapse after clinical remission? Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2016-210424 (2017).

    Article  PubMed  Google Scholar 

  49. Makinen, H., Kautiainen, H., Hannonen, P. & Sokka, T. Is DAS28 an appropriate tool to assess remission in rheumatoid arthritis? Ann. Rheum. Dis. 64, 1410–1413 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kawashiri, S. Y. et al. Ultrasound-detected bone erosion is a relapse risk factor after discontinuation of biologic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis whose ultrasound power Doppler synovitis activity and clinical disease activity are well controlled. Arthritis Res. Ther. 19, 108 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Dirven, L. et al. Changes in hand bone mineral density and the association with the level of disease activity in patients with rheumatoid arthritis: bone mineral density measurements in a multicenter randomized clinical trial. Arthritis Care Res. 63, 1691–1699 (2011).

    Article  CAS  Google Scholar 

  52. Nagy, G. & van Vollenhoven, R. F. Sustained biologic-free and drug-free remission in rheumatoid arthritis, where are we now? Arthritis Res. Ther. 17, 181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Orange, D. E. et al. RNA identification of PRIME cells predicting rheumatoid arthritis flares. N. Engl. J. Med. 383, 218–228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ajeganova, S. & Huizinga, T. Sustained remission in rheumatoid arthritis: latest evidence and clinical considerations. Ther. Adv. Musculoskelet. Dis. 9, 249–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heimans, L. et al. Two-year results of disease activity score (DAS)-remission-steered treatment strategies aiming at drug-free remission in early arthritis patients (the IMPROVED-study). Arthritis Res. Ther. 18, 23 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. van der Touw, W., Chen, H. M., Pan, P. Y. & Chen, S. H. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol. Immunother. 66, 1079–1087 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yuan, X., Yang, B. H., Dong, Y., Yamamura, A. & Fu, W. CRIg, a tissue-resident macrophage specific immune checkpoint molecule, promotes immunological tolerance in NOD mice, via a dual role in effector and regulatory T cells. Elife https://doi.org/10.7554/eLife.29540 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li, J. et al. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat. Commun. 8, 1322 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Katschke, K. J. Jr et al. A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J. Exp. Med. 204, 1319–1325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Moel, E. C. et al. In RA, becoming seronegative over the first year of treatment does not translate to better chances of drug-free remission. Ann. Rheum. Dis. 77, 1836–1838 (2018).

    Article  PubMed  CAS  Google Scholar 

  61. Jansen, D. et al. Conversion to seronegative status after abatacept treatment in patients with early and poor prognostic rheumatoid arthritis is associated with better radiographic outcomes and sustained remission: post hoc analysis of the AGREE study. RMD Open 4, e000564 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bozec, A. et al. Abatacept blocks anti-citrullinated protein antibody and rheumatoid factor mediated cytokine production in human macrophages in IDO-dependent manner. Arthritis Res. Ther. 20, 24 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Haschka, J. et al. Relapse rates in patients with rheumatoid arthritis in stable remission tapering or stopping antirheumatic therapy: interim results from the prospective randomised controlled RETRO study. Ann. Rheum. Dis. 75, 45–51 (2016).

    Article  PubMed  Google Scholar 

  64. Rech, J. et al. Prediction of disease relapses by multibiomarker disease activity and autoantibody status in patients with rheumatoid arthritis on tapering DMARD treatment. Ann. Rheum. Dis. 75, 1637–1644 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Varol, C., Mildner, A. & Jung, S. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33, 643–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Cox, N., Pokrovskii, M., Vicario, R. & Geissmann, F. Origins, biology, and diseases of tissue macrophages. Annu. Rev. Immunol. 39, 313–344 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Samaniego, R. et al. Macrophage uptake and accumulation of folates are polarization-dependent in vitro and in vivo and are regulated by activin A. J. Leukoc. Biol. 95, 797–808 (2014).

    Article  PubMed  CAS  Google Scholar 

  69. Xia, W. et al. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 113, 438–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Turk, M. J. et al. Folate-targeted imaging of activated macrophages in rats with adjuvant-induced arthritis. Arthritis Rheum. 46, 1947–1955 (2002).

    Article  PubMed  Google Scholar 

  71. Machacek, C. et al. Folate receptor beta regulates integrin CD11b/CD18 adhesion of a macrophage subset to collagen. J. Immunol. 197, 2229–2238 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. van de Laar, L. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755–768 (2016).

    Article  PubMed  CAS  Google Scholar 

  73. Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat. Immunol. 21, 145–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schneider, C. et al. Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 15, 1026–1037 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Nakamura, A. et al. Transcription repressor Bach2 is required for pulmonary surfactant homeostasis and alveolar macrophage function. J. Exp. Med. 210, 2191–2204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morales-Nebreda, L., Misharin, A. V., Perlman, H. & Budinger, G. R. The heterogeneity of lung macrophages in the susceptibility to disease. Eur. Respir. Rev. 24, 505–509 (2015).

    Article  PubMed  Google Scholar 

  78. Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages: friend or foe? RMD Open 3, e000527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhou, B. et al. The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflammatory injury. Nat. Immunol. 21, 1430–1443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alivernini, S. et al. Driving chronicity in rheumatoid arthritis: perpetuating role of myeloid cells. Clin. Exp. Immunol. 193, 13–23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, F. et al. IFN-gamma and TNF-alpha drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 13, 64 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Murthy, S. et al. Danger signal extracellular calcium initiates differentiation of monocytes into SPP1/osteopontin-producing macrophages. Cell Death Dis. 13, 53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jager, E. et al. Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nat. Commun. 11, 4243 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Roberts, A. W. et al. Tissue-resident macrophages are locally programmed for silent clearance of apoptotic cells. Immunity 47, 913–927.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mahajan, S. et al. Nuclear receptor Nr4a2 promotes alternative polarization of macrophages and confers protection in sepsis. J. Biol. Chem. 290, 18304–18314 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 79, 685–699 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Haringman, J. J. et al. Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Cutolo, M. et al. Anti-inflammatory effects of leflunomide in combination with methotrexate on co-culture of T lymphocytes and synovial macrophages from rheumatoid arthritis patients. Ann. Rheum. Dis. 65, 728–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Catrina, A. I. et al. Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report. Arthritis Rheumatol. 52, 61–72 (2005).

    Article  CAS  Google Scholar 

  90. Boutet, M. A. et al. Novel insights into macrophage diversity in rheumatoid arthritis synovium. Autoimmun. Rev. 20, 102758 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Friedman, B. & Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt. Bone Spine 86, 301–307 (2019).

    Article  CAS  Google Scholar 

  92. Elnakat, H. & Ratnam, M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev. 56, 1067–1084 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Nerviani, A. et al. A pauci-immune synovial pathotype predicts inadequate response to TNFα-blockade in rheumatoid arthritis patients. Front. Immunol. 11, 845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wijbrandts, C. A. et al. The clinical response to infliximab in rheumatoid arthritis is in part dependent on pretreatment tumour necrosis factor alpha expression in the synovium. Ann. Rheum. Dis. 67, 1139–1144 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Dennis, G. Jr et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Andersen, M. et al. Synovial explant inflammatory mediator production corresponds to rheumatoid arthritis imaging hallmarks: a cross-sectional study. Arthritis Res. Ther. 16, R107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Andersen, M. et al. Association between IL-6 production in synovial explants from rheumatoid arthritis patients and clinical and imaging response to biologic treatment: a pilot study. PLoS One 13, e0197001 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Michelutti, A. et al. B-cell subsets in the joint compartments of seropositive and seronegative rheumatoid arthritis (RA) and No-RA arthritides express memory markers and ZAP70 and characterize the aggregate pattern irrespectively of the autoantibody status. Mol. Med. 17, 901–909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clayton, S. A., MacDonald, L., Kurowska-Stolarska, M. & Clark, A. R. Mitochondria as key players in the pathogenesis and treatment of rheumatoid arthritis. Front. Immunol. 12, 673916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science https://doi.org/10.1126/science.aai8132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cai, B. et al. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc. Natl Acad. Sci. USA 113, 6526–6531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Triantafyllou, E. et al. MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut https://doi.org/10.1136/gutjnl-2016-313615 (2017).

    Article  PubMed  Google Scholar 

  107. Eom, D. S. & Parichy, D. M. A macrophage relay for long-distance signaling during postembryonic tissue remodeling. Science 355, 1317–1320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research into Inflammatory Arthritis Centre Versus Arthritis UK (grant no. 22072) and the Versus Arthritis UK project grant (no. 22253 and 22273) to M.K-S, and Linea D1 (Università Cattolica del Sacro Cuore, no. R4124500654) and Ricerca Finalizzata Ministero della Salute (no. GR-2018-12366992) to S.A.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the Review.

Corresponding authors

Correspondence to Mariola Kurowska-Stolarska or Stefano Alivernini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Gerhard Krönke, who co-reviewed with Katharina Knab, and A. Puig-Kröger for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PEAC RNA-seq data: https://peac.hpc.qmul.ac.uk

Single-cell portal: https://singlecell.broadinstitute.org/single_cell/study/SCP279/amp-phase-1

Synovial atlas of macrophages in RA: http://cellatlas.mvls.gla.ac.uk/MacrophageRA/

Glossary

Disease activity score

A composite index to quantify RA activity, calculated with a formula including painful and swollen joints (over 44 or 28 joints), inflammatory lab tests (erythrocyte sedimentation rate or C-reactive protein) and patients’ Global Health evaluation.

Synovial membrane

Specialized connective tissue that lines the inner surface of capsules of synovial joints, tendon sheath and bursae.

Monocytopoiesis

A process that leads to the differentiation of monocytes from hematopoietic precursors in the bone marrow.

Boolean

The ACR/EULAR definition of remission by which, at any time point, a patient must satisfy all of the following: painful joint ≤1, swollen joint ≤1, C-reactive protein ≤1 mg/dl and Patient Global Assessment ≤1 (on a 0–10 scale).

Epigenetic imprinting

Changes in the chromatin structure around a specific gene that is induced by the environment and that makes a gene primed for either higher or lower expression levels. These changes can be passed from mother to daughter cell.

Omics

Genomics, proteomics, metabolomics and transcriptomics aimed at the collective characterization and quantification of pools of biological molecules revealing the biology of the cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurowska-Stolarska, M., Alivernini, S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat Rev Rheumatol 18, 384–397 (2022). https://doi.org/10.1038/s41584-022-00790-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00790-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing