Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcium signalling and transport in the kidney

Abstract

The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.

Key points

  • The kidney has an essential role in the maintenance of serum calcium levels owing to its careful regulation of reabsorption along the nephron, which contributes to whole-body calcium balance.

  • Physiologically relevant mechanisms that control calcium channels in the kidney include endocrine and paracrine signals and physical factors such as fluid flow.

  • Tight control of calcium influx and intracellular calcium levels maintains intracellular calcium concentrations within the physiological range, despite acute and chronic variation in calcium intake.

  • Failure to reabsorb calcium from renal tubules results in hypercalciuria and an increased risk of kidney stones.

  • Aberrant calcium signalling in particular renal cell types is a hallmark of renal diseases such as polycystic kidney disease and focal segmental glomerulosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Calcium metabolism and flux between body compartments.
Fig. 2: Reabsorption of the filtered calcium load in the nephron.
Fig. 3: Important determinants of paracellular and transcellular calcium reabsorption along the nephron.
Fig. 4: Renal pathologies associated with altered calcium channel activity.

Similar content being viewed by others

References

  1. Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Eisner, D., Neher, E., Taschenberger, H. & Smith, G. Physiology of intracellular calcium buffering. Physiol. Rev. 103, 2767–2845 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Moor, M. B. & Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 310, F1337–F1350 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Jeon, U. S. Kidney and calcium homeostasis. Electrolyte Blood Press. 6, 68–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alexander, R. T., Cordat, E., Chambrey, R., Dimke, H. & Eladari, D. Acidosis and urinary calcium excretion: insights from genetic disorders. J. Am. Soc. Nephrol. 27, 3511–3520 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 5, S23–S30 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Bosman, A. et al. Sexual dimorphisms in serum calcium and phosphate concentrations in the Rotterdam Study. Sci. Rep. 13, 8310 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meoli, L. & Gunzel, D. The role of claudins in homeostasis. Nat. Rev. Nephrol. 19, 587–603 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Tinawi, M. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 13, e12420 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. Alexander, R. T., Fuster, D. G. & Dimke, H. Mechanisms underlying calcium nephrolithiasis. Annu. Rev. Physiol. 84, 559–583 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Alexander, R. T. Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption. Curr. Opin. Nephrol. Hypertens. 32, 359–365 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Pan, W. et al. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am. J. Physiol. Renal Physiol. 302, F943–F956 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Beggs, M. R. et al. Claudin-2 and claudin-12 form independent, complementary pores required to maintain calcium homeostasis. Proc. Natl Acad. Sci. USA 118, e2111247118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Curry, J. N. et al. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J. Clin. Invest. 130, 1948–1960 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plain, A. et al. Claudin-12 knockout mice demonstrate reduced proximal tubule calcium permeability. Int. J. Mol. Sci. 21, 2074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Breiderhoff, T. et al. Claudin-10a deficiency shifts proximal tubular Cl permeability to cation selectivity via claudin-2 redistribution. J. Am. Soc. Nephrol. 33, 699–717 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rouse, D., Ng, R. C. & Suki, W. N. Calcium transport in the pars recta and thin descending limb of Henle of the rabbit, perfused in vitro. J. Clin. Invest. 65, 37–42 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiebe, S. A. et al. NHE8 attenuates Ca2+ influx into NRK cells and the proximal tubule epithelium. Am. J. Physiol. Renal Physiol. 317, F240–F253 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Hou, J. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 118, 619–628 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hou, J. et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc. Natl Acad. Sci. USA 106, 15350–15355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Konrad, M. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79, 949–957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, M. et al. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target. Ther. 8, 261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nilius, B. & Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 12, 218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bacsa, B., Tiapko, O., Stockner, T. & Groschner, K. Mechanisms and significance of Ca2+ entry through TRPC channels. Curr. Opin. Physiol. 17, 25–33 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, H. et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 209, 107497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis, M. J., Earley, S., Li, Y. S. & Chien, S. Vascular mechanotransduction. Physiol. Rev. 103, 1247–1421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nikolaev, Y. A. et al. Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 132, jcs238360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goel, M., Sinkins, W. G., Zuo, C. D., Estacion, M. & Schilling, W. P. Identification and localization of TRPC channels in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1241–F1252 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Staruschenko, A., Ma, R., Palygin, O. & Dryer, S. E. Ion channels and channelopathies in glomeruli. Physiol. Rev. 103, 787–854 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Dryer, S. E., Roshanravan, H. & Kim, E. Y. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1041–1066 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, Y. et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Polat, O. K. et al. The small GTPase regulatory protein Rac1 drives podocyte injury independent of cationic channel protein TRPC5. Kidney Int. 103, 1056–1062 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Lenoir, O., Huber, T. B. & Tharaux, P. L. From bench to bedside: lessons learned from translational podocyte research. Kidney Int. 103, 1018–1020 (2023).

    Article  PubMed  Google Scholar 

  37. Hou, X. et al. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis. 9, 1015 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu, Y. L. et al. Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho. Kidney Int. 91, 830–841 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Du, J. et al. Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J. Am. Soc. Nephrol. 18, 1437–1445 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Peng, F. et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes 70, 603–615 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Niehof, M. & Borlak, J. HNF4α and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 57, 1069–1077 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Khayyat, N. H., Tomilin, V. N., Zaika, O. & Pochynyuk, O. Polymodal roles of TRPC3 channel in the kidney. Channels 14, 257–267 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Soni, H., Peixoto-Neves, D., Buddington, R. K. & Adebiyi, A. Adenosine A1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels. Am. J. Physiol. Renal Physiol. 313, F1216–F1222 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ibeh, C. L. et al. Evidence for a regulated Ca2+ entry in proximal tubular cells and its implication in calcium stone formation. J. Cell Sci. 132, jcs.225268 (2019).

    Article  Google Scholar 

  45. Saliba, Y. et al. Evidence of a role for fibroblast transient receptor potential canonical 3 Ca2+ channel in renal fibrosis. J. Am. Soc. Nephrol. 26, 1855–1876 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Goel, M., Zuo, C. D. & Schilling, W. P. Role of cAMP/PKA signaling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. Am. J. Physiol. Renal Physiol. 298, F988–F996 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tomilin, V. N. et al. TRPC3 determines osmosensitive [Ca2+]i signaling in the collecting duct and contributes to urinary concentration. PLoS One 14, e0226381 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Baaij, J. H. F. Magnesium reabsorption in the kidney. Am. J. Physiol. Renal Physiol. 324, F227–F244 (2023).

    Article  PubMed  Google Scholar 

  49. Chubanov, V., Köttgen, M., Touyz, R. M. & Gudermann, T. TRPM channels in health and disease. Nat. Rev. Nephrol. 20, 175–187 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Walder, R. Y. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Chubanov, V. et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl Acad. Sci. USA 101, 2894–2899 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nadezhdin, K. D. et al. Structural mechanisms of TRPM7 activation and inhibition. Nat. Commun. 14, 2639 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fonfria, E. et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br. J. Pharmacol. 143, 186–192 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Malko, P. & Jiang, L. H. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 37, 101755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao, G. et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J. Clin. Invest. 124, 4989–5001 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khanahmad, H. et al. Pathological mechanisms induced by TRPM2 ion channels activation in renal ischemia-reperfusion injury. Mol. Biol. Rep. 49, 11071–11079 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Nazıroğlu, M. et al. Albumin evokes Ca2+-induced cell oxidative stress and apoptosis through TRPM2 channel in renal collecting duct cells reduced by curcumin. Sci. Rep. 9, 12403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Esarte Palomero, O., Larmore, M. & DeCaen, P. G. Polycystin channel complexes. Annu. Rev. Physiol. 85, 425–448 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Stocker, S. D. & Sullivan, J. B. Deletion of the transient receptor potential vanilloid 1 channel attenuates sympathoexcitation and hypertension and improves glomerular filtration rate in 2-kidney-1-clip rats. Hypertension 80, 1671–1682 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Kassmann, M. et al. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol. 207, 546–564 (2013).

    Article  CAS  Google Scholar 

  62. Wei, X. et al. Activation of TRPV1 channel antagonizes diabetic nephropathy through inhibiting endoplasmic reticulum-mitochondria contact in podocytes. Metabolism 105, 154182 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Gualdani, R. et al. Mechanical activation of TRPV4 channels controls albumin reabsorption by proximal tubule cells. Sci. Signal. 13, eabc6967 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Cabral, P. D., Capurro, C. & Garvin, J. L. TRPV4 mediates flow-induced increases in intracellular Ca in medullary thick ascending limbs. Acta Physiol. 214, 319–328 (2015).

    Article  CAS  Google Scholar 

  65. Saez, F., Hong, N. J., Cabral, P. D. & Garvin, J. L. Stretch-induced increases in intracellular Ca stimulate thick ascending limb O2 production and are enhanced in Dahl salt-sensitive rats. Hypertension 75, 431–438 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Hong, N. J., Gonzalez-Vicente, A., Saez, F. & Garvin, J. L. Mechanisms of decreased tubular flow-induced nitric oxide in Dahl salt-sensitive rat thick ascending limbs. Am. J. Physiol. Renal Physiol. 321, F369–F377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mamenko, M. V. et al. The renal TRPV4 channel is essential for adaptation to increased dietary potassium. Kidney Int. 91, 1398–1409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stavniichuk, A. et al. TRPV4 expression in the renal tubule is necessary for maintaining whole body K+ homeostasis. Am. J. Physiol. Renal Physiol. 324, F603–F616 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Mannaa, M. et al. Transient receptor potential vanilloid 4 channel deficiency aggravates tubular damage after acute renal ischaemia reperfusion. Sci. Rep. 8, 4878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Alexander, R. T. et al. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia. Am. J. Physiol. Renal Physiol. 309, F604–F616 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Hoenderop, J. G. et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J. Clin. Invest. 112, 1906–1914 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peng, J. B., Suzuki, Y., Gyimesi, G. & Hediger, M. A. in: J. A. Kozak & J. W. Putney, Jr. (eds) Calcium Entry Channels in Non-Excitable Cells. 241–274 (CRC Press/Taylor & Francis, 2018).

  73. Vennekens, R. et al. Permeation and gating properties of the novel epithelial Ca2+ channel. J. Biol. Chem. 275, 3963–3969 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Zuidscherwoude, M. et al. Functional basis for calmodulation of the TRPV5 calcium channel. J. Physiol. 601, 859–878 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. van der Wijst, J., van Goor, M. K., Schreuder, M. F. & Hoenderop, J. G. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int. 96, 1283–1291 (2019).

    Article  PubMed  Google Scholar 

  76. Dang, S. et al. Structural insight into TRPV5 channel function and modulation. Proc. Natl Acad. Sci. USA 116, 8869–8878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hughes, T. E. T. et al. Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat. Struct. Mol. Biol. 25, 53–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hughes, T. E. T. et al. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 9, 4198 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hoenderop, J. G. et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 22, 776–785 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Khattar, V., Wang, L. & Peng, J. B. Calcium selective channel TRPV6: structure, function, and implications in health and disease. Gene 817, 146192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wartenberg, P. et al. Additional data for the mouse TRPV6 expression atlas. Data Brief. 42, 108201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vallon, V., Unwin, R., Inscho, E. W., Leipziger, J. & Kishore, B. K. Extracellular nucleotides and P2 receptors in renal function. Physiol. Rev. 100, 211–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Palygin, O., Evans, L. C., Cowley, A. W. Jr. & Staruschenko, A. Acute in vivo analysis of ATP release in rat kidneys in response to changes of renal perfusion pressure. J. Am. Heart Assoc. 6, e006658 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Roshanravan, H. & Dryer, S. E. ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. Am. J. Physiol. Renal Physiol. 306, F1088–F1097 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Ilatovskaya, D. V., Palygin, O., Levchenko, V. & Staruschenko, A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am. J. Physiol. Cell Physiol. 305, C1050–C1059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Palygin, O. et al. Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 24, 102528 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arkhipov, S. N., Potter, D. L., Geurts, A. M. & Pavlov, T. S. Knockout of P2rx7 purinergic receptor attenuates cyst growth in a rat model of ARPKD. Am. J. Physiol. Renal Physiol. 317, F1649–f1655 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chang, M. Y. et al. Inhibition of the P2X7 receptor reduces cystogenesis in PKD. J. Am. Soc. Nephrol. 22, 1696–1706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chaudhari, S., Mallet, R. T., Shotorbani, P. Y., Tao, Y. & Ma, R. Store-operated calcium entry: pivotal roles in renal physiology and pathophysiology. Exp. Biol. Med. 246, 305–316 (2021).

    Article  CAS  Google Scholar 

  90. Park, S. J., Li, C. & Chen, Y. M. Endoplasmic reticulum calcium homeostasis in kidney disease: pathogenesis and therapeutic targets. Am. J. Pathol. 191, 256–265 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Monkawa, T. et al. Localization of inositol 1,4,5-trisphosphate receptors in the rat kidney. Kidney Int. 53, 296–301 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Woll, K. A. & Van Petegem, F. Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors. Physiol. Rev. 102, 209–268 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Tao, Y. et al. Enhanced Orai1-mediated store-operated Ca2+ channel/calpain signaling contributes to high glucose-induced podocyte injury. J. Biol. Chem. 298, 101990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gusev, K. et al. Reorganization and suppression of store-operated calcium entry in podocytes of type 2 diabetic rats. Int. J. Mol. Sci. 24, 7259 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, S. et al. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis. 6, e1976 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Park, S. J. et al. Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome. Proc. Natl Acad. Sci. USA 116, 14154–14163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tao, Y., Mallet, R. T., Mathis, K. W. & Ma, R. Store-operated Ca2+ channel signaling: novel mechanism for podocyte injury in kidney disease. Exp. Biol. Med. 248, 425–433 (2023).

    Article  CAS  Google Scholar 

  98. DeHaven, W. I. et al. TRPC channels function independently of STIM1 and Orai1. J. Physiol. 587, 2275–2298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tao, Y., Yazdizadeh Shotorbani, P., Inman, D., Das-Earl, P. & Ma, R. Store-operated Ca2+ entry inhibition ameliorates high glucose and ANG II-induced podocyte apoptosis and mitochondrial damage. Am. J. Physiol. Renal Physiol. 324, F494–F504 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Jin, J., Ye, M., Hu, K., Gong, J. & He, Q. STIM promotes the epithelial-mesenchymal transition of podocytes through regulation of FcγRII activity in diabetic nephropathy. Histol. Histopathol. 34, 671–682 (2019).

    CAS  PubMed  Google Scholar 

  101. Menè, P., Teti, A., Pugliese, F. & Cinotti, G. A. Calcium release-activated calcium influx in cultured human mesangial cells. Kidney Int. 46, 122–128 (1994).

    Article  PubMed  Google Scholar 

  102. Ma, R., Smith, S., Child, A., Carmines, P. K. & Sansom, S. C. Store-operated Ca2+ channels in human glomerular mesangial cells. Am. J. Physiol. Renal Physiol. 278, F954–F961 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Sours-Brothers, S., Ding, M., Graham, S. & Ma, R. Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp. Biol. Med. 234, 673–682 (2009).

    Article  CAS  Google Scholar 

  104. Wu, P. et al. Store-operated Ca2+ channels in mesangial cells inhibit matrix protein expression. J. Am. Soc. Nephrol. 26, 2691–2702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mai, X. et al. Blockade of Orai1 store-operated calcium entry protects against renal fibrosis. J. Am. Soc. Nephrol. 27, 3063–3078 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeng, B. et al. ORAI channels are critical for receptor-mediated endocytosis of albumin. Nat. Commun. 8, 1920 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Woodward, O. M. et al. Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca entry through interactions with STIM1. PLoS One 5, e12305 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yanda, M. K., Liu, Q., Cebotaru, V., Guggino, W. B. & Cebotaru, L. Role of calcium in adult onset polycystic kidney disease. Cell Signal. 53, 140–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Mamenko, M. et al. Defective store-operated calcium entry causes partial nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 27, 2035–2048 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Kuo, I. Y. et al. Cyst formation following disruption of intracellular calcium signaling. Proc. Natl Acad. Sci. USA 111, 14283–14288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Padhy, B., Xie, J., Wang, R., Lin, F. & Huang, C. L. Channel function of polycystin-2 in the endoplasmic reticulum protects against autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 33, 1501–1516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Anyatonwu, G. I., Estrada, M., Tian, X., Somlo, S. & Ehrlich, B. E. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc. Natl Acad. Sci. USA 104, 6454–6459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, Y. et al. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284, 36431–36441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sammels, E. et al. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J. Biol. Chem. 285, 18794–18805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mekahli, D. et al. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release. Cell Calcium 51, 452–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Cárdenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kuo, I. Y. et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci. Signal. 12, eaat7397 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Padovano, V. et al. The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Mol. Biol. Cell 28, 261–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chiaravalli, M. et al. 2-Deoxy-D-glucose ameliorates PKD progression. J. Am. Soc. Nephrol. 27, 1958–1969 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Padovano, V., Podrini, C., Boletta, A. & Caplan, M. J. Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat. Rev. Nephrol. 14, 678–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Su, L., Zhang, J., Gomez, H., Kellum, J. A. & Peng, Z. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy 19, 401–414 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Babcock, D. F., Herrington, J., Goodwin, P. C., Park, Y. B. & Hille, B. Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833–844 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Garbincius, J. F. & Elrod, J. W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev. 102, 893–992 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Yuan, Z. et al. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J. Cell Biochem. 118, 2809–2818 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Xu, H. et al. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an adriamycin nephropathy rat model. BMC Nephrol. 19, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yanda, M. K., Tomar, V., Cole, R., Guggino, W. B. & Cebotaru, L. The mitochondrial Ca2+ import complex is altered in ADPKD. Cell Calcium 101, 102501 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Thai, T. L. et al. The polarized effect of intracellular calcium on the renal epithelial sodium channel occurs as a result of subcellular calcium signaling domains maintained by mitochondria. J. Biol. Chem. 290, 28805–28811 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Groot, T. et al. Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J. Am. Soc. Nephrol. 20, 1693–1704 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Fluck, E. C., Yazici, A. T., Rohacs, T. & Moiseenkova-Bell, V. Y. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. Cell Rep. 39, 110737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bindels, R. J., Hartog, A., Timmermans, J. & Van Os, C. H. Active Ca2+ transport in primary cultures of rabbit kidney CCD: stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am. J. Physiol. 261, F799–F807 (1991).

    CAS  PubMed  Google Scholar 

  133. Hoenderop, J. G. et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J. 16, 1398–1406 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. van Megen, W. H., Tan, R. S. G., Alexander, R. T. & Dimke, H. Differential parathyroid and kidney Ca2+-sensing receptor activation in autosomal dominant hypocalcemia 1. EBioMedicine 78, 103947 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bustamante, M. et al. Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J. Am. Soc. Nephrol. 19, 109–116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sands, J. M. et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J. Clin. Invest. 99, 1399–1405 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Loupy, A. et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J. Clin. Invest. 122, 3355–3367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tan, R. S. G., Lee, C. H. L., Dimke, H. & Todd Alexander, R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp. Biol. Med. 246, 2407–2419 (2021).

    Article  CAS  Google Scholar 

  139. Blankenship, K. A. et al. The calcium-sensing receptor regulates calcium absorption in MDCK cells by inhibition of PMCA. Am. J. Physiol. Renal Physiol. 280, F815–F822 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Topala, C. N. et al. Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium 45, 331–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Gong, Y. et al. Claudin-14 regulates renal Ca2+ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 31, 1999–2012 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gong, Y. & Hou, J. Claudin-14 underlies Ca2+-sensing receptor-mediated Ca2+ metabolism via NFAT-microRNA-based mechanisms. J. Am. Soc. Nephrol. 25, 745–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Lee, J. J. et al. Activation of the calcium sensing receptor increases claudin-14 expression via a PLC–p38–Sp1 pathway. FASEB J. 35, e21982 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Capasso, G. et al. The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int. 84, 277–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Ward, D. T., McLarnon, S. J. & Riccardi, D. Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor. J. Am. Soc. Nephrol. 13, 1481–1489 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Picard, N. et al. Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch. 460, 677–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Segawa, H. et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am. J. Physiol. Renal Physiol. 292, F395–F403 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Alexander, R. T. & Dimke, H. Effects of parathyroid hormone on renal tubular calcium and phosphate handling. Acta Physiol. 238, e13959 (2023).

    Article  CAS  Google Scholar 

  149. Duan, Y., Weinstein, A. M., Weinbaum, S. & Wang, T. Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proc. Natl Acad. Sci. USA 107, 21860–21865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Du, Z., Weinbaum, S., Weinstein, A. M. & Wang, T. Regulation of glomerulotubular balance. III. Implication of cytosolic calcium in flow-dependent proximal tubule transport. Am. J. Physiol. Renal Physiol. 308, F839–F847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Churchill, P. C. Second messengers in renin secretion. Am. J. Physiol. 249, F175–F184 (1985).

    CAS  PubMed  Google Scholar 

  152. Beierwaltes, W. H. The role of calcium in the regulation of renin secretion. Am. J. Physiol. Renal Physiol. 298, F1–F11 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Lara, L. S., Gonzalez, A. A., Hennrikus, M. T. & Prieto, M. C. Hormone-dependent regulation of renin and effects on prorenin receptor signaling in the collecting duct. Curr. Hypertens. Rev. 18, 91–100 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chebib, F. T., Sussman, C. R., Wang, X., Harris, P. C. & Torres, V. E. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat. Rev. Nephrol. 11, 451–464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Star, R. A., Nonoguchi, H., Balaban, R. & Knepper, M. A. Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J. Clin. Invest. 81, 1879–1888 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lanktree, M. B. et al. Prevalence estimates of polycystic kidney and liver disease by population sequencing. J. Am. Soc. Nephrol. 29, 2593–2600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Márquez-Nogueras, K. M., Vuchkovska, V. & Kuo, I. Y. Calcium signaling in polycystic kidney disease — cell death and survival. Cell Calcium 112, 102733 (2023).

    Article  PubMed  Google Scholar 

  158. Liu, X. et al. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. eLife 7, e33183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ha, K. et al. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. eLife 9, e.60684 (2020).

    Article  Google Scholar 

  160. Kim, S. et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat. Cell Biol. 18, 752–764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kleene, S. J. & Kleene, N. K. The native TRPP2-dependent channel of murine renal primary cilia. Am. J. Physiol. Renal Physiol. 312, F96–F108 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Su, Q. et al. Structure of the human PKD1-PKD2 complex. Science 361, eaat9819 (2018).

    Article  PubMed  Google Scholar 

  163. Marquez-Nogueras, K. M. & Kuo, I. Y. Cardiovascular perspectives of the TRP channel polycystin 2. J. Physiol. https://doi.org/10.1113/JP283835 (2023).

    Article  PubMed  Google Scholar 

  164. Grieben, M. et al. Structure of the polycystic kidney disease TRP channel polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773.e711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kwon, M. et al. G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease. Proc. Natl Acad. Sci. USA 109, 21462–21467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hu, J. & Harris, P. C. Regulation of polycystin expression, maturation and trafficking. Cell Signal. 72, 109630 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ta, C. M., Vien, T. N., Ng, L. C. T. & DeCaen, P. G. Structure and function of polycystin channels in primary cilia. Cell Signal. 72, 109626 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Douguet, D., Patel, A. & Honoré, E. Structure and function of polycystins: insights into polycystic kidney disease. Nat. Rev. Nephrol. 15, 412–422 (2019).

    Article  PubMed  Google Scholar 

  170. Praetorius, H. A. & Spring, K. R. A physiological view of the primary cilium. Annu. Rev. Physiol. 67, 515–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Kleene, S. J. & Kleene, N. K. Inward Ca2+ current through the polycystin-2-dependent channels of renal primary cilia. Am. J. Physiol. Renal Physiol. 320, F1165–F1173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bai, C. X. et al. Activation of TRPP2 through mDia1-dependent voltage gating. EMBO J. 27, 1345–1356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Padovano, V., Mistry, K., Merrick, D., Gresko, N. & Caplan, M. J. A cut above (and below): protein cleavage in the regulation of polycystin trafficking and signaling. Cell Signal. 72, 109634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Qian, F. et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc. Natl Acad. Sci. USA 99, 16981–16986 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Arif Pavel, M. et al. Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc. Natl Acad. Sci. USA 113, E2363–E2372 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Wang, Z. et al. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep. 20, e48336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, X. et al. TRPC5 does not cause or aggravate glomerular disease. J. Am. Soc. Nephrol. 29, 409–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Brown, B. J., Boekell, K. L., Stotter, B. R., Talbot, B. E. & Schlondorff, J. S. Gain-of-function, focal segmental glomerulosclerosis Trpc6 mutation minimally affects susceptibility to renal injury in several mouse models. PLoS One 17, e0272313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Riehle, M. et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J. Am. Soc. Nephrol. 27, 2771–2783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T. & Dryer, S. E. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am. J. Physiol. Cell Physiol. 305, C276–C289 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Saqib, U. et al. Transient receptor potential canonical 6 (TRPC6) channel in the pathogenesis of diseases: a jack of many trades. Inflammation 46, 1144–1160 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Bai, Y. et al. Structural basis for pharmacological modulation of the TRPC6 channel. eLife 9, e.53311 (2020).

    Article  Google Scholar 

  185. Lin, B. L. et al. Pharmacological TRPC6 inhibition improves survival and muscle function in mice with Duchenne muscular dystrophy. JCI Insight 7, e158906 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lin, B. L. et al. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proc. Natl Acad. Sci. USA 116, 10156–10161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Trachtman, H. et al. TRPC6 inhibitor BI 764198 in focal segmental glomerulosclerosis: phase 2 study design. Kidney Int. Rep. 8, 2822–2825 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Spires, D. et al. Protective role of Trpc6 knockout in the progression of diabetic kidney disease. Am. J. Physiol. Renal Physiol. 315, F1091–F1097 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ilatovskaya, D. V. et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J. Am. Soc. Nephrol. 29, 1917–1927 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ilatovskaya, D. V. et al. Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci. Rep. 5, 17637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bohovyk, R. et al. Protease-activated receptor 1-mediated damage of podocytes in diabetic nephropathy. Diabetes 72, 1795–1808 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Wang, Z. et al. Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. Am. J. Physiol. Renal Physiol. 322, F76–F88 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Palygin, O. The role of TRPC6 channel in chronic kidney disease. Am. J. Physiol. Renal Physiol. 322, F195–F196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Golosova, D. et al. Role of opioid signaling in kidney damage during the development of salt-induced hypertension. Life Sci. Alliance 3, e202000853 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kim, E. Y. & Dryer, S. E. Effects of TRPC6 inactivation on glomerulosclerosis and renal fibrosis in aging rats. Cells 10, 856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kim, E. Y., Yazdizadeh Shotorbani, P. & Dryer, S. E. TRPC6 inactivation does not affect loss of renal function in nephrotoxic serum glomerulonephritis in rats, but reduces severity of glomerular lesions. Biochem. Biophys. Rep. 17, 139–150 (2019).

    PubMed  PubMed Central  Google Scholar 

  197. Ilatovskaya, D. V. et al. Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int. 86, 506–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Binz-Lotter, J. et al. Injured podocytes are sensitized to angiotensin II-induced calcium signaling. J. Am. Soc. Nephrol. 31, 532–542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Semenikhina, M. et al. β-Arrestin pathway activation by selective ATR1 agonism promotes calcium influx in podocytes, leading to glomerular damage. Clin. Sci. 137, 1789–1804 (2023).

    Article  CAS  Google Scholar 

  200. Pavlov, T. S. et al. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J. 34, 13396–13408 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Anderson, M., Roshanravan, H., Khine, J. & Dryer, S. E. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J. Cell Physiol. 229, 434–442 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Salemkour, Y. et al. Podocyte injury in diabetic kidney disease in mouse models involves TRPC6-mediated calpain activation impairing autophagy. J. Am. Soc. Nephrol. 34, 1823–1842 (2023).

    Article  PubMed  Google Scholar 

  203. May, C. J. et al. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int. 104, 265–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Shalygin, A. et al. Cytoskeleton rearrangements modulate TRPC6 channel activity in podocytes. Int. J. Mol. Sci. 22, 4396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Renkema, K. Y. et al. TRPV5 gene polymorphisms in renal hypercalciuria. Nephrol. Dial. Transpl. 24, 1919–1924 (2009).

    Article  CAS  Google Scholar 

  206. Knauf, F. et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 84, 895–901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Invest. 123, 236–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Shroff, U. N., Schiessl, I. M., Gyarmati, G., Riquier-Brison, A. & Peti-Peterdi, J. Novel fluorescence techniques to quantitate renal cell biology. Methods Cell Biol. 154, 85–107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Nguyen, V. V. T. et al. A systematic review of kidney-on-a-chip-based models to study human renal (patho-)physiology. Dis. Model. Mech. 16, dmm050113 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shi, M. et al. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. Nat. Biotechnol. 41, 252–261 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Zeng, Z. et al. Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nat. Commun. 12, 3641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the investigators of renal calcium transport whose relevant publications were inadvertently not directly discussed. The authors’ research was supported by National Institutes of Health grants R35 HL135749, R01 DK135644, R01 DK129227 (to A.S.), R01 HL148114 (to D.V.I.), RC2 DK120534-01 (to M.J.C.), Department of Defense PR191158 (to M.J.C.), American Heart Association Transformational Project Award TPA35490039 (to A.S.), the Department of Veteran Affairs grant I01 BX004024 (to A.S.) and by The Women and Children’s’ Health Research Institute (R.T.A.), The Canadian Institutes of Health Research (R.T.A.), and The Natural Sciences and Engineering Research Council of Canada (R.T.A.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussions of its content, wrote the article, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Alexander Staruschenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Disclaimer The contents of this Review do not represent the views of the Department of Veterans Affairs or the United States Government.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staruschenko, A., Alexander, R.T., Caplan, M.J. et al. Calcium signalling and transport in the kidney. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00835-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00835-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing