Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-term health outcomes associated with hydration status

Abstract

Body water balance is determined by fundamental homeostatic mechanisms that maintain stable volume, osmolality and the composition of extracellular and intracellular fluids. Water balance is maintained by multiple mechanisms that continuously match water losses through urine, the skin, the gastrointestinal tract and respiration with water gains achieved through drinking, eating and metabolic water production. Hydration status is determined by the state of the water balance. Underhydration occurs when a decrease in body water availability, due to high losses or low gains, stimulates adaptive responses within the water balance network that are aimed at decreasing losses and increasing gains. This stimulation is also accompanied by cardiovascular adjustments. Epidemiological and experimental studies have linked markers of low fluid intake and underhydration — such as increased plasma concentration of vasopressin and sodium, as well as elevated urine osmolality — with an increased risk of new-onset chronic diseases, accelerated aging and premature mortality, suggesting that persistent activation of adaptive responses may be detrimental to long-term health outcomes. The causative nature of these associations is currently being tested in interventional trials. Understanding of the physiological responses to underhydration may help to identify possible mechanisms that underlie potential adverse, long-term effects of underhydration and inform future research to develop preventative and treatment approaches to the optimization of hydration status.

Key points

  • A growing number of epidemiological studies have linked markers of underhydration, such as elevated plasma vasopressin, sodium at the upper end of the normal range, low urine volume and high urine osmolality, with an increased risk of adverse health outcomes such as the future development of chronic diseases and premature mortality.

  • Worldwide population surveys estimate that more than 50% of people drink less than recommended, indicating that consistent proper hydration may be beneficial for many individuals.

  • Chronic underhydration results in a new steady state of water balance with constantly activated water conservation mechanisms accompanied by an accumulation of organic osmolytes and persistent vasopressin secretion.

  • Adaptive changes to underhydration affect multiple physiological systems and may promote their deterioration.

  • Interventional trials with increased water intake are needed to prove causality and facilitate implementation of optimal fluid intake recommendations into general clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the core response to a decrease in body water content.
Fig. 2: Integrative systemic responses to a decrease in body water content.
Fig. 3: Defining hydration status using markers of hydration.
Fig. 4: Principles of osmotic regulation and adaptation.
Fig. 5: Physiological and homeostatic processes that may underlie long-term health outcomes of chronic underhydration.

Similar content being viewed by others

References

  1. Ferreira-Pego, C. et al. Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwide. Eur. J. Nutr. 54, 35–43 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Drewnowski, A., Rehm, C. D. & Constant, F. Water and beverage consumption among adults in the United States: cross-sectional study using data from NHANES 2005-2010. BMC Public Health 13, 1068 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. (The National Academies Press, Washington, DC, 2005).

  4. Agostoni, C. European Food Safety Association: EFSA panel on dietetic products, nutrition, and allergies (NDA); scientific opinion on dietary reference values for water. EFSA J. 8, 1459 (2010).

    Google Scholar 

  5. Cheuvront, S. N. & Kenefick, R. W. Am I drinking enough? Yes, no, and maybe. J. Am. Coll. Nutr. 35, 185–192 (2016).

    Article  PubMed  Google Scholar 

  6. Armstrong, L. E. Assessing hydration status: the elusive gold standard. J. Am. Coll. Nutr. 26, 575S–584S (2007).

    Article  PubMed  Google Scholar 

  7. Perrier, E. T. et al. Hydration for health hypothesis: a narrative review of supporting evidence. Eur. J. Nutr. 60, 1167–1180 (2021).

    Article  PubMed  Google Scholar 

  8. Roussel, R. et al. Low water intake and risk for new-onset hyperglycemia. Diabetes Care 34, 2551–2554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enhörning, S. et al. Plasma copeptin and the risk of diabetes mellitus. Circulation 121, 2102–2108 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Enhörning, S. et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmo Diet and Cancer Study cardiovascular cohort. Int. J. Obes. 37, 598–603 (2013).

    Article  Google Scholar 

  11. Wannamethee, S. G. et al. Copeptin, insulin resistance, and risk of incident diabetes in older men. J. Clin. Endocrinol. Metab. 100, 3332–3339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Enhörning, S., Hedblad, B., Nilsson, P. M., Engstrom, G. & Melander, O. Copeptin is an independent predictor of diabetic heart disease and death. Am. Heart J. 169, 549–556.e1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Abbasi, A. et al. Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 55, 1963–1970 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Roussel, R. et al. Plasma copeptin, AVP gene variants, and incidence of type 2 diabetes in a cohort from the community. J. Clin. Endocrinol. Metab. 101, 2432–2439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schill, F., Timpka, S., Nilsson, P. M., Melander, O. & Enhorning, S. Copeptin as a predictive marker of incident heart failure. ESC Heart Fail. 8, 3180–3188 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dmitrieva, N. I., Liu, D., Wu, C. O. & Boehm, M. Middle age serum sodium levels in the upper part of normal range and risk of heart failure. Eur. Heart J. 43, 3335–3348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tasevska, I., Enhorning, S., Persson, M., Nilsson, P. M. & Melander, O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 102, 127–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Clark, W. F. et al. Urine volume and change in estimated GFR in a community-based cohort study. Clin. J. Am. Soc. Nephrol. 6, 2634–2641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allen, M. D., Springer, D. A., Burg, M. B., Boehm, M. & Dmitrieva, N. I. Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight 4, e130949 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. El Boustany, R. et al. Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight 3, e121479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tasevska, I. et al. Increased levels of copeptin, a surrogate marker of arginine vasopressin, are associated with an increased risk of chronic kidney disease in a general population. Am. J. Nephrol. 44, 22–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Roussel, R. et al. Plasma copeptin and decline in renal function in a cohort from the community: the prospective D.E.S.I.R. study. Am. J. Nephrol. 42, 107–114 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Kuwabara, M. et al. Increased serum sodium and serum osmolarity are independent risk factors for developing chronic kidney disease; 5 year cohort study. PloS One 12, e0169137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dmitrieva, N. I., Gagarin, A., Liu, D., Wu, C. O. & Boehm, M. Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. EBioMedicine 87, 104404 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oh, S. W. et al. Small increases in plasma sodium are associated with higher risk of mortality in a healthy population. J. Korean Med. Sci. 28, 1034–1040, (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stookey, J. D., Kavouras, S., Suh, H. & Lang, F. Underhydration is associated with obesity, chronic diseases, and death within 3 to 6 years in the U.S. population aged 51–70 years. Nutrients 12, 905 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bourque, C. W. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9, 519–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Knepper, M. A., Kwon, T. H. & Nielsen, S. Molecular physiology of water balance. N. Engl. J. Med. 372, 1349–1358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sands, J. M. & Layton, H. E. The physiology of urinary concentration: an update. Semin. Nephrol. 29, 178–195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bankir, L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc. Res. 51, 372–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Thornton, S. N. Thirst and hydration: physiology and consequences of dysfunction. Physiol. Behav. 100, 15–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Giebisch, G. & Windhager, E. in: Boron, W. F. (ed.) Medical Physiology: A Cellular and Molecular Approach. (Elsevier, 2009).

  33. Sterns, R. H. Disorders of plasma sodium — causes, consequences, and correction. N. Engl. J. Med. 372, 55–65 (2015).

    Article  PubMed  Google Scholar 

  34. Verbalis, J. G., Goldsmith, S. R., Greenberg, A., Schrier, R. W. & Sterns, R. H. Hyponatremia treatment guidelines 2007: expert panel recommendations. Am. J. Med. 120, S1–21, (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Noakes, T. D., Wilson, G., Gray, D. A., Lambert, M. I. & Dennis, S. C. Peak rates of diuresis in healthy humans during oral fluid overload. S. Afr. Med. J. 91, 852–857 (2001).

    CAS  PubMed  Google Scholar 

  36. Rangan, G. K. et al. Clinical characteristics and outcomes of hyponatraemia associated with oral water intake in adults: a systematic review. BMJ Open 11, e046539 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Verbalis, J. G. How does the brain sense osmolality? J. Am. Soc. Nephrol. 18, 3056–3059 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. McKinley, M. J., Denton, D. A. & Weisinger, R. S. Sensors for antidiuresis and thirst–osmoreceptors or CSF sodium detectors? Brain Res. 141, 89–103 (1978).

    Article  CAS  PubMed  Google Scholar 

  39. Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. B Biol. Sci. 135, 25–106 (1947).

    Article  CAS  PubMed  Google Scholar 

  40. Robertson, G. L., Shelton, R. L. & Athar, S. Osmoregulation of vasopressin. Kidney Int. 10, 25–37 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. Zerbe, R. L. & Robertson, G. L. Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. Am. J. Physiol. 244, E607–614, (1983).

    CAS  PubMed  Google Scholar 

  42. Thompson, C. J., Bland, J., Burd, J. & Baylis, P. H. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin. Sci. 71, 651–656 (1986).

    Article  CAS  Google Scholar 

  43. Leib, D. E., Zimmerman, C. A. & Knight, Z. A. Thirst. Curr. Biol. 26, R1260–R1265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pool, A. H. et al. The cellular basis of distinct thirst modalities. Nature 588, 112–117 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oka, Y., Ye, M. & Zuker, C. S. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520, 349–352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Awad, H. et al. Intraoperative hypotension-physiologic basis and future directions. J. Cardiothorac. Vasc. Anesth. 36, 2154–2163 (2022).

    Article  PubMed  Google Scholar 

  47. Kanaide, H., Ichiki, T., Nishimura, J. & Hirano, K. Cellular mechanism of vasoconstriction induced by angiotensin II: it remains to be determined. Circ. Res. 93, 1015–1017 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Fitzsimons, J. T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 78, 583–686 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, Y. et al. Changes in transepidermal water loss and skin hydration according to expression of aquaporin-3 in psoriasis. Ann. Dermatol. 24, 168–174, (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akdeniz, M., Gabriel, S., Lichterfeld-Kottner, A., Blume-Peytavi, U. & Kottner, J. Transepidermal water loss in healthy adults: a systematic review and meta-analysis update. Ann. Dermatol. 179, 1049–1055 (2018).

    CAS  Google Scholar 

  51. Smith, C. J. & Johnson, J. M. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: neural control of skin blood flow and sweating in humans. Auton. Neurosci. 196, 25–36 (2016).

    Article  PubMed  Google Scholar 

  52. Shibasaki, M. & Crandall, C. G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. 2, 685–696 (2010).

    Google Scholar 

  53. Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article  Google Scholar 

  54. Share, L. Role of vasopressin in cardiovascular regulation. Physiol. Rev. 68, 1248–1284 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Liard, J. F. Vasopressin in cardiovascular control: role of circulating vasopressin. Clin. Sci. 67, 473–481 (1984).

    Article  CAS  Google Scholar 

  56. Palmer, B. F. & Clegg, D. J. Extrarenal effects of aldosterone on potassium homeostasis. Kidney360 3, 561–568 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bollag, W. B., Aitkens, L., White, J. & Hyndman, K. A. Aquaporin-3 in the epidermis: more than skin deep. Am. J. Physiol. Cell Physiol. 318, C1144–C1153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma, T. et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc. Natl Acad. Sci. USA 97, 4386–4391 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gallazzini, M. & Burg, M. B. What’s new about osmotic regulation of glycerophosphocholine. Physiology 24, 245–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Sawka, M. N., Young, A. J., Francesconi, R. P., Muza, S. R. & Pandolf, K. B. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J. Appl. Physiol. 59, 1394–1401 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. Sawka, M. N., Montain, S. J. & Latzka, W. A. Hydration effects on thermoregulation and performance in the heat. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 128, 679–690 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Sorensen, C. & Garcia-Trabanino, R. A new era of climate medicine — addressing heat-triggered renal disease. N. Engl. J. Med. 381, 693–696 (2019).

    Article  PubMed  Google Scholar 

  63. Eichner, E. R. Is heat stress nephropathy a concern for endurance athletes? Curr. Sports Med. Rep. 16, 299–300 (2017).

    Article  PubMed  Google Scholar 

  64. Levens, N. R. Control of intestinal absorption by the renin-angiotensin system. Am. J. Physiol. 249, G3–15, (1985).

    CAS  PubMed  Google Scholar 

  65. Mobasheri, A., Wray, S. & Marples, D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J. Mol. Histol. 36, 1–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Cristia, E., Amat, C., Naftalin, R. J. & Moreto, M. Role of vasopressin in rat distal colon function. J. Physiol. 578, 413–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Donald, J. & Pannabecker, T. in: Hyndman, K. A. & Pannabecker, T. L. (eds.) Sodium and Water Homeostasis: Comparative, Evolutionary and Genetic Models. 191–211 (Springer, 2015).

  68. Takei, Y., Bartolo, R. C., Fujihara, H., Ueta, Y. & Donald, J. A. Water deprivation induces appetite and alters metabolic strategy in Notomys alexis: unique mechanisms for water production in the desert. Proc. Biol. Sci. 279, 2599–2608 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Koshimizu, T. A. et al. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol. Rev. 92, 1813–1864 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Mavani, G. P., DeVita, M. V. & Michelis, M. F. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front. Med. 2, 19 (2015).

    Article  Google Scholar 

  71. Whitton, P. D., Rodrigues, L. M. & Hems, D. A. Stimulation by vasopressin, angiotensin and oxytocin of gluconeogenesis in hepatocyte suspensions. Biochem. J. 176, 893–898 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keppens, S. & de Wulf, H. The nature of the hepatic receptors involved in vasopressin-induced glycogenolysis. Biochim. Biophys. Acta 588, 63–69 (1979).

    Article  CAS  PubMed  Google Scholar 

  73. Abu-Basha, E. A., Yibchok-Anun, S. & Hsu, W. H. Glucose dependency of arginine vasopressin-induced insulin and glucagon release from the perfused rat pancreas. Metabolism 51, 1184–1190 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Rotondo, F. et al. Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary 19, 345–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Yoshimura, M., Conway-Campbell, B. & Ueta, Y. Arginine vasopressin: direct and indirect action on metabolism. Peptides 142, 170555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gebruers, E. M. The role of the gut in water balance. Ir. J. Med. Sci. 159, 131–136 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Augustine, V., Lee, S. & Oka, Y. Neural control and modulation of thirst, sodium appetite, and hunger. Cell 180, 25–32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, Z., Wang, T. & Oka, Y. Predicting changes in osmolality. Elife 10, e74551 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ichiki, T. et al. Sensory representation and detection mechanisms of gut osmolality change. Nature 602, 468–474 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Lacey, J. et al. A multidisciplinary consensus on dehydration: definitions, diagnostic methods and clinical implications. Ann. Med. 51, 232–251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cheuvront, S. N., Kenefick, R. W., Charkoudian, N. & Sawka, M. N. Physiologic basis for understanding quantitative dehydration assessment. Am. J. Clin. Nutr. 97, 455–462 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Adrogue, H. J. & Madias, N. E. Primary care — hypernatremia. N. Engl. J. Med. 342, 1493–1499 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Begg, D. P. Disturbances of thirst and fluid balance associated with aging. Physiol. Behav. 178, 28–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Tanaka, S. et al. Seasonal variation in hydration status among community-dwelling elderly in Japan. Geriatr. Gerontol. Int. 20, 904–910 (2020).

    Article  PubMed  Google Scholar 

  85. Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Perrier, E. et al. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br. J. Nutr. 109, 1678–1687 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Perrier, E. et al. Relation between urinary hydration biomarkers and total fluid intake in healthy adults. Eur. J. Clin. Nutr. 67, 939–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Armstrong, L. E., Munoz, C. X. & Armstrong, E. M. Distinguishing low and high water consumers — a paradigm of disease risk. Nutrients 12, 858 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Balanescu, S. et al. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J. Clin. Endocrinol. Metab. 96, 1046–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Szinnai, G. et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 92, 3973–3978 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Nihlen, S. et al. The contribution of plasma urea to total osmolality during iatrogenic fluid reduction in critically Ill patients. Function 3, zqab055 (2022).

    Article  PubMed  Google Scholar 

  92. Johnson, E. C. et al. Markers of the hydration process during fluid volume modification in women with habitual high or low daily fluid intakes. Eur. J. Appl. Physiol. 115, 1067–1074 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Johnson, E. C. et al. Hormonal and thirst modulated maintenance of fluid balance in young women with different levels of habitual fluid consumption. Nutrients 8, 302 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Perrier, E. et al. Circadian variation and responsiveness of hydration biomarkers to changes in daily water intake. Eur. J. Appl. Physiol. 113, 2143–2151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Murray, B. Hydration and physical performance. J. Am. Coll. Nutr. 26, 542S–548S (2007).

    Article  PubMed  Google Scholar 

  97. Sawka, M. N. et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 39, 377–390 (2007).

    PubMed  Google Scholar 

  98. Sawka, M. N. & Noakes, T. D. Does dehydration impair exercise performance? Med. Sci. Sports Exerc. 39, 1209–1217 (2007).

    Article  PubMed  Google Scholar 

  99. Noakes, T. D. What is the evidence that dietary macronutrient composition influences exercise performance? A narrative review. Nutrients 14, 862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Adan, A. Cognitive performance and dehydration. J. Am. Coll. Nutr. 31, 71–78 (2012).

    Article  PubMed  Google Scholar 

  101. Enhorning, S. & Melander, O. The vasopressin system in the risk of diabetes and cardiorenal disease, and hydration as a potential lifestyle intervention. Ann. Nutr. Metab. 72, 21–27 (2018).

    Article  PubMed  Google Scholar 

  102. Clark, W. F. et al. Hydration and chronic kidney disease progression: a critical review of the evidence. Am. J. Nephrol. 43, 281–292 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Christ-Crain, M. & Fenske, W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat. Rev. Endocrinol. 12, 168–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Barnett, R. Type 1 diabetes. Lancet 391, 195 (2018).

    Article  PubMed  Google Scholar 

  105. DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim. 1, 15019 (2015).

    Article  PubMed  Google Scholar 

  106. Vaz de Castro, P. A. S. et al. Nephrogenic diabetes insipidus: a comprehensive overview. J. Pediatr. Endocrinol. Metab. 35, 421–434 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Christ-Crain, M. et al. Diabetes insipidus. Nat. Rev. Dis. Prim. 5, 54 (2019).

    Article  PubMed  Google Scholar 

  108. Noda, Y. & Sasaki, S. Updates and perspectives on aquaporin-2 and water balance disorders. Int. J. Mol. Sci. 22, 12950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. van Gastel, M. D. A. & Torres, V. E. Polycystic kidney disease and the vasopressin pathway. Ann. Nutr. Metab. 70, 43–50 (2017).

    Article  PubMed  Google Scholar 

  110. Hannon, M. J. & Thompson, C. J. in: Jameson, J. L. et al. (eds) Endocrinology: Adult and Pediatric (Seventh Edition). 298–311.e294 (W.B. Saunders, 2016).

  111. Ridgway, A. et al. Nocturia and chronic kidney disease: systematic review and nominal group technique consensus on primary care assessment and treatment. Eur. Urol. Focus 8, 18–25 (2022).

    Article  PubMed  Google Scholar 

  112. Duca, L., Sippl, R. & Snell-Bergeon, J. K. Is the risk and nature of CVD the same in type 1 and type 2 diabetes? Curr. Diab. Rep. 13, 350–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kuo, I. Y. & Chapman, A. B. Polycystins, ADPKD, and cardiovascular disease. Kidney Int. Rep. 5, 396–406 (2020).

    Article  PubMed  Google Scholar 

  114. Velho, G. et al. Plasma copeptin, kidney outcomes, ischemic heart disease, and all-cause mortality in people with long-standing type 1 diabetes. Diabetes Care 39, 2288–2295 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Velho, G. et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 17, 110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Villela-Torres, M. L. et al. Copeptin plasma levels are associated with decline of renal function in patients with type 2 diabetes mellitus. Arch. Med. Res. 49, 36–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Jankowski, J., Floege, J., Fliser, D., Bohm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ishikawa, S. E. Is exaggerated release of arginine vasopressin an endocrine disorder? Pathophysiology and treatment. J. Clin. Med. 6, 102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schrier, R. W. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (1). N. Engl. J. Med. 319, 1065–1072 (1988).

    Article  CAS  PubMed  Google Scholar 

  120. Schrier, R. W. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N. Engl. J. Med. 319, 1127–1134 (1988).

    Article  CAS  PubMed  Google Scholar 

  121. Schrier, R. W. Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am. J. Med. 119, S47–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Feder, J., Gomez, J. M., Serra-Aguirre, F. & Musso, C. G. Reset osmostat: facts and controversies. Indian J. Nephrol. 29, 232–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kanbay, M. et al. Antidiuretic hormone and serum osmolarity physiology and related outcomes: what is old, what is new, and what is unknown? J. Clin. Endocrinol. Metab. 104, 5406–5420 (2019).

    Article  PubMed  Google Scholar 

  124. Dmitrieva, N. I., Rosing, D. R. & Boehm, M. Making decision about fluid intake: increase or not increase. Eur. Heart J. 43, 4438–4439 (2022).

    Article  PubMed  Google Scholar 

  125. Hew-Butler, T. Arginine vasopressin, fluid balance and exercise: is exercise-associated hyponatraemia a disorder of arginine vasopressin secretion? Sports Med. 40, 459–479 (2010).

    Article  PubMed  Google Scholar 

  126. Filippone, E. J., Ruzieh, M. & Foy, A. Thiazide-associated hyponatremia: clinical manifestations and pathophysiology. Am. J. Kidney Dis. 75, 256–264 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. McCauley, L. R., Dyer, A. J., Stern, K., Hicks, T. & Nguyen, M. M. Factors influencing fluid intake behavior among kidney stone formers. J. Urol. 187, 1282–1286 (2012).

    Article  PubMed  Google Scholar 

  128. Spigt, M. G., Knottnerus, J. A., Westerterp, K. R., Olde Rikkert, M. G. & Schayck, C. P. The effects of 6 months of increased water intake on blood sodium, glomerular filtration rate, blood pressure, and quality of life in elderly (aged 55–75) men. J. Am. Geriatr. Soc. 54, 438–443 (2006).

    Article  PubMed  Google Scholar 

  129. Rangan, G. K. et al. Prescribed water intake in autosomal dominant polycystic kidney disease. NEJM Evid. 1, EVIDoa2100021 (2022).

    Article  PubMed  Google Scholar 

  130. Clark, W. F. et al. Effect of coaching to increase water intake on kidney function decline in adults with chronic kidney disease: the CKD WIT randomized clinical trial. JAMA 319, 1870–1879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Armstrong, L. E. et al. Urinary indices of hydration status. Int. J. Sport Nutr. 4, 265–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Lemetais, G. et al. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr. 57, 1883–1890 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Walti, C., Siegenthaler, J. & Christ-Crain, M. Copeptin levels are independent of ingested nutrient type after standardised meal administration — the CoMEAL study. Biomarkers 19, 557–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Beglinger, S., Drewe, J. & Christ-Crain, M. The circadian rhythm of copeptin, the c-terminal portion of arginine vasopressin. J. Biomark. 2017, 4737082 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Enhörning, S. et al. Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: a water intervention in humans. Eur. J. Nutr. 58, 315–324 (2019).

    Article  PubMed  Google Scholar 

  136. ClinicalTrials.gov. US National Library of Medicine. https://classic.clinicaltrials.gov/ct2/show/NCT03422848 (2023).

  137. Enhörning, S. et al. Water supplementation reduces copeptin and plasma glucose in adults with high copeptin: the H2O metabolism pilot study. J. Clin. Endocrinol. Metab. 104, 1917–1925 (2019).

    Article  PubMed  Google Scholar 

  138. Enhörning, S., Vanhaecke, T., Dolci, A., Perrier, E. T. & Melander, O. Investigation of possible underlying mechanisms behind water-induced glucose reduction in adults with high copeptin. Sci. Rep. 11, 24481 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Seal, A., Colburn, A. T., Suh, H. & Kavouras, S. A. The acute effect of adequate water intake on glucose regulation in low drinkers. Ann. Nutr. Metab. 77, 33–36 (2021).

    Article  CAS  Google Scholar 

  140. Banfalvi, G. Evolution of osmolyte systems. Biochem. Educ. 19, 136–139 (1991).

    Article  Google Scholar 

  141. Yancey, P. H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208, 2819–2830 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222 (1982).

    Article  CAS  PubMed  Google Scholar 

  143. Vujovic, P., Chirillo, M. & Silverthorn, D. U. Learning (by) osmosis: an approach to teaching osmolarity and tonicity. Adv. Physiol. Educ. 42, 626–635 (2018).

    Article  PubMed  Google Scholar 

  144. Burg, M. B. & Ferraris, J. D. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283, 7309–7313 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ripps, H. & Shen, W. Review: taurine: a “very essential” amino acid. Mol. Vis. 18, 2673–2686 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yancey, P. H. & Burg, M. B. Counteracting effects of urea and betaine in mammalian cells in culture. Am. J. Physiol. 258, R198–204, (1990).

    CAS  PubMed  Google Scholar 

  147. Yancey, P. H. & Siebenaller, J. F. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218, 1880–1896 (2015).

    Article  PubMed  Google Scholar 

  148. Wahiduzzaman, Hassan, M. I., Islam, A. & Ahmad, F. Urea stress: myo-inositol’s efficacy to counteract destabilization of TIM-β-globin complex by urea is as good as that of the methylamine. Int. J. Biol. Macromol. 151, 1108–1115 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Ganguly, P., Polak, J., van der Vegt, N. F. A., Heyda, J. & Shea, J. E. Protein stability in TMAO and mixed Urea-TMAO solutions. J. Phys. Chem. B 124, 6181–6197 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Dmitrieva, N. I., Cai, Q. & Burg, M. B. Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo. Proc. Natl Acad. Sci. USA 101, 2317–2322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dmitrieva, N. I. & Burg, M. B. Living with DNA breaks is an everyday reality for cells adapted to high NaCl. Cell Cycle 3, 561–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Zhang, Z., Dmitrieva, N. I., Park, J. H., Levine, R. L. & Burg, M. B. High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proc. Natl Acad. Sci. USA 101, 9491–9496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dmitrieva, N. I. & Burg, M. B. High NaCl promotes cellular senescence. Cell Cycle 6, 3108–3113 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Knight, L. S., Piibe, Q., Lambie, I., Perkins, C. & Yancey, P. H. Betaine in the brain: characterization of betaine uptake, its influence on other osmolytes and its potential role in neuroprotection from osmotic stress. Neurochem. Res. 42, 3490–3503 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Trachtman, H., Yancey, P. H. & Gullans, S. R. Cerebral cell volume regulation during hypernatremia in developing rats. Brain Res. 693, 155–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  156. Fisher, S. K., Cheema, T. A., Foster, D. J. & Heacock, A. M. Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J. Neurochem. 106, 1998–2014 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sterns, R. H., Riggs, J. E. & Schochet, S. S. Jr Osmotic demyelination syndrome following correction of hyponatremia. N. Engl. J. Med. 314, 1535–1542 (1986).

    Article  CAS  PubMed  Google Scholar 

  158. Sterns, R. H. Evidence for managing hypernatremia: is it just hyponatremia in reverse? Clin. J. Am. Soc. Nephrol. 14, 645–647 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bedford, J. J. & Leader, J. P. Response of tissues of the rat to anisosmolality in vivo. Am. J. Physiol. 264, R1164–1179 (1993).

    CAS  PubMed  Google Scholar 

  160. Chapman, R. A., Suleiman, M. S. & Earm, Y. E. Taurine and the heart. Cardiovasc. Res. 27, 358–363 (1993).

    Article  CAS  PubMed  Google Scholar 

  161. Eley, D. W., Lake, N. & ter Keurs, H. E. Taurine depletion and excitation-contraction coupling in rat myocardium. Circ. Res. 74, 1210–1219 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. Dmitrieva, N. I. & Burg, M. B. Secretion of von Willebrand factor by endothelial cells links sodium to hypercoagulability and thrombosis. Proc. Natl Acad. Sci. USA 111, 6485–6490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sturtzel, C. Endothelial cells. Adv. Exp. Med. Biol. 1003, 71–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Dmitrieva, N. I. & Burg, M. B. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. PloS One 10, e0128870 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ferraris, J. D. & Burg, M. B. Tonicity-dependent regulation of osmoprotective genes in mammalian cells. Contrib. Nephrol. 152, 125–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Choi, S. Y., Lee-Kwon, W. & Kwon, H. M. The evolving role of TonEBP as an immunometabolic stress protein. Nat. Rev. Nephrol. 16, 352–364 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises part I: aging arteries: a “set up” for vascular disease. Circulation 107, 139–146 (2003).

    Article  PubMed  Google Scholar 

  168. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Favaloro, E. J., Franchini, M. & Lippi, G. Aging hemostasis: changes to laboratory markers of hemostasis as we age — a narrative review. Semin. Thromb. Hemost. 40, 621–633 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Fabbri, E. et al. Energy metabolism and the burden of multimorbidity in older adults: results from the Baltimore longitudinal study of aging. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1297–1303 (2015).

    Article  PubMed  Google Scholar 

  171. Jumpertz, R. et al. Higher energy expenditure in humans predicts natural mortality. J. Clin. Endocrinol. Metab. 96, E972–E976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ullrich, K. J., Kramer, K. & Boylan, J. W. Present knowledge of the counter-current system in the mammalian kidney. Prog. Cardiovasc. Dis. 3, 395–431 (1961).

    Article  CAS  PubMed  Google Scholar 

  173. Burg, M. B., Ferraris, J. D. & Dmitrieva, N. I. Cellular response to hyperosmotic stresses. Physiol. Rev. 87, 1441–1474 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Oberleithner, H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl Acad. Sci. USA 104, 16281–16286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Oberleithner, H. et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 462, 519–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wild, J. et al. Rubbing salt into wounded endothelium: sodium potentiates proatherogenic effects of TNF-alpha under non-uniform shear stress. Thromb. Haemost. 112, 183–195 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Dmitrieva, N. I., Ferraris, J. D., Norenburg, J. L. & Burg, M. B. The saltiness of the sea breaks DNA in marine invertebrates — possible implications for animal evolution. Cell Cycle 5, 1320–1323 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Dmitrieva, N. I., Cui, K., Kitchaev, D. A., Zhao, K. & Burg, M. B. DNA double-strand breaks induced by high NaCl occur predominantly in gene deserts. Proc. Natl Acad. Sci. USA 108, 20796–20801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Calcinotto, A. et al. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 99, 1047–1078 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Rajendran, P. et al. The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057–1069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Szmygin, H., Szydelko, J. & Matyjaszek-Matuszek, B. Copeptin as a novel biomarker of cardiometabolic syndrome. Endokrynol. Pol. 72, 566–571 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Aikins, A. O. et al. Cardiovascular neuroendocrinology: emerging role for neurohypophyseal hormones in pathophysiology. Endocrinology 162, bqab082 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Tanoue, A. et al. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J. Clin. Invest. 113, 302–309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Spruce, B. A. et al. The effect of vasopressin infusion on glucose metabolism in man. Clin. Endocrinol. 22, 463–468 (1985).

    Article  CAS  Google Scholar 

  185. Drew, P. J. et al. The effect of arginine vasopressin on ureagenesis in isolated rat hepatocytes. Clin. Sci. 69, 231–233 (1985).

    Article  CAS  Google Scholar 

  186. Taveau, C. et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia 58, 1081–1090 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Rabelink, T. J. Renal physiology: burning calories to excrete salt. Nat. Rev. Nephrol. 13, 323–324 (2017).

    Article  PubMed  Google Scholar 

  188. Marton, A. et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat. Rev. Nephrol. 17, 65–77 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Klein, J. D. & Sands, J. M. Urea transport and clinical potential of urearetics. Curr. Opin. Nephrol. Hypertens. 25, 444–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Liard, J. F., Deriaz, O., Schelling, P. & Thibonnier, M. Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am. J. Physiol. 243, H663–669, (1982).

    CAS  PubMed  Google Scholar 

  191. Hammer, M. & Skagen, K. Effects of small changes of plasma vasopressin on subcutaneous and skeletal muscle blood flow in man. Acta Physiol. Scand. 127, 67–73 (1986).

    Article  CAS  PubMed  Google Scholar 

  192. Just, A. Hypertension due to loss of water. Acta Physiol. 232, e13658 (2021).

    Article  CAS  Google Scholar 

  193. Kovarik, J. J. et al. Adaptive physiological water conservation explains hypertension and muscle catabolism in experimental chronic renal failure. Acta Physiol. 232, e13629 (2021).

    Article  CAS  Google Scholar 

  194. Wild, J. et al. Aestivation motifs explain hypertension and muscle mass loss in mice with psoriatic skin barrier defect. Acta Physiol. 232, e13628 (2021).

    Article  CAS  Google Scholar 

  195. Ogura, T. et al. Contributions of renal water loss and skin water conservation to blood pressure elevation in spontaneously hypertensive rats. Hypertens. Res. 46, 32–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Bie, P. & Evans, R. G. Normotension, hypertension and body fluid regulation: brain and kidney. Acta Physiol. 219, 288–304 (2017).

    Article  CAS  Google Scholar 

  197. Cowburn, A. S. et al. HIF isoforms in the skin differentially regulate systemic arterial pressure. Proc. Natl Acad. Sci. USA 110, 17570–17575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Manz, F., Johner, S. A., Wentz, A., Boeing, H. & Remer, T. Water balance throughout the adult life span in a German population. Br. J. Nutr. 107, 1673–1681 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Gao, S. G., Cui, X. Q., Wang, X. J., Burg, M. B. & Dmitrieva, N. I. Cross-sectional positive association of serum lipids and blood pressure with serum sodium within the normal reference range of 135-145 mmol/L. Arterioscler. Thromb. Vasc. Biol. 37, 598 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Enhorning, S. et al. Plasma copeptin, a unifying factor behind the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E1065–1072 (2011).

    Article  PubMed  Google Scholar 

  201. Kim, H. S. et al. Genetic control of blood pressure and the angiotensinogen locus. Proc. Natl Acad. Sci. USA 92, 2735–2739 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Esther, C. R. Jr. et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab. Invest. 74, 953–965 (1996).

    CAS  PubMed  Google Scholar 

  203. Tanimoto, K. et al. Angiotensinogen-deficient mice with hypotension. J. Biol. Chem. 269, 31334–31337 (1994).

    Article  CAS  PubMed  Google Scholar 

  204. Ito, M. et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc. Natl Acad. Sci. USA 92, 3521–3525 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Esther, C. R. et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 99, 2375–2385 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Oliverio, M. I. et al. Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am. J. Physiol. Ren. Physiol. 278, F75–82 (2000).

    Article  CAS  Google Scholar 

  207. Xue, B., Zhang, Z., Johnson, R. F. & Johnson, A. K. Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59, 459–466 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Dinh, Q. N. et al. Pressor response to angiotensin II is enhanced in aged mice and associated with inflammation, vasoconstriction and oxidative stress. Aging 9, 1595–1606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Daniels, D. Angiotensin II (de)sensitization: fluid intake studies with implications for cardiovascular control. Physiol. Behav. 162, 141–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Krieger, E. M. Mechanisms of complete baroreceptor resetting in hypertension. Drugs 35, 98–103 (1988).

    Article  PubMed  Google Scholar 

  211. Thrasher, T. N. Arterial baroreceptor input contributes to long-term control of blood pressure. Curr. Hypertens. Rep. 8, 249–254 (2006).

    Article  PubMed  Google Scholar 

  212. Lohmeier, T. E. & Iliescu, R. The baroreflex as a long-term controller of arterial pressure. Physiology 30, 148–158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 119, 524–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cassis, P., Conti, S., Remuzzi, G. & Benigni, A. Angiotensin receptors as determinants of life span. Pflugers Arch. 459, 325–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Thornton, S. N. Angiotensin inhibition and longevity: a question of hydration. Pflugers Arch. 461, 317–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Bagnasco, S. M., Uchida, S., Balaban, R. S., Kador, P. F. & Burg, M. B. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc. Natl Acad. Sci. USA 84, 1718–1720 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tang, W. H., Martin, K. A. & Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol. 3, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Gabbay, K. H. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med. 288, 831–836 (1973).

    Article  CAS  PubMed  Google Scholar 

  219. Steele, C., Steel, D. & Waine, C. in: Steele, C., Steel, D. & Waine, C. (eds) Diabetes and the Eye. 59–70 (Butterworth-Heinemann, 2008),

  220. Kitada, K. et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Invest. 127, 1944–1959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Baturina, G. S., Katkova, L. E., Schmitt, C. P., Solenov, E. I. & Zarogiannis, S. G. Comparison of isotonic activation of cell volume regulation in rat peritoneal mesothelial cells and in kidney outer medullary collecting duct principal cells. Biomolecules 11, 1452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hultstrom, M. et al. Dehydration is associated with production of organic osmolytes and predicts physical long-term symptoms after COVID-19: a multicenter cohort study. Crit. Care 26, 322 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Huang, C. T., Chen, M. L., Huang, L. L. & Mao, I. F. Uric acid and urea in human sweat. Chin. J. Physiol. 45, 109–115 (2002).

    CAS  PubMed  Google Scholar 

  224. Withers, P. C. & Guppy, M. Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation? J. Exp. Biol. 199, 1809–1816 (1996).

    Article  CAS  PubMed  Google Scholar 

  225. Fuery, C. J. et al. Effects of urea on M4-lactate dehydrogenase from elasmobranchs and urea-accumulating Australian desert frogs. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 117, 143–150 (1997).

    Article  CAS  PubMed  Google Scholar 

  226. Hofmeister, L. H., Perisic, S. & Titze, J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflugers Arch. 467, 551–558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Kannenkeril, D. et al. Tissue sodium content in patients with type 2 diabetes mellitus. J. Diabetes Complicat. 33, 485–489 (2019).

    Article  Google Scholar 

  228. Yamada, Y. et al. Variation in human water turnover associated with environmental and lifestyle factors. Science 378, 909–915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Robertson, G. L., Mahr, E. A., Athar, S. & Sinha, T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52, 2340–2352 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Shore, A. C. et al. Endocrine and renal response to water loading and water restriction in normal man. Clin. Sci. 75, 171–177 (1988).

    Article  CAS  Google Scholar 

  231. Sherwood, L., Klandorf, H. & Yancey, P. H. Animal Physiology: From Genes to Organisms. 2nd Ed. (Brooks/Cole, Cengage Learning, 2013).

  232. Freire, C. A., Cavassin, F., Rodrigues, E. N., Torres, A. H. & McNamara, J. C. Adaptive patterns of osmotic and ionic regulation, and the invasion of fresh water by the palaemonid shrimps. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 136, 771–778 (2003).

    Article  PubMed  Google Scholar 

  233. Zanders, I. P. Regulation of blood ions in Carcinus maenas (L.). Comp. Biochem. Physiol. Part A: Physiol. 65, 97–108 (1980).

    Article  Google Scholar 

  234. Rasouli, M. Basic concepts and practical equations on osmolality: biochemical approach. Clin. Biochem 49, 936–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Gennari, F. J. Current concepts. Serum osmolality. Uses and limitations. N. Engl. J. Med. 310, 102–105 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.I.D. and M.B. receive support from intramural program of NHLBI (NIH grants 1ZIAHL006077-10, 1ZIAHL006078-10, 1ZIAHL006079-10 to M.B.). S.E. was supported by grants from the Swedish Research Council (2022-01771), the Swedish Society for Medical Research (SG-22-0076), the Åke Wiberg Foundation (M21-0041), the Maggie Stephen Foundation (20202018), the Albert Påhlsson Foundation (211214SE), the Crafoord Foundation (20210603), the Swedish Society of Medicine (SLS-959724), the Swedish Heart and Lung Foundation (20200126), Skåne University Hospital and Region Skåne (2020-0358).

Author information

Authors and Affiliations

Authors

Contributions

N.I.D., P.H.Y. and S.E. researched data for the article, made substantial contributions to discussions of the content, wrote, reviewed and edited the manuscript before submission. M.B. made substantial contributions to discussions of the content, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Natalia I. Dmitrieva.

Ethics declarations

Competing interests

P.H.Y. has participated in research funded by Danisco A/S. S.E. has accepted conference fees from Danone Research and participates in research trials funded partly by Danone Research. N.I.D., M.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Daniel Bichet, Jens Titze and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrieva, N.I., Boehm, M., Yancey, P.H. et al. Long-term health outcomes associated with hydration status. Nat Rev Nephrol 20, 275–294 (2024). https://doi.org/10.1038/s41581-024-00817-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-024-00817-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing