Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted links between hearing loss and chronic kidney disease

Abstract

Hearing loss affects nearly 1.6 billion people and is the third-leading cause of disability worldwide. Chronic kidney disease (CKD) is also a common condition that is associated with adverse clinical outcomes and high health-care costs. From a developmental perspective, the structures responsible for hearing have a common morphogenetic origin with the kidney, and genetic abnormalities that cause familial forms of hearing loss can also lead to kidney disease. On a cellular level, normal kidney and cochlea function both depend on cilial activities at the apical surface, and kidney tubular cells and sensory epithelial cells of the inner ear use similar transport mechanisms to modify luminal fluid. The two organs also share the same collagen IV basement membrane network. Thus, strong developmental and physiological links exist between hearing and kidney function. These theoretical considerations are supported by epidemiological data demonstrating that CKD is associated with a graded and independent excess risk of sensorineural hearing loss. In addition to developmental and physiological links between kidney and cochlear function, hearing loss in patients with CKD may be driven by specific medications or treatments, including haemodialysis. The associations between these two common conditions are not commonly appreciated, yet have important implications for research and clinical practice.

Key points

  • Chronic kidney disease (CKD) and hearing loss are common conditions that individually cause tremendous morbidity but which often coexist.

  • The kidneys and the hearing organs share a common morphogenetic origin and rely on similar biological structures (for example, cilia) and processes (for example, specialized cellular transport mechanisms) to function.

  • Genetic abnormalities that cause CKD can also cause hearing loss, and vice versa.

  • A strong, graded and independent relationship exists between kidney function and the risk of hearing loss; the highest risk is observed in patients on haemodialysis, but kidney transplant recipients and people with mild CKD are also at increased risk.

  • Infants, children and possibly adults with malformation or dysfunction of their hearing organs should be evaluated for the presence of malformation or dysfunction of their kidneys, and vice versa.

  • Additional funding is needed to support basic, clinical and health services research that explores the intersection between these two relatively neglected conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Shared developmental origins of the kidney and inner ear.
Fig. 2: Ciliated cells are found in the ear and kidney.

Similar content being viewed by others

References

  1. World Health Organization. Deafness and hearing loss. who.int, https: //www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed 1 March 2023).

  2. National Institute on Deafness and Other Communication Disorders, National Institutes of Health. Quick statistics about hearing. nidcd.nih.gov, https: //www.nidcd.nih.gov/health/statistics/quick-statistics-hearing (accessed 1 March 2023).

  3. Mick, P. T. et al. The prevalence of hearing, vision, and dual sensory loss in older Canadians: an analysis of data from the Canadian Longitudinal Study on Aging. Can. J. Aging 40, 1–22 (2021).

    Article  PubMed  Google Scholar 

  4. World Health Organization. Integrated people-centred ear and hearing care: policy brief. apps.who.int, https://apps.who.int/iris/handle/10665/339957 (accessed 1 March 2023).

  5. Anderson, D. L. & Noble, W. Couples’ attributions about behaviours modulated by hearing impairment: links with relationship satisfaction. Int. J. Audiol. 44, 197–205 (2005).

    Article  PubMed  Google Scholar 

  6. Hétu, R., Jones, L. & Getty, L. The impact of acquired hearing impairment on intimate relationships: implications for rehabilitation. Audiology 32, 363–381 (1993).

    Article  PubMed  Google Scholar 

  7. National Research Council (US) Committee on Disability Determination for Individuals with Hearing Impairments. Hearing Loss: Determining Eligibility for Social Security Benefits. (National Academies Press (US), 2004).

  8. Tordrup, D. et al. Global return on investment and cost-effectiveness of WHO’s HEAR interventions for hearing loss: a modelling study. Lancet Glob. Health 10, e52–e62 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Monzani, D., Galeazzi, G. M., Genovese, E., Marrara, A. & Martini, A. Psychological profile and social behaviour of working adults with mild or moderate hearing loss. Acta Otorhinolaryngol. Ital. 28, 61–66 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, F. R. & Albert, M. Hearing loss and dementia — who is listening? Aging Ment. Health 18, 671–673 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dalton, D. S. et al. The impact of hearing loss on quality of life in older adults. Gerontologist 43, 661–668 (2003).

    Article  PubMed  Google Scholar 

  12. Hixon, B., Chan, S., Adkins, M., Shinn, J. B. & Bush, M. L. Timing and impact of hearing healthcare in adult cochlear implant recipients: a rural-urban comparison. Otol. Neurotol. 37, 1320–1324 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nieman, C. L., Marrone, N., Szanton, S. L., Thorpe, R. J. Jr & Lin, F. R. Racial/ethnic and socioeconomic disparities in hearing health care among older Americans. J. Aging Health 28, 68–94 (2016).

    Article  PubMed  Google Scholar 

  14. Schuh, M. R. & Bush, M. L. Evaluating equity through the social determinants of hearing health. Ear Hear. 43, 15s–22s (2022).

    Article  PubMed  Google Scholar 

  15. World Health Organization. World Report on Hearing. apps.who.int, https: //apps.who.int/iris/handle/10665/339913 (accessed 1 March 2023).

  16. Agrawal, Y., Platz, E. A. & Niparko, J. K. Prevalence of hearing loss and differences by demographic characteristics among US adults: data from the National Health and Nutrition Examination Survey, 1999–2004. Arch. Intern. Med. 168, 1522–1530 (2008).

    Article  PubMed  Google Scholar 

  17. Ramage-Morin, P. L., Banks, R., Pineault, D. & Atrach, M. Unperceived hearing loss among Canadians aged 40 to 79. Health Rep. 30, 11–20 (2019).

    PubMed  Google Scholar 

  18. Baguant, A., Cole, A., Vilotitch, A., Quatre, R. & Schmerber, S. Difference in cochlear length between male and female patients. Cochlear Implant. 23, 326–331 (2022).

    Article  Google Scholar 

  19. Shuster, B. Z., Depireux, D. A., Mong, J. A. & Hertzano, R. Sex differences in hearing: probing the role of estrogen signaling. J. Acoust. Soc. Am. 145, 3656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tonelli, M. et al. Associations between hearing loss and clinical outcomes: population-based cohort study. EClinicalMedicine 61, 102068 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Newsted, D. et al. Approach to hearing loss. Can. Fam. Physician 66, 803–809 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. Snoeckx, R. L. et al. GJB2 mutations and degree of hearing loss: a multicenter study. Am. J. Hum. Genet. 77, 945–957 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anthwal, N. & Thompson, H. The development of the mammalian outer and middle ear. J. Anat. 228, 217–232 (2016).

    Article  PubMed  Google Scholar 

  24. Luers, J. C. & Huttenbrink, K. B. Surgical anatomy and pathology of the middle ear. J. Anat. 228, 338–353 (2016).

    Article  PubMed  Google Scholar 

  25. Hartwein, J. H. & Rauchfuss, A. The development of the ossicular ligaments in the human middle ear. Arch. Otorhinolaryngol. 244, 23–25 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. McCarroll, M. N. et al. Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development 139, 2740–2750 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sai, X. & Ladher, R. K. FGF signaling regulates cytoskeletal remodeling during epithelial morphogenesis. Curr. Biol. 18, 976–981 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Alvarez, Y. et al. Requirements for FGF3 and FGF10 during inner ear formation. Development 130, 6329–6338 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Pauley, S. et al. Expression and function of FGF10 in mammalian inner ear development. Dev. Dyn. 227, 203–215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Riley, B. B. & Phillips, B. T. Ringing in the new ear: resolution of cell interactions in otic development. Dev. Biol. 261, 289–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Brigande, J. V., Kiernan, A. E., Gao, X., Iten, L. E. & Fekete, D. M. Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc. Natl Acad. Sci. USA 97, 11700–11706 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chatterjee, S., Kraus, P. & Lufkin, T. A symphony of inner ear developmental control genes. BMC Genet. 11, 68 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bok, J. et al. Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc. Natl Acad. Sci. USA 108, 161–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, W., Nunes, F. D., De Jesus-Escobar, J. M., Harland, R. & Wu, D. K. Ectopic noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear. Dev. Biol. 216, 369–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Riccomagno, M. M., Takada, S. & Epstein, D. J. Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes. Dev. 19, 1612–1623 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng, W. et al. The role of Six1 in mammalian auditory system development. Development 130, 3989–4000 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ozaki, H. et al. Six1 controls patterning of the mouse otic vesicle. Development 131, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Khan, S. & Chang, R. Anatomy of the vestibular system: a review. NeuroRehabilitation 32, 437–443 (2013).

    Article  PubMed  Google Scholar 

  39. Driver, E. C. & Kelley, M. W. Development of the cochlea. Development 147, dev162263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moser, T. & Starr, A. Auditory neuropathy — neural and synaptic mechanisms. Nat. Rev. Neurol. 12, 135–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Raphael, R. M. Outer hair cell electromechanics as a problem in soft matter physics: prestin, the membrane and the cytoskeleton. Hear. Res. 423, 108426 (2022).

    Article  PubMed  Google Scholar 

  42. Zhou, W., Jabeen, T., Sabha, S., Becker, J. & Nam, J. H. Deiters cells act as mechanical equalizers for outer hair cells. J. Neurosci. 42, 8361–8372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maier, E. C. & Whitfield, T. T. RA and FGF signalling are required in the zebrafish otic vesicle to pattern and maintain ventral otic identities. PLoS Genet. 10, e1004858 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ahmed, M. et al. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev. Cell 22, 377–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamaid, A., Neves, J. & Giraldez, F. Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between Bmp signaling and Atoh1. J. Neurosci. 30, 11426–11434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeon, S. J., Fujioka, M., Kim, S. C. & Edge, A. S. Notch signaling alters sensory or neuronal cell fate specification of inner ear stem cells. J. Neurosci. 31, 8351–8358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tateya, T. et al. Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea. Development 140, 3848–3857 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Mugford, J. W., Sipila, P., McMahon, J. A. & McMahon, A. P. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev. Biol. 324, 88–98 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. James, R. G., Kamei, C. N., Wang, Q., Jiang, R. & Schultheiss, T. M. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133, 2995–3004 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gong, K. Q., Yallowitz, A. R., Sun, H., Dressler, G. R. & Wellik, D. M. A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol. Cell Biol. 27, 7661–7668 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, P. X. et al. Six1 is required for the early organogenesis of mammalian kidney. Development 130, 3085–3094 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Chai, L. et al. Transcriptional activation of the SALL1 by the human SIX1 homeodomain during kidney development. J. Biol. Chem. 281, 18918–18926 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Moreau, E., Vilar, J., Lelievre-Pegorier, M., Merlet-Benichou, C. & Gilbert, T. Regulation of c-ret expression by retinoic acid in rat metanephros: implication in nephron mass control. Am. J. Physiol. 275, F938–F945 (1998).

    CAS  PubMed  Google Scholar 

  54. Tang, M. J., Worley, D., Sanicola, M. & Dressler, G. R. The RET-glial cell-derived neurotrophic factor (GDNF) pathway stimulates migration and chemoattraction of epithelial cells. J. Cell Biol. 142, 1337–1345 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang, M. J., Cai, Y., Tsai, S. J., Wang, Y. K. & Dressler, G. R. Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev. Biol. 243, 128–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Basson, M. A. et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev. Cell 8, 229–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Grieshammer, U. et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev. Cell 6, 709–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Majumdar, A., Vainio, S., Kispert, A., McMahon, J. & McMahon, A. P. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 3175–3185 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Bates, C. M. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr. Nephrol. 22, 343–349 (2007).

    Article  PubMed  Google Scholar 

  60. Iglesias, D. M. et al. Canonical WNT signaling during kidney development. Am. J. Physiol. Renal Physiol. 293, F494–F500 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Michos, O. et al. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131, 3401–3410 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Piscione, T. D., Phan, T. & Rosenblum, N. D. BMP7 controls collecting tubule cell proliferation and apoptosis via Smad1-dependent and -independent pathways. Am. J. Physiol. Renal Physiol. 280, F19–F33 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Cain, J. E. et al. GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS ONE 4, e7313 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. O’Brien, L. L. & McMahon, A. P. Induction and patterning of the metanephric nephron. Semin. Cell Dev. Biol. 36, 31–38 (2014).

    Article  PubMed  Google Scholar 

  65. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 3, 650–662 (2014).

    Article  CAS  Google Scholar 

  66. Boyle, S. et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev. Biol. 313, 234–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramalingam, H. et al. Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Dev. Biol. 440, 13–21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Carroll, T. J., Park, J. S., Hayashi, S., Majumdar, A. & McMahon, A. P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Torban, E. et al. PAX2 activates WNT4 expression during mammalian kidney development. J. Biol. Chem. 281, 12705–12712 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Georgas, K. et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev. Biol. 332, 273–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Nakai, S. et al. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development 130, 4751–4759 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Cheng, H. T. et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 134, 801–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 26, 1529–1533 (2011).

    Article  PubMed  Google Scholar 

  76. Haraldsson, B., Nystrom, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Brown, D., Bouley, R., Paunescu, T. G., Breton, S. & Lu, H. A. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am. J. Physiol. Cell Physiol. 302, C1421–C1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marshall, W. F. & Nonaka, S. Cilia: tuning in to the cell’s antenna. Curr. Biol. 16, R604–R614 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Webber, W. A. & Lee, J. Fine structure of mammalian renal cilia. Anat. Rec. 182, 339–343 (1975).

    Article  CAS  PubMed  Google Scholar 

  81. Eshraghi, A. A. et al. Genotype-phenotype correlation for predicting cochlear implant outcome: current challenges and opportunities. Front. Genet. 11, 678 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bower, M. et al. Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database. Hum. Mutat. 33, 457–466 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Schimmenti, L. A. Renal coloboma syndrome. Eur. J. Hum. Genet. 19, 1207–1212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Giovanella, S. et al. PAX2/renal coloboma syndrome expresses extreme intrafamilial phenotypic variability. Nephron 147, 120–126 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Devriendt, K. et al. Missense mutation and hexanucleotide duplication in the PAX2 gene in two unrelated families with renal-coloboma syndrome (MIM 120330). Hum. Genet. 103, 149–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Torres, M., Gomez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Porteous, S. et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax21Neu +/− mutant mice. Hum. Mol. Genet. 9, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Torres, M., Gomez-Pardo, E. & Gruss, P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122, 3381–3391 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Kochhar, A., Fischer, S. M., Kimberling, W. J. & Smith, R. J. Branchio-oto-renal syndrome. Am. J. Med. Genet. A 143A, 1671–1678 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, A. et al. Phenotypic manifestations of branchio-oto-renal syndrome. Am. J. Med. Genet. 58, 365–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Gimsing, S. & Dyrmose, J. Branchio-oto-renal dysplasia in three families. Ann. Otol. Rhinol. Laryngol. 95, 421–426 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. Konig, R., Fuchs, S. & Dukiet, C. Branchio-oto-renal (BOR) syndrome: variable expressivity in a five-generation pedigree. Eur. J. Pediatr. 153, 446–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Kemperman, M. H. et al. Evidence of progression and fluctuation of hearing impairment in branchio-oto-renal syndrome. Int. J. Audiol. 43, 523–532 (2004).

    Article  PubMed  Google Scholar 

  94. Tian, L., West, N. & Caye-Thomasen, P. Cochlear implantation in Branchiootorenal syndrome — case report and review of the literature. Cochlear Implant. Int. 23, 52–57 (2022).

    Article  Google Scholar 

  95. Weber, K. M. & Kousseff, B. G. ‘New’ manifestations of BOR syndrome. Clin. Genet. 56, 306–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Chang, E. H. et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum. Mutat. 23, 582–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kochhar, A. et al. SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum. Mutat. 29, 565 (2008).

    Article  PubMed  Google Scholar 

  98. Hoskins, B. E. et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am. J. Hum. Genet. 80, 800–804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cacciatori, E. et al. From clinical to molecular diagnosis: relevance of diagnostic strategy in two cases of branchio-oto-renal syndrome — case report. Ital. J. Pediatr. 48, 177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Buller, C., Xu, X., Marquis, V., Schwanke, R. & Xu, P. X. Molecular effects of Eya1 domain mutations causing organ defects in BOR syndrome. Hum. Mol. Genet. 10, 2775–2781 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Mehdizadeh, T., Majumdar, H. D., Ahsan, S., Tavares, A. L. P. & Moody, S. A. Mutations in SIX1 associated with branchio-oto-renal syndrome (BOR) differentially affect otic expression of putative target genes. J. Dev. Biol. 9, 25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Musharraf, A. et al. BOR-syndrome-associated Eya1 mutations lead to enhanced proteasomal degradation of Eya1 protein. PLoS ONE 9, e87407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cai, T. & Groves, A. K. The role of atonal factors in mechanosensory cell specification and function. Mol. Neurobiol. 52, 1315–1329 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Riddiford, N. & Schlosser, G. Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. eLife 5, e17666 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sajithlal, G., Zou, D., Silvius, D. & Xu, P. X. Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev. Biol. 284, 323–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Kohlhase, J. et al. Molecular analysis of SALL1 mutations in Townes-Brocks syndrome. Am. J. Hum. Genet. 64, 435–445 (2015).

    Article  Google Scholar 

  107. Doray, B., Langer, B. & Stoll, C. Two cases of Townes-Brocks syndrome. Genet. Couns. 10, 359–367 (1990).

    Google Scholar 

  108. Miller, E. M., Hopkin, R., Bao, L. & Ware, S. M. Implications for genotype-phenotype predictions in Townes-Brocks syndrome: case report of a novel SALL1 deletion and review of the literature. Am. J. Med. Genet. A 158A, 533–540 (2012).

    Article  PubMed  Google Scholar 

  109. Beaudoux, O. et al. Adult diagnosis of Townes-Brocks syndrome with renal failure: two related cases and review of literature. Am. J. Med. Genet. A 185, 937–944 (2021).

    Article  PubMed  Google Scholar 

  110. Bozal-Basterra, L. et al. Truncated SALL1 impedes primary cilia function in Townes-Brocks syndrome. Am. J. Hum. Genet. 102, 249–265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu, Y. & Zhi, X. Advances in genetic diagnosis of Kallmann syndrome and genetic interruption. Reprod. Sci. 29, 1697–1709 (2022).

    Article  PubMed  Google Scholar 

  112. Costa-Barbosa, F. A. et al. Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J. Clin. Endocrinol. Metab. 98, E943–E953 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Duke, V. M. et al. KAL, a gene mutated in Kallmann’s syndrome, is expressed in the first trimester of human development. Mol. Cell Endocrinol. 110, 73–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Hardelin, J. P. et al. Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome. Dev. Dyn. 215, 26–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Ernest, S., Guadagnini, S., Prevost, M. C. & Soussi-Yanicostas, N. Localization of anosmin-1a and anosmin-1b in the inner ear and neuromasts of zebrafish. Gene Expr. Patterns 7, 274–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Raju, R., Jian, B., Hooks, J. J. & Nagineni, C. N. Transforming growth factor-beta regulates the expression of anosmin (KAL-1) in human retinal pigment epithelial cells. Cytokine 61, 724–727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Blake, K. D. & Prasad, C. CHARGE syndrome. Orphanet J. Rare Dis. 1, 34 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Verloes, A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Am. J. Med. Genet. A 133A, 306–308 (2005).

    Article  PubMed  Google Scholar 

  119. Jiramongkolchai, P., Kumar, M. S., Chinnadurai, S., Wootten, C. T. & Goudy, S. L. Prevalence of hearing loss in children with 22q11.2 deletion syndrome. Int. J. Pediatr. Otorhinolaryngol. 87, 130–133 (2016).

    Article  PubMed  Google Scholar 

  120. Lopez-Rivera, E. et al. Genetic drivers of kidney defects in the DiGeorge syndrome. N. Engl. J. Med. 376, 742–754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Van Esch, H. & Devriendt, K. Transcription factor GATA3 and the human HDR syndrome. Cell Mol. Life Sci. 58, 1296–1300 (2001).

    Article  PubMed  Google Scholar 

  122. Johnston, J. J. et al. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum. Mutat. 31, 1142–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McClelland, K., Li, W. & Rosenblum, N. D. Pallister-Hall syndrome, GLI3, and kidney malformation. Am. J. Med. Genet. C. Semin. Med. Genet. 190, 264–278 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Driver, E. C. et al. Hedgehog signaling regulates sensory cell formation and auditory function in mice and humans. J. Neurosci. 28, 7350–7358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Avula, S., Alam, N. & Roberts, E. Cochlear abnormality in a case of Pallister-Hall syndrome. Pediatr. Radiol. 42, 1502–1505 (2012).

    Article  PubMed  Google Scholar 

  126. D’Cruz, R., Stronks, K., Rowan, C. J. & Rosenblum, N. D. Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development. Pediatr. Nephrol. 35, 725–731 (2020).

    Article  PubMed  Google Scholar 

  127. Moon, K. H. et al. Dysregulation of sonic hedgehog signaling causes hearing loss in ciliopathy mouse models. eLife 9, e56551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wolf, M. T. & Hildebrandt, F. Nephronophthisis. Pediatr. Nephrol. 26, 181–194 (2011).

    Article  PubMed  Google Scholar 

  129. Forsythe, E. & Beales, P. L. Bardet-Biedl syndrome. Eur. J. Hum. Genet. 21, 8–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Deveault, C. et al. BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Hum. Mutat. 32, 610–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Forsythe, E. et al. Risk factors for severe renal disease in Bardet-Biedl syndrome. J. Am. Soc. Nephrol. 28, 963–970 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Beales, P. L., Elcioglu, N., Woolf, A. S., Parker, D. & Flinter, F. A. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J. Med. Genet. 36, 437–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jin, H. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oeffner, F. et al. Novel interaction partners of Bardet-Biedl syndrome proteins. Cell Motil. Cytoskeleton 65, 143–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Gibson, J. et al. Prevalence estimates of predicted pathogenic COL4A3-COL4A5 variants in a population sequencing database and their implications for Alport syndrome. J. Am. Soc. Nephrol. 32, 2273–2290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Boeckhaus, J., Strenzke, N., Storz, C. & Gross, O., On Behalf Of The Gpn Study G, Early Pro-Tect Alport I. Characterization of sensorineural hearing loss in children with Alport syndrome. Life 10, 360 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Goyal, S. et al. Cochlear implantation in patients with renal dysfunction. journal article. J. Hearing Sci. 6, 25–35 (2016).

    Article  Google Scholar 

  139. Mohammad, M. et al. A female with X-linked Alport syndrome and compound heterozygous COL4A5 mutations. Pediatr. Nephrol. 29, 481–485 (2014).

    Article  PubMed  Google Scholar 

  140. Kleppel, M. M., Santi, P. A., Cameron, J. D., Wieslander, J. & Michael, A. F. Human tissue distribution of novel basement membrane collagen. Am. J. Pathol. 134, 813–825 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Savige, J., Huang, M., Croos Dabrera, M. S., Shukla, K. & Gibson, J. Genotype-phenotype correlations for pathogenic COL4A3-COL4A5 variants in X-linked, autosomal recessive, and autosomal dominant Alport syndrome. Front. Med. 9, 865034 (2022).

    Article  Google Scholar 

  142. Jais, J. P. et al. X-linked Alport syndrome: natural history in 195 families and genotype-phenotype correlations in males. J. Am. Soc. Nephrol. 11, 649–657 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Jais, J. P. et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a “European Community Alport Syndrome Concerted Action” study. J. Am. Soc. Nephrol. 14, 2603–2610 (2003).

    Article  PubMed  Google Scholar 

  144. Bittencourt, A. G. et al. Post-lingual deafness: benefits of cochlear implants vs. conventional hearing aids. Braz. J. Otorhinolaryngol. 78, 124–127 (2012).

    Article  PubMed  Google Scholar 

  145. Yassin, A., Badry, A. & Fatt-Hi, A. The relationship between electrolyte balance and cochlear disturbances in cases of renal failure. J. Laryngol. Otol. 84, 429–435 (1970).

    Article  CAS  PubMed  Google Scholar 

  146. Moon, I. S., Bang, M. Y., Shim, D. B., Shin, S. H. & Choi, J. Y. Severe to profound hearing loss in patients with progressed Alport’s syndrome. Acta Otolaryngol. 129, 982–987 (2009).

    Article  PubMed  Google Scholar 

  147. Yamamura, T. et al. Natural history and genotype-phenotype correlation in female X-linked Alport syndrome. Kidney Int. Rep. 2, 850–855 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lee, J. M. et al. Features of autosomal recessive Alport syndrome: a systematic review. J. Clin. Med. 8, 170 (2019).

    Google Scholar 

  149. Nozu, K. et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin. Exp. Nephrol. 23, 158–168 (2019).

    Article  PubMed  Google Scholar 

  150. Cosgrove, D. et al. Ultrastructural, physiological, and molecular defects in the inner ear of a gene-knockout mouse model for autosomal Alport syndrome. Hear. Res. 121, 84–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Kalluri, R., Gattone, V. H. II & Hudson, B. G. Identification and localization of type IV collagen chains in the inner ear cochlea. Connect. Tissue Res. 37, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Harvey, S. J. et al. The inner ear of dogs with X-linked nephritis provides clues to the pathogenesis of hearing loss in X-linked Alport syndrome. Am. J. Pathol. 159, 1097–1104 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zehnder, A. F. et al. Distribution of type IV collagen in the cochlea in Alport syndrome. Arch. Otolaryngol. Head. Neck Surg. 131, 1007–1013 (2019).

    Article  Google Scholar 

  154. Barozzi, S. et al. Vestibular and audiological findings in the Alport syndrome. Am. J. Med. Genet. A 182, 2345–2358 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Kalluri, R., Shield, C. F., Todd, P., Hudson, B. G. & Neilson, E. G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shen, Z., Liang, F., Hazen-Martin, D. J. & Schulte, B. A. BK channels mediate the voltage-dependent outward current in type I spiral ligament fibrocytes. Hear. Res. 187, 35–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Kantarci, S. et al. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat. Genet. 39, 957–959 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Christensen, E. I. & Birn, H. Megalin and cubilin: multifunctional endocytic receptors. Nat. Rev. Mol. Cell Biol. 3, 256–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Goto, S., Hosojima, M., Kabasawa, H. & Saito, A. The endocytosis receptor megalin: from bench to bedside. Int. J. Biochem. Cell Biol. 157, 106393 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Hori, Y. et al. Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J. Am. Soc. Nephrol. 28, 1783–1791 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pober, B. R., Longoni, M. & Noonan, K. M. A review of Donnai-Barrow and facio-oculo-acoustico-renal (DB/FOAR) syndrome: clinical features and differential diagnosis. Birth Defects Res. A Clin. Mol. Teratol. 85, 76–81 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Storm, T. et al. Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin filtration. Nephrol. Dial. Transpl. 28, 585–591 (2013).

    Article  CAS  Google Scholar 

  163. Charlton, J. R. et al. Beyond the tubule: pathological variants of LRP2, encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. Am. J. Physiol. Renal Physiol. 319, F988–F999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Alyousef, M. Y. et al. Performance of children with Donnai-Barrow syndrome after cochlear implantation: a case report. Cureus 14, e21063 (2022).

    PubMed  PubMed Central  Google Scholar 

  165. Bruce, I. A., Broomfield, S. J., Henderson, L., Green, K. M. & Ramsden, R. T. Cochlear implantation in Donnai-Barrow syndrome. Cochlear Implant. Int. 12, 60–63 (2011).

    Article  Google Scholar 

  166. Konig, O. et al. Estrogen and the inner ear: megalin knockout mice suffer progressive hearing loss. FASEB J. 22, 410–417 (2008).

    Article  PubMed  Google Scholar 

  167. Shuster, B. et al. Estradiol protects against noise-induced hearing loss and modulates auditory physiology in female mice. Int. J. Mol. Sci. 22, 12208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kim, J. & Ricci, A. J. In vivo real-time imaging reveals megalin as the aminoglycoside gentamicin transporter into cochlea whose inhibition is otoprotective. Proc. Natl Acad. Sci. USA 119, e2117946119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ransome, J., Bllantyne, J. C., Shaldon, S., Bosher, S. K. & Hallpike, C. S. Perceptive deafness in subjects with renal failure treated with haemodialysis and polybrene. A clinico-pathological study. J. Laryngol. Otol. 80, 651–677 (1966).

    Article  CAS  PubMed  Google Scholar 

  170. Bergstrom, L., Jenkins, P., Sando, I. & English, G. M. Hearing loss in renal disease: clinical and pathological studies. Ann. Otol. Rhinol. Laryngol. 82, 555–576 (1973).

    Article  CAS  PubMed  Google Scholar 

  171. Johnson, D. W. & Mathog, R. H. Hearing function and chronic renal failure. Ann. Otol. Rhinol. Laryngol. 85, 43–49 (1976).

    Article  CAS  PubMed  Google Scholar 

  172. Henrich, W. L., Thompson, P., Bergstrom, L. V. & Lum, G. M. Effect of dialysis on hearing acuity. Nephron 18, 348–351 (1977).

    Article  CAS  PubMed  Google Scholar 

  173. Johnson, D. W., Wathen, R. L. & Mathog, R. H. Effects of hemodialysis on hearing threshold. ORL J. Otorhinolaryngol. Relat. Spec. 38, 129–139 (1976).

    Article  CAS  PubMed  Google Scholar 

  174. Mirahmadi, M. K. & Vaziri, N. D. Hearing loss in end-stage renal disease — effect of dialysis. J. Dial. 4, 159–165 (1980).

    Article  CAS  PubMed  Google Scholar 

  175. Rizvi, S. S. & Holmes, R. A. Hearing loss from hemodialysis. Arch. Otolaryngol. 106, 751–756 (1980).

    Article  CAS  PubMed  Google Scholar 

  176. Bazzi, C., Venturini, C. T., Pagani, C., Arrigo, G. & D’Amico, G. Hearing loss in short- and long-term haemodialysed patients. Nephrol. Dial. Transpl. 10, 1865–1868 (1995).

    CAS  Google Scholar 

  177. Mancini, M. L., Dello Strologo, L., Bianchi, P. M., Tieri, L. & Rizzoni, G. Sensorineural hearing loss in patients reaching chronic renal failure in childhood. Pediatr. Nephrol. 10, 38–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Nikolopoulos, T. P. et al. Auditory function in young patients with chronic renal failure. Clin. Otolaryngol. Allied Sci. 22, 222–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Serbetcioglu, M. B., Erdogan, S. & Sifil, A. Effects of a single session of hemodialysis on hearing abilities. Acta Otolaryngol. 121, 836–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Peyvandi, A. & Roozbahany, N. A. Hearing loss in chronic renal failure patient undergoing hemodialysis. Indian. J. Otolaryngol. Head. Neck Surg. 65, 537–540 (2013).

    Article  PubMed  Google Scholar 

  181. Jamaldeen, J., Basheer, A., Sarma, A. C. & Kandasamy, R. Prevalence and patterns of hearing loss among chronic kidney disease patients undergoing haemodialysis. Australas. Med. J. 8, 41–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Reddy, E., Surya Prakash, D. & Rama Krishna, M. Proportion of hearing loss in chronic renal failure: our experience. Indian. J. Otol. 22, 4–9 (2016).

    Article  Google Scholar 

  183. Rahman R, Akhtar N. The prevalence of hearing loss in chronic kidney disease global journal of medical research Bangladeshi patients undergoing dialysis. Glob. J. Med. Res. 16, 18–22 (2016).

    Google Scholar 

  184. Gabr, T. A., Kotait, M. A. & Okda, H. I. Audiovestibular functions in chronic kidney disease in relation to haemodialysis. J. Laryngol. Otol. 133, 592–599 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Boateng, J. O., Boafo, N., Osafo, C. & Anim-Sampong, S. Hearing impairment among chronic kidney disease patients on haemodialysis at a tertiary hospital in Ghana. Ghana. Med. J. 53, 197–203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Fufore, M. et al. Hearing threshold of patients with chronic kidney disease undergoing haemodialysis. Int. J. Otorhinolaryngol. Head. Neck Surg. 7, 922–928 (2021).

    Article  Google Scholar 

  187. Rahman, R., Akhtar, N., Khanam, A. & Alam, M. Prevalence and patterns of hearing loss among chronic kidney disease of various stages in Bangladeshi patients. Am. J. Med. Sci. Med. 4, 53–58 (2016).

    Google Scholar 

  188. Fufore, M. et al. Hearing loss in chronic kidney disease: an assessment of multiple aetiological parameters. Otolaryngology 10, 393 (2020).

    Google Scholar 

  189. Lara-Sanchez, H. et al. Characterization of hearing loss in adult patients with nondialysis chronic kidney disease. Otol. Neurotol. 41, e776–e782 (2020).

    Article  PubMed  Google Scholar 

  190. Liu, W. et al. The association between reduced kidney function and hearing loss: a cross-sectional study. BMC Nephrol. 21, 145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Seo, Y. J. et al. Association of hearing impairment with chronic kidney disease: a cross-sectional study of the Korean general population. BMC Nephrol. 16, 154 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Vilayur, E. et al. The association between reduced GFR and hearing loss: a cross-sectional population-based study. Am. J. Kidney Dis. 56, 661–669 (2010).

    Article  PubMed  Google Scholar 

  193. Wu, K. L. et al. Investigation of the relationship between sensorineural hearing loss and associated comorbidities in patients with chronic kidney disease: a nationwide, population-based cohort study. PLoS ONE 15, e0238913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Yang, D. et al. Association between kidney function and hearing impairment among middle-aged and elderly individuals: a cross-sectional population-based study. Postgrad. Med. 133, 701–706 (2021).

    Article  PubMed  Google Scholar 

  195. Jung, D. J. et al. Association between hearing impairment and albuminuria with or without diabetes mellitus. Clin. Exp. Otorhinolaryngol. 10, 221–227 (2017).

    Article  PubMed  Google Scholar 

  196. Wang, T. C. et al. Low-grade albuminuria is associated with hearing loss in non-diabetic US males: a cross-sectional analysis of 1999–2004 national health and nutrition examination survey. Medicine 99, e19284 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bigman, G. Deficiency in vitamin D is associated with bilateral hearing impairment and bilateral sensorineural hearing loss in older adults. Nutr. Res. 105, 1–10 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Zou, J. et al. Progressive hearing loss in mice with a mutated vitamin D receptor gene. Audiol. Neurootol. 13, 219–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Simsir, M. et al. Hearing impairments as an overlooked condition in kidney transplant recipients. Transpl. Int. 35, 10198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kim, J. H. et al. Renal syndromic hearing loss is common in childhood-onset chronic kidney disease. J. Korean Med. Sci. 35, e364 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Harer, M. W. et al. Improving the quality of neonatal acute kidney injury care: neonatal-specific response to the 22nd Acute Disease Quality Initiative (ADQI) conference. J. Perinatol. 41, 185–195 (2021).

    Article  PubMed  Google Scholar 

  202. Leow, E. H. et al. Congenital anomalies of the kidney and urinary tract (CAKUT) in critically ill infants: a multicenter cohort study. Pediatr. Nephrol. 38, 161–172 (2023).

    Article  PubMed  Google Scholar 

  203. Kashtan, C. E. & Gross, O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020. Pediatr. Nephrol. 36, 711–719 (2021).

    Article  PubMed  Google Scholar 

  204. Savige, J. et al. Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J. Am. Soc. Nephrol. 24, 364–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Lisan, Q. et al. Prevalence of hearing loss and hearing aid use among adults in France in the CONSTANCES Study. JAMA Netw. Open. 5, e2217633–e2217633 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Gatland, D., Tucker, B., Chalstrey, S., Keene, M. & Baker, L. Hearing loss in chronic renal failure-hearing threshold changes following haemodialysis. J. R. Soc. Med. 84, 587–589 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Thodi, C., Thodis, E., Danielides, V., Pasadakis, P. & Vargemezis, V. Hearing in renal failure. Nephrol. Dial. Transpl. 21, 3023–3030 (2006).

    Article  Google Scholar 

  208. Lasisi, A., Salako, B., Osowole, O., Osisanya, W. & Amusat, M. Effect of hemodialysis on the hearing function of patients with chronic renal failure. Afr. J. Health Sci. 13, 29–32 (2006).

    Google Scholar 

  209. Albertazzi, A., Cappelli, P., Di Marco, T., Maccarone, M. & Di Paolo, B. The natural history of uremic neuropathy. Contrib. Nephrol. 65, 130–137 (1988).

    Article  CAS  PubMed  Google Scholar 

  210. Rybak, L. P. & Ramkumar, V. Ototoxicity. Kidney Int. 72, 931–935 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Verdel, B. M., van Puijenbroek, E. P., Souverein, P. C., Leufkens, H. G. & Egberts, A. C. Drug-related nephrotoxic and ototoxic reactions: a link through a predictive mechanistic commonality. Drug. Saf. 31, 877–884 (2008).

    Article  PubMed  Google Scholar 

  212. Taylor, R. R., Nevill, G. & Forge, A. Rapid hair cell loss: a mouse model for cochlear lesions. J. Assoc. Res. Otolaryngol. 9, 44–64 (2008).

    Article  PubMed  Google Scholar 

  213. Wushouer, H. et al. Inpatient antibacterial use trends and patterns, China, 2013–2021. Bull. World Health Organ. 101, 248–261B (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Allon M. & Sexton, D. J. Tunneled hemodialysis catheter-related bloodstream infection (CRBSI): management and prevention. UpToDate, https: //www.uptodate.com/contents/tunneled-hemodialysis-catheter-related-bloodstream-infection-crbsi-management-and-prevention (accessed 26 September 2023).

  215. Fu, X. et al. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front. Cell Neurosci. 15, 692762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vandebona, H. et al. Prevalence of mitochondrial 1555A–>G mutation in adults of European descent. N. Engl. J. Med. 360, 642–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Bitner-Glindzicz, M. et al. Prevalence of mitochondrial 1555A–>G mutation in European children. N. Engl. J. Med. 360, 640–642 (2009).

    Article  PubMed  Google Scholar 

  218. Natha, C. M., Vemulapalli, V., Fiori, M. C., Chang, C. T. & Altenberg, G. A. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166115 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Chen, S. et al. The spatial distribution pattern of Connexin26 expression in supporting cells and its role in outer hair cell survival. Cell Death Dis. 9, 1180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Zhou, X. X. et al. Reduced connexin26 in the mature cochlea increases susceptibility to noise-induced hearing loss in mice. Int. J. Mol. Sci. 17, 301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Chan, D. K. & Chang, K. W. GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 124, E34–E53 (2014).

    Article  PubMed  Google Scholar 

  222. Hanner, F., Sorensen, C. M., Holstein-Rathlou, N. H. & Peti-Peterdi, J. Connexins and the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1143–R1155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Rybak, L. P., Ramkumar, V. & Mukherjea, D. Ototoxicity of non-aminoglycoside antibiotics. Front. Neurol. 12, 652674 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Jozefowicz-Korczynska, M., Pajor, A. & Lucas Grzelczyk, W. The ototoxicity of antimalarial drugs-a state of the art review. Front. Neurol. 12, 661740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Brock, P. R. et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J. Clin. Oncol. 30, 2408–2417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Abou-Abdallah, M. & Lamyman, A. Exploring communication difficulties with deaf patients. Clin. Med. 21, e380–e383 (2021).

    Article  Google Scholar 

  227. Johnson, D. W. Do antibiotic levels need to be followed in treating peritoneal dialysis-associated peritonitis? Semin. Dial. 24, 445–446 (2011).

    Article  PubMed  Google Scholar 

  228. van der Hulst, R. J. et al. Ototoxicity monitoring with ultra-high frequency audiometry in peritoneal dialysis patients treated with vancomycin or gentamicin. ORL J. Otorhinolaryngol. Relat. Spec. 53, 19–22 (1991).

    Article  PubMed  Google Scholar 

  229. Li, P. K. et al. ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment. Perit. Dial. Int. 42, 110–153 (2022).

    Article  PubMed  Google Scholar 

  230. Khan, S. A. et al. Genetics of human Bardet-Biedl syndrome, an updates. Clin. Genet. 90, 3–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Park, E. et al. Genotype-phenotype analysis in pediatric patients with distal renal tubular acidosis. Kidney Blood Press. Res. 43, 513–521 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Scholl, U. I. et al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc. Natl Acad. Sci. USA 106, 5842–5847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Bockenhauer, D. et al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N. Engl. J. Med. 360, 1960–1970 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Abdelhadi, O., Iancu, D., Stanescu, H., Kleta, R. & Bockenhauer, D. EAST syndrome: clinical, pathophysiological, and genetic aspects of mutations in KCNJ10. Rare Dis. 4, e1195043 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. N.D.R. and M.T. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Marcello Tonelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Judy Savige and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenberg, D., Rosenblum, N.D. & Tonelli, M. The multifaceted links between hearing loss and chronic kidney disease. Nat Rev Nephrol 20, 295–312 (2024). https://doi.org/10.1038/s41581-024-00808-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-024-00808-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing