Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Foraging for foundations in decision neuroscience: insights from ethology

Abstract

Modern decision neuroscience offers a powerful and broad account of human behaviour using computational techniques that link psychological and neuroscientific approaches to the ways that individuals can generate near-optimal choices in complex controlled environments. However, until recently, relatively little attention has been paid to the extent to which the structure of experimental environments relates to natural scenarios, and the survival problems that individuals have evolved to solve. This situation not only risks leaving decision-theoretic accounts ungrounded but also makes various aspects of the solutions, such as hard-wired or Pavlovian policies, difficult to interpret in the natural world. Here, we suggest importing concepts, paradigms and approaches from the fields of ethology and behavioural ecology, which concentrate on the contextual and functional correlates of decisions made about foraging and escape and address these lacunae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example of classic apple-picking task.
Fig. 2: Example of foraging and escape choice, and the cost-of-fleeing and cost-of-staying curves.

Similar content being viewed by others

References

  1. Krebs, J. R. & Davies, N. B. An Introduction To Behavioural Ecology (Blackwell Scientific Publications, 1993).

  2. Cooper, W. E. Jr & Blumstein, D. T. Escaping From Predators: An integrative View Of Escape Decisions (Cambridge University Press, 2015).

  3. Ydenberg, R. C., Brown, J. S. & Stephens, D. W. Foraging: Behavior And Ecology (The University of Chicago Press, 2007).

  4. Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).

    Article  PubMed  CAS  Google Scholar 

  5. Fretwell, S. D. & Lucas, H. L. Jr On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1970).

    Article  Google Scholar 

  6. Pompilio, L., Kacelnik, A. & Behmer, S. T. State-dependent learned valuation drives choice in an invertebrate. Science 311, 1613–1615 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Krebs, J. R., Kacelnik, A. & Taylor, P. Test of optimal sampling by foraging great tits. Nature 275, 27–31 (1978).

    Article  Google Scholar 

  8. Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion decision model: current issues and history. Trends Cogn. Sci. 20, 260–281 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Theory and Research (eds Black, A. H. & Prokasy, W. F.) 64–99 (Appleton-Century-Crofts, 1972).

  11. Sutton, R. S. & Barto, A. Reinforcement Learning: An Introduction (MIT Press, 1998).

  12. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Hayden, B. Y., Pearson, J. M. & Platt, M. L. Neuronal basis of sequential foraging decisions in a patchy environment. Nat. Neurosci. 14, 933–939 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mobbs, D. et al. Foraging under competition: the neural basis of input matching in humans. J. Neurosci. 33, 9866–9872 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kolling, N., Behrens, T. E. J., Mars, R. B. & Rushworth, M. F. S. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Constantino, S. M. & Daw, N. D. Learning the opportunity cost of time in a patch-foraging task. Cogn. Affect. Behav. Neurosci. 15, 837–853 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shenhav, A., Straccia, M. A., Cohen, J. D. & Botvinick, M. M. Anterior cingulate engagement in a foraging context reflects choice difficulty, not foraging value. Nat. Neurosci. 17, 1249–1254 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Brase, G. L. Behavioral science integration: a practical framework of multi-level converging evidence for behavioral science theories. New Ideas Psychol. 33, 8–20.

  19. Anderson, D. & Perona, P. Toward a science of computational ethology. Neuron 84, 18–31 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Barch, D. M. et al. Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 35, 1373–1380 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. King-Casas, B. et al. Getting to know you: reputation and trust in a two-person economic exchange. Science 308, 78–83 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. Frederick, S., Loewenstein, G. & O’donoghue, T. Time discounting and time preference: a critical review. J. Econ. Lit. 40, 351–401 (2002).

    Article  Google Scholar 

  25. Ainslie, G. & Haslam, N. in Choice Over Time (eds Loewenstein, G. & Elster, J.) 57–92 (Russell Sage Foundation, 1992).

  26. Pearson, J. M., Watson, K. K. & Platt, M. L. Decision making: the neuroethological turn. Neuron 82, 950–965 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Santos, L. R. & Rosati, A. G. The evolutionary roots of human decision making. Annu. Rev. Psychol. 66, 321–347 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Volz, K. G. & Gigerenzer, G. Cognitive processes in decisions under risk are not the same as in decisions under uncertainty. Front. Neurosci. 6, 105 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. McNamara, J. M. & Houston, A. I. Integrating function and mechanism. Trends Ecol. Evol. 24, 670–675 (2009).

    Article  PubMed  Google Scholar 

  30. Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).

    Article  PubMed  Google Scholar 

  31. Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, 1986).

  32. Caraco, T., Martindale, S. & Whittam, T. S. An empirical demonstration of risk-sensitive foraging preferences. Anim. Behav. 28, 820–830 (1980).

    Article  Google Scholar 

  33. Houston, A. I. & McNamara, J. M. Models Of Adaptive Behaviour, An Approach Based On State (Cambridge University Press, 1999).

  34. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. White, D. W., Dill, L. M. & Crawford, C. B. A. Common, conceptual framework for behavioral ecology and evolutionary psychology. Evol. Psychol. 5, 275–288 (2007).

    Article  Google Scholar 

  36. Elner, R. W. & Hughes, R. N. Energy maximization in the diet of the shore crab, carcinus maenas. J. Anim. Ecol. 47, 103 (1978).

    Article  Google Scholar 

  37. Kacelnik, A. Central place foraging in starlings (Sturnus vulgaris). I. Patch residence time. J. Anim. Ecol. 53, 283 (1984).

    Article  Google Scholar 

  38. Switzer, P. V. & Cristol, D. A. Avian prey-dropping behavior I: effects of prey characteristics and prey loss. Behav. Ecol. 10, 213–219 (1999).

    Article  Google Scholar 

  39. Walton, M. E., Croxson, P. L., Rushworth, M. F. S. & Bannerman, D. M. The mesocortical dopamine projection to anterior cingulate cortex plays no role in guiding effort-related decisions. Behav. Neurosci. 119, 323–328 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Kennerley, S. W., Behrens, T. E. J. & Wallis, J. D. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat. Neurosci. 14, 1581–1589 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pessiglione, M. et al. How the brain translates money into force: a neuroimaging study of subliminal motivation. Science 316, 904–906 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kool, W. & Botvinick, M. A labor/leisure tradeoff in cognitive control. J. Exp. Psychol. Gen. 143, 131–141 (2014).

    Article  PubMed  Google Scholar 

  43. Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E. J. & Rushworth, M. F. S. Effort-based cost-benefit valuation and the human brain. J. Neurosci. 29, 4531–4541 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kurniawan, I. T., Guitart-Masip, M., Dayan, P. & Dolan, R. J. Effort and valuation in the brain: the effects of anticipation and execution. J. Neurosci. 33, 6160–6169 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Walton, M. E., Bannerman, D. M., Alterescu, K. & Rushworth, M. F. S. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J. Neurosci. 23, 6475–6479 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. Rudebeck, P. H., Walton, M. E., Smyth, A. N., Bannerman, D. M. & Rushworth, M. F. S. Separate neural pathways process different decision costs. Nat. Neurosci. 9, 1161–1168 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Blain, B., Hollard, G. & Pessiglione, M. Neural mechanisms underlying the impact of daylong cognitive work on economic decisions. Proc. Natl Acad. Sci. USA 113, 6967–6972 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Parvizi, J., Rangarajan, V., Shirer, W. R., Desai, N. & Greicius, M. D. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80, 1359–1367 (2013).

    Article  PubMed  CAS  Google Scholar 

  49. Kolling, N. & Akam, T. (Reinforcement?) Learning to forage optimally. Curr. Opin. Neurobiol. 46, 162–169 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. Hutchinson, J. M. C., Wilke, A. & Todd, P. M. Patch leaving in humans: can a generalist adapt its rules to dispersal of items across patches? Anim. Behav. 75, 1331–1349 (2008).

    Article  Google Scholar 

  51. Wilke, A., Hutchinson, J. M. C., Todd, P. M. & Czienskowski, U. Fishing for the right words: decision rules for human foraging behavior in internal search tasks. Cogn. Sci. 33, 497–529 (2009).

    Article  PubMed  Google Scholar 

  52. Stephens, D. W. & Anderson, D. The adaptive value of preference for immediacy: when shortsighted rules have farsighted consequences. Behav. Ecol. 12, 330–339 (2000).

    Article  Google Scholar 

  53. Pirolli, P. & Card, S. Information foraging. Psychol. Rev. 106, 643–675 (1999).

    Article  Google Scholar 

  54. Turrin, C., Fagan, N. A., Dal Monte, O. & Chang, S. W. C. Social resource foraging is guided by the principles of the marginal value theorem. Sci. Rep. 7, 11274 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hills, T. T., Jones, M. N. & Todd, P. M. Optimal foraging in semantic memory. Psychol. Rev. 119, 431–440 (2012).

    Article  PubMed  Google Scholar 

  56. Krebs, J. R., Erichsen, J. T., Webber, M. I. & Charnov, E. L. Optimal prey selection in the great tit (Parus major). Anim. Behav. 25, 30–38 (1977).

    Article  Google Scholar 

  57. Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. Kolling, N. et al. Value, search, persistence and model updating in anterior cingulate cortex. Nat. Neurosci. 19, 1280–1285 (2016).

    Article  PubMed  CAS  Google Scholar 

  59. Wright, N. D. et al. Human responses to unfairness with primary rewards and their biological limits. Sci. Rep. 2, 593 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Williams, E. F., Pizarro, D., Ariely, D. & Weinberg, J. D. The Valjean effect: visceral states and cheating. Emotion 16, 897–902 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J. Neurosci. 39, 12315–12320 (2009).

    Article  CAS  Google Scholar 

  62. D’Ardenne, K., McClure, S. M., Nystrom, L. E. & Cohen, J. D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 1264–1267 (2008).

  63. Izuma, K., Saito, D. N. & Sadato, N. Processing of social and monetary rewards in the human striatum. Neuron 58, 284–294 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. Nash, J. F. Non-cooperative games. Ann. Math. 54, 286–295 (1951).

    Article  Google Scholar 

  65. Von Neumann, J. & Morgenstern, O. Theory Of Games And Economic Behavior (Princeton University Press, 2007).

  66. Barnard, C. J. & Sibly, R. M. Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim. Behav. 29, 543–550 (1981).

    Article  Google Scholar 

  67. Maynard Smith, J. Evolution And The Theory of Games (Cambridge University Press, 1982).

  68. Kennedy, M. & Gray, R. D. Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution. Oikos 68, 158 (1993).

    Article  Google Scholar 

  69. Harper, D. G. C. Competitive foraging in mallards: ‘ideal free’ ducks. Anim. Behav. 30, 575–584 (1982).

    Article  Google Scholar 

  70. Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article  Google Scholar 

  71. Abrahams, M. V., Dill, L. M., Abrahams, M. V. & Dill, L. M. A determination of the energetic equivalence of the risk of predation. Ecology 70, 999–1007 (1989).

    Article  Google Scholar 

  72. Lima, S. L. & Valone, T. J. Influence of predation risk on diet selection: a simple example in the grey squirrel. Anim. Behav. 34, 536–544 (1986).

    Article  Google Scholar 

  73. McNamara, J. M. & Houston, A. I. A common currency for behavioral decisions. Am. Nat. 127, 358–378 (1986).

    Article  Google Scholar 

  74. Fisher, R. A. The Genetical Theory Of Natural Selection (Dover, 1958).

  75. Mangel, M. & Clark, C. W. Dynamic Modeling In Behavioural Ecology (Princeton University Press, 1988).

  76. Ydenberg, R. C. & Dill, L. M. Advances In The Study Of Behavior (eds Rosenblatt, J. S., Beer, C., Busnelz, M. C. & Slater, P. J. B.) 229–249 (Elsevier, 1986).

  77. Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. Biol. Sci. 272, 2627–2634 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mobbs, D. et al. When fear is near: threat imminence elicits prefrontal - periaqueductal grey shifts in humans. Science 317, 1079–1083 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Meyer, C. T., Padmala, S. & Pessoa, L. Tracking dynamic threat imminence. bioRxiv https://doi.org/10.1101/183798 (2017).

    Article  Google Scholar 

  80. Mobbs, D. et al. From threat to fear: the neural organization of defensive fear systems in humans. J. Neurosci. 29, 12236–12243 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gold, A. L., Morey, R. A. & McCarthy, G. Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction. Biol. Psychiatry 77, 394–403 (2015).

    Article  PubMed  Google Scholar 

  82. Bach, D. R. et al. Human hippocampus arbitrates approach-avoidance conflict. Curr. Biol. 24, 1435 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Korn, C. W. et al. Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine-sensitive approach-avoidance conflict test. Biol. Psychiatry 82, 522–531 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. McNaughton, N. & Corr, P. J. A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 28, 285–305 (2004).

    Article  PubMed  Google Scholar 

  85. Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Vale, R., Evans, D. A. & Branco, T. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27, 1342–1349 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Blanchard, D. C. Translating dynamic defense patterns from rodents to people. Neurosci. Biobehav. Rev. 76, 22–28 (2017).

    Article  PubMed  Google Scholar 

  88. Qi, S. et al. How cognitive and reactive fear circuits optimize escape decisions in humans. Proc. Natl Acad. Sci. USA 115, 3186–3191 (2018).

    Article  PubMed  CAS  Google Scholar 

  89. Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mikhael, J. G. & Bogacz, R. Learning reward uncertainty in the basal ganglia. PLoS Comput. Biol. 12, e1005062 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Botvinick, M. & Braver, T. Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev. Psychol. 66, 83–113 (2015).

    Article  PubMed  Google Scholar 

  92. Boureau, Y.-L., Sokol-Hessner, P. & Daw, N. D. Deciding how to decide: self-control and meta-decision making. Trends Cogn. Sci. 19, 700–710 (2015).

    Article  PubMed  Google Scholar 

  93. Reynolds, J. J. & McCrea, S. M. Environmental constraints on the functionality of inhibitory self-control: sometimes you should eat the donut. Self and Identity https://doi.org/10.1080/15298868.2017.1354066 (2017).

  94. Nesse, R. M. An evolutionary perspective on psychiatry. Compr. Psychiatry 25, 575–580 (1984).

    Article  PubMed  CAS  Google Scholar 

  95. Perusini, J. N. & Fanselow, M. S. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn. Mem. 22, 417–425 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L. & Platt, M. L. A. Primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology 42, 1931–1939 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Addicott, M. A., Pearson, J. M., Kaiser, N., Platt, M. L. & McClernon, F. J. Suboptimal foraging behavior: a new perspective on gambling. Behav. Neurosci. 129, 656–665 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Trimmer, P. C., Higginson, A. D., Fawcett, T. W., McNamara, J. M. & Houston, A. I. Adaptive learning can result in a failure to profit from good conditions: implications for understanding depression. Evol. Med. Public Health 2015, 123–135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Huys, Q. J. M., Daw, N. D. & Dayan, P. Depression: a decision-theoretic analysis. Annu. Rev. Neurosci. 38, 1–23 (2015).

    Article  PubMed  CAS  Google Scholar 

  100. Marsh, B. & Kacelnik, A. Framing effects and risky decisions in starlings. Proc. Natl Acad. Sci. USA 99, 3352–3355 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Monteiro, T., Vasconcelos, M. & Kacelnik, A. Starlings uphold principles of economic rationality for delay and probability of reward. Proc. Biol. Sci. 280, 20122386 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kalenscher, T. & Pennartz, C. M. A. Is a bird in the hand worth two in the future? The neuroeconomics of intertemporal decision-making. Prog. Neurobiol. 84, 284–315 (2008).

    Article  PubMed  Google Scholar 

  103. Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263 (1979).

    Article  Google Scholar 

  104. Stamp Dawkins, M. Cognitive ecology: the evolutionary ecology of information processing and decision making. Trends Cogn. Sci. 2, 304 (1998).

    Article  PubMed  CAS  Google Scholar 

  105. Blumstein, D. T. et al. Toward an integrative understanding of social behavior: new models and new opportunities. Front. Behav. Neurosci. 4, 34 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Taborsky, M. et al. Taxon matters: promoting integrative studies of social behavior: NESCent working group on integrative models of vertebrate sociality: evolution, mechanisms, and emergent properties. Trends Neurosci. 38, 189–191 (2015).

    Article  PubMed  CAS  Google Scholar 

  107. Tinbergen, N. On aims and methods in ethology. Z. Tierpsychol. 20, 410–433 (1963).

    Article  Google Scholar 

  108. Marr, D. & Poggio, T. A computational theory of human stereo vision. Proc R Soc B Biol Sci 204, 301–328 (1979).

    Article  CAS  Google Scholar 

  109. Camerer, C. & Mobbs, D. Comparing cognitive and neural processes during hypothetical and real choices. Trends Cogn. Sci. 21, 46–56 (2017).

    Article  PubMed  Google Scholar 

  110. Mayr, E. Cause and effect in biology: kinds of causes, predictability, and teleology are viewed by a practicing biologist. Science 134, 1501–1506 (1961).

    Article  PubMed  CAS  Google Scholar 

  111. Huxley, J. Evolution: The Modern Synthesis (MIT Press, 2010).

  112. Price, D. J. & Willshaw, D. J. Mechanisms Of Cortical Development (Oxford Univ. Press, 2000).

Download references

Acknowledgements

The authors thank T. Akam and the reviewers for their very stimulating comments. This work was supported by US National Institute of Mental Health grant 2P50MH094258 and a Chen Institute Award (P2026052) (support to D.M.), the Gatsby Charitable Foundation (support to P.D.) and the US National Science Foundation (support to D.T.B. and P.C.T.; P.C.T. was supported by an Integrative Organismal System grant (1456724) to A. Sih). The content is solely the responsibility of the authors and does not necessarily represent the official views of the authors’ funders.

Competing interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

D.M., P.C.T., D.T.B. and P.D. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dean Mobbs.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobbs, D., Trimmer, P.C., Blumstein, D.T. et al. Foraging for foundations in decision neuroscience: insights from ethology. Nat Rev Neurosci 19, 419–427 (2018). https://doi.org/10.1038/s41583-018-0010-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-018-0010-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing