Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunoregulatory roles of non-haematopoietic cells in the kidney

An Author Correction to this article was published on 23 November 2023

This article has been updated

Abstract

The deposition of immune complexes, activation of complement and infiltration of the kidney by cells of the adaptive and innate immune systems have long been considered responsible for the induction of kidney damage in autoimmune, alloimmune and other inflammatory kidney diseases. However, emerging findings have highlighted the contribution of resident immune cells and of immune molecules expressed by kidney-resident parenchymal cells to disease processes. Several types of kidney parenchymal cells seem to express a variety of immune molecules with a distinct topographic distribution, which may reflect the exposure of these cells to different pathogenic threats or microenvironments. A growing body of literature suggests that these cells can stimulate the infiltration of immune cells that provide protection against infections or contribute to inflammation — a process that is also regulated by draining kidney lymph nodes. Moreover, components of the immune system, such as autoantibodies, cytokines and immune cells, can influence the metabolic profile of kidney parenchymal cells in the kidney, highlighting the importance of crosstalk in pathogenic processes. The development of targeted nanomedicine approaches that modulate the immune response or control inflammation and damage directly within the kidney has the potential to eliminate the need for systemically acting drugs.

Key points

  • Non-myeloid kidney parenchymal cells (KPCs) express molecules that are shared with immune cells; the expression of these molecules may have distinct topological associations and may increase in response to inflammation.

  • Kidney injury can induce the infiltration of immune cells; these cells may have protective or pro-inflammatory features depending on the phase of the disease process. In addition, kidney-resident immune cells may have a surveillance or regulatory role in the kidney but can accumulate in response to injury.

  • Components of the immune system, such as autoantibodies, cytokines and immune cells, can influence the metabolic profile of KPCs in the kidney.

  • Conversely, KPCs can contribute to inflammation by providing metabolites or through the secretion of chemokines and cytokines.

  • The cortex and the medulla of kidney tissue can contain distinct types of tertiary lymphoid organs, which may possess pathogenic or regulatory properties.

  • Targeted delivery of drugs to KPCs holds promise for preventing or reversing the inflammatory response in specific forms of kidney injury and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soluble and cellular mediators of inflammation in the kidney.
Fig. 2: Immune features of kidney parenchymal cells.
Fig. 3: Lymphoid organs in kidney disease.
Fig. 4: Intercellular crosstalk within the kidneys between resident and infiltrating cells.

Similar content being viewed by others

Change history

References

  1. Pisetsky, D. S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 19, 509–524 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Mohan, C., Zhang, T. & Putterman, C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat. Rev. Nephrol. 19, 491–508 (2023).

    Article  PubMed  Google Scholar 

  3. Maeda, K. et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J. Clin. Invest. 128, 3445–3459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li, H. et al. IL-23 reshapes kidney resident cell metabolism and promotes local kidney inflammation. J. Clin. Invest. 131, e142428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Davidson, A. What is damaging the kidney in lupus nephritis? Nat. Rev. Rheumatol. 12, 143–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Tsokos, G. C. Autoimmunity and organ damage in systemic lupus erythematosus. Nat. Immunol. 21, 605–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Urbonaviciute, V. et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205, 3007–3018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suurmond, J. & Diamond, B. Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. J. Clin. Invest. 125, 2194–2202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vlahakos, D. V. et al. Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. Kidney Int. 41, 1690–1700 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Jamaly, S., Rakaee, M., Abdi, R., Tsokos, G. C. & Fenton, K. A. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun. Rev. 20, 102980 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Sato, Y., Silina, K., van den Broek, M., Hirahara, K. & Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol. 19, 525–537 (2023).

    Article  PubMed  Google Scholar 

  13. van Bavel, C. C., Fenton, K. A., Rekvig, O. P., van der Vlag, J. & Berden, J. H. Glomerular targets of nephritogenic autoantibodies in systemic lupus erythematosus. Arthritis Rheum. 58, 1892–1899 (2008).

    Article  PubMed  Google Scholar 

  14. Ge, Y. et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis. J. Exp. Med. 210, 2387–2401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vukelic, M., Li, Y. & Kyttaris, V. C. Novel treatments in lupus. Front. Immunol. 9, 2658 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, H. & Tsokos, G. C. IL-23/IL-17 axis in inflammatory rheumatic diseases. Clin. Rev. Allergy Immunol. 60, 31–45 (2021).

    Article  PubMed  Google Scholar 

  17. Schwartz, N., Goilav, B. & Putterman, C. The pathogenesis, diagnosis and treatment of lupus nephritis. Curr. Opin. Rheumatol. 26, 502–509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Wen, C. P. et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 371, 2173–2182 (2008).

    Article  PubMed  Google Scholar 

  20. Akchurin, O. M. & Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 39, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Hsieh, C. et al. Predicting outcomes of lupus nephritis with tubulointerstitial inflammation and scarring. Arthritis Care Res. 63, 865–874 (2011).

    Article  Google Scholar 

  22. Rodriguez-Iturbe, B., Johnson, R. J. & Herrera-Acosta, J. Tubulointerstitial damage and progression of renal failure. Kidney Int. Suppl. 68, S82–S86 (2005).

    Article  Google Scholar 

  23. Rodriguez-Iturbe, B. & Garcia Garcia, G. The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clin. Pract. 116, c81–88, (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Li, H., Tsokos, M. G. & Tsokos, G. C. Lymphocytes in the neighborhood: good or bad for the kidney? J. Clin. Invest. 132, e160657–, (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurts, C., Ginhoux, F. & Panzer, U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat. Rev. Nephrol. 16, 391–407 (2020).

    Article  PubMed  Google Scholar 

  26. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  27. Salei, N. et al. The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties. J. Am. Soc. Nephrol. 31, 257–278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davidson, A. Renal mononuclear phagocytes in lupus nephritis. ACR Open. Rheumatol. 3, 442–450 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Watanabe, S., Alexander, M., Misharin, A. V. & Budinger, G. R. S. The role of macrophages in the resolution of inflammation. J. Clin. Invest. 129, 2619–2628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen, T., Cao, Q., Wang, Y. & Harris, D. C. H. M2 macrophages in kidney disease: biology, therapies, and perspectives. Kidney Int. 95, 760–773 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rao, D. A., Arazi, A., Wofsy, D. & Diamond, B. Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. Nat. Rev. Nephrol. 16, 238–250 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Klose, C. S. N. & Artis, D. Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res. 30, 475–491 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rabb, H. The T cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int. 61, 1935–1946 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Shipman, W. D., Dasoveanu, D. C. & Lu, T. T. Tertiary lymphoid organs in systemic autoimmune diseases: pathogenic or protective? F1000Res 6, 196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Abraham, R. et al. Specific in situ inflammatory states associate with progression to renal failure in lupus nephritis. J. Clin. Invest. 132, e155350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, P. M. et al. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci. Transl. Med. 12, eaay1620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, H. & Tsokos, G. C. Double-negative T cells in autoimmune diseases. Curr. Opin. Rheumatol. 33, 163–172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, A. et al. Bowman’s capsule provides a protective niche for podocytes from cytotoxic CD8+ T cells. J. Clin. Invest. 128, 3413–3424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. do Valle Duraes, F. et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight 5, e130651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bhargava, R., Li, H. & Tsokos, G. C. Pathogenesis of lupus nephritis: the contribution of immune and kidney resident cells. Curr. Opin. Rheumatol. 35, 107–116 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Liao, X., Pirapakaran, T. & Luo, X. M. Chemokines and chemokine receptors in the development of lupus nephritis. Mediators Inflamm. 2016, 6012715 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Worthmann, K. et al. Pathogenetic role of glomerular CXCL13 expression in lupus nephritis. Clin. Exp. Immunol. 178, 20–27 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lema et al. Chemokine expression precedes inflammatory cell infiltration and chemokine receptor and cytokine expression during the initiation of murine lupus nephritis. J. Am. Soc. Nephrol. 12, 1369–1382 (2001).

    Article  PubMed  Google Scholar 

  47. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Zeng, H., Yang, X., Luo, S. & Zhou, Y. The advances of single-cell RNA-seq in kidney immunology. Front. Physiol. 12, 752679 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fu, J. et al. Single-cell RNA profiling of glomerular cells shows dynamic changes in experimental diabetic kidney disease. J. Am. Soc. Nephrol. 30, 533–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Zheng, Y. et al. Single-cell transcriptomics reveal immune mechanisms of the onset and progression of IgA nephropathy. Cell Rep. 33, 108525 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Krebs, C. F. et al. Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease. Sci. Immunol. 5, eaba4163 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sigdel, T. K. et al. Near-single-cell proteomics profiling of the proximal tubular and glomerulus of the normal human kidney. Front. Med. 7, 499 (2020).

    Article  Google Scholar 

  57. Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Xia, H., Bao, W. & Shi, S. Innate immune activity in glomerular podocytes. Front. Immunol. 8, 122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bhargava, R. & Tsokos, G. C. The immune podocyte. Curr. Opin. Rheumatol. 31, 167–174 (2019).

    Article  PubMed  Google Scholar 

  60. Hong, S., Healy, H. & Kassianos, A. J. The emerging role of renal tubular epithelial cells in the immunological pathophysiology of lupus nephritis. Front. Immunol. 11, 578952 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, C. et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension 60, 154–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Flur, K. et al. Viral RNA induces type I interferon-dependent cytokine release and cell death in mesangial cells via melanoma-differentiation-associated gene-5: implications for viral infection-associated glomerulonephritis. Am. J. Pathol. 175, 2014–2022 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Patole, P. S. et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Faslpr mice. Nephrol. Dial. Transpl. 21, 3062–3073 (2006).

    Article  CAS  Google Scholar 

  64. Yung, S., Cheung, K. F., Zhang, Q. & Chan, T. M. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J. Am. Soc. Nephrol. 21, 1912–1927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yung, S. & Chan, T. M. Anti-dsDNA antibodies and resident renal cells — their putative roles in pathogenesis of renal lesions in lupus nephritis. Clin. Immunol. 185, 40–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Kanapathippillai, P., Hedberg, A., Fenton, C. G. & Fenton, K. A. Nucleosomes contribute to increase mesangial cell chemokine expression during the development of lupus nephritis. Cytokine 62, 244–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Ichinose, K. et al. Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J. Immunol. 187, 5500–5504 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Groza, Y., Jemelkova, J., Kafkova, L. R., Maly, P. & Raska, M. IL-6 and its role in IgA nephropathy development. Cytokine Growth Factor. Rev. 66, 1–14 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Lai, K. N. et al. IgA nephropathy. Nat. Rev. Dis. Prim. 2, 16001 (2016).

    Article  PubMed  Google Scholar 

  70. Coers, W. et al. Podocyte expression of MHC class I and II and intercellular adhesion molecule-1 (ICAM-1) in experimental pauci-immune crescentic glomerulonephritis. Clin. Exp. Immunol. 98, 279–286 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goldwich, A. et al. Podocytes are nonhematopoietic professional antigen-presenting cells. J. Am. Soc. Nephrol. 24, 906–916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pyzik, M., Rath, T., Lencer, W. I., Baker, K. & Blumberg, R. S. FcRn: the architect behind the immune and nonimmune functions of IgG and albumin. J. Immunol. 194, 4595–4603 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Haddad, G., Dylewski, J., Evans, R., Lewis, L. & Blaine, J. Knockout of the neonatal Fc receptor alters immune complex trafficking and lysosomal function in cultured podocytes. PLoS One 18, e0284636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, M. & Zen, K. Toll-like receptors regulate the development and progression of renal diseases. Kidney Dis. 7, 14–23 (2021).

    Article  CAS  Google Scholar 

  75. Kuravi, S. J. et al. Podocytes regulate neutrophil recruitment by glomerular endothelial cells via IL-6-mediated crosstalk. J. Immunol. 193, 234–243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ren, J. et al. Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration. JCI Insight 6, e148109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bruno, V., Muhlig, A. K., Oh, J. & Licht, C. New insights into the immune functions of podocytes: the role of complement. Mol. Cell Pediatr. 10, 3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li, X., Ding, F., Zhang, X., Li, B. & Ding, J. The expression profile of complement components in podocytes. Int. J. Mol. Sci. 17, 471 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Karasawa, T. et al. Glomerular endothelial expression of type I IFN-stimulated gene, DExD/H-Box helicase 60 via toll-like receptor 3 signaling: possible involvement in the pathogenesis of lupus nephritis. Ren. Fail. 44, 137–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hirono, K. et al. Endothelial expression of fractalkine (CX3CL1) is induced by Toll-like receptor 3 signaling in cultured human glomerular endothelial cells. Mod. Rheumatol. 30, 1074–1081 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Dimou, P. et al. The human glomerular endothelial cells are potent pro-inflammatory contributors in an in vitro model of lupus nephritis. Sci. Rep. 9, 8348 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  82. Kassianos, A. J. et al. Human proximal tubule epithelial cells modulate autologous dendritic cell function. Nephrol. Dial. Transpl. 28, 303–312 (2013).

    Article  CAS  Google Scholar 

  83. Sampangi, S. et al. Human proximal tubule epithelial cells modulate autologous B-cell function. Nephrol. Dial. Transpl. 30, 1674–1683 (2015).

    Article  CAS  Google Scholar 

  84. Kassianos, A. J. et al. Fractalkine-CX3CR1-dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro-activated proximal tubular epithelial cells. Kidney Int. 87, 1153–1163 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Starke, A. et al. Renal tubular PD-L1 (CD274) suppresses alloreactive human T-cell responses. Kidney Int. 78, 38–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Castellano, G. et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res. Ther. 17, 72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schwarting, A. et al. Renal tubular epithelial cell-derived BAFF expression mediates kidney damage and correlates with activity of proliferative lupus nephritis in mouse and men. Lupus 27, 243–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Mistry, P. & Kaplan, M. J. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin. Immunol. 185, 59–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Jia, P. et al. Chemokine CCL2 from proximal tubular epithelial cells contributes to sepsis-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 323, F107–F119 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Ijima, S. et al. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front. Immunol. 13, 960601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paragas, N. et al. α-Intercalated cells defend the urinary system from bacterial infection. J. Clin. Invest. 124, 2963–2976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gauer, S. et al. IL-18 is expressed in the intercalated cell of human kidney. Kidney Int. 72, 1081–1087 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Breton, S. & Battistone, M. A. Unexpected participation of intercalated cells in renal inflammation and acute kidney injury. Nephron 146, 268–273 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Dorraji, S. E. et al. Mesenchymal stem cells and T cells in the formation of tertiary lymphoid structures in lupus nephritis. Sci. Rep. 8, 7861 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  95. Huang, N. & Perl, A. Metabolism as a target for modulation in autoimmune diseases. Trends Immunol. 39, 562–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Aufhauser, D. D. Jr et al. Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J. Clin. Invest. 126, 1968–1977 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. McEvoy, C. M. et al. Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity. Nat. Commun. 13, 7634 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Zhao, J. L., Qiao, X. H., Mao, J. H., Liu, F. & Fu, H. D. The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front. Pharmacol. 13, 974361 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Sullivan, E. D., Hughes, J. & Ferenbach, D. A. Renal aging: causes and consequences. J. Am. Soc. Nephrol. 28, 407–420 (2017).

    Article  PubMed  Google Scholar 

  100. Sato, Y. et al. CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. J. Clin. Invest. 132, e146071 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gottschalk, C. et al. Batf3-dependent dendritic cells in the renal lymph node induce tolerance against circulating antigens. J. Am. Soc. Nephrol. 24, 543–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dong, X. et al. Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney. Kidney Int. 68, 1096–1108 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Fletcher, A. L., Acton, S. E. & Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat. Rev. Immunol. 15, 350–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lutge, M., Pikor, N. B. & Ludewig, B. Differentiation and activation of fibroblastic reticular cells. Immunol. Rev. 302, 32–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Perez-Shibayama, C., Gil-Cruz, C. & Ludewig, B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol. Rev. 289, 31–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kasinath, V. et al. Activation of fibroblastic reticular cells in kidney lymph node during crescentic glomerulonephritis. Kidney Int. 95, 310–320 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Li, X. et al. Kidney-draining lymph node fibrosis following unilateral ureteral obstruction. Front. Immunol. 12, 768412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Maarouf, O. H. et al. Repetitive ischemic injuries to the kidneys result in lymph node fibrosis and impaired healing. JCI Insight 3, e120546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Der, E., Suryawanshi, H., Buyon, J., Tuschl, T. & Putterman, C. Single-cell RNA sequencing for the study of lupus nephritis. Lupus Sci. Med. 6, e000329 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Disteldorf, E. M. et al. CXCL5 drives neutrophil recruitment in TH17-mediated GN. J. Am. Soc. Nephrol. 26, 55–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Alli, A. A. et al. Kidney tubular epithelial cell ferroptosis links glomerular injury to tubulointerstitial pathology in lupus nephritis. Clin. Immunol. 248, 109213 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Giuliani, K. T. K. et al. Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c+ dendritic cells. Cell Death Dis. 13, 739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, H., Boulougoura, A., Endo, Y. & Tsokos, G. C. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J. Autoimmun. 132, 102870 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Krebs, C. F., Turner, J. E., Riedel, J. H. & Panzer, U. Tissue-specific therapy in immune-mediated kidney diseases: new ARGuments for targeting the IL-23/IL-17 axis. J. Clin. Invest. 131, e150588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dai, H., He, F., Tsokos, G. C. & Kyttaris, V. C. IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J. Immunol. 199, 903–910 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu, H. et al. Mesangial cells exhibit features of antigen-presenting cells and activate CD4+ T cell responses. J. Immunol. Res. 2019, 2121849 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fu, R. et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 69, 1636–1646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wright, R. D. & Beresford, M. W. Podocytes contribute, and respond, to the inflammatory environment in lupus nephritis. Am. J. Physiol. Renal Physiol. 315, F1683–F1694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).

    Article  PubMed  Google Scholar 

  121. He, L. et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 92, 1071–1083 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765–1776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Puthumana, J. et al. Biomarkers of inflammation and repair in kidney disease progression. J. Clin. Invest. 131, e139927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu, L., Guo, J., Moledina, D. G. & Cantley, L. G. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition. Nat. Commun. 13, 4892 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. Noel, S. et al. Immune checkpoint molecule TIGIT regulates kidney T cell functions and contributes to AKI. J. Am. Soc. Nephrol. 34, 755–771 (2023).

    Article  PubMed  Google Scholar 

  126. Eleftheriadis, T. et al. A role for human renal tubular epithelial cells in direct allo-recognition by CD4+ T-cells and the effect of ischemia-reperfusion. Int. J. Mol. Sci. 22, 1733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Breda, P. C. et al. Renal proximal tubular epithelial cells exert immunomodulatory function by driving inflammatory CD4+ T cell responses. Am. J. Physiol. Renal Physiol. 317, F77–F89 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Metalidis, C. & Kuypers, D. R. Emerging immunosuppressive drugs in kidney transplantation. Curr. Clin. Pharmacol. 6, 130–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Sis, B. et al. Renal medullary changes in renal allograft recipients with raised serum creatinine. J. Clin. Pathol. 59, 377–381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chessa, F. et al. The renal microenvironment modifies dendritic cell phenotype. Kidney Int. 89, 82–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Thaunat, O. et al. Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc. Natl Acad. Sci. USA 102, 14723–14728 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Thaunat, O. et al. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J. Immunol. 185, 717–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Koenig, A. & Thaunat, O. Lymphoid neogenesis and tertiary lymphoid organs in transplanted organs. Front. Immunol. 7, 646 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Koga, T., Ichinose, K., Mizui, M., Crispin, J. C. & Tsokos, G. C. Calcium/calmodulin-dependent protein kinase IV suppresses IL-2 production and regulatory T cell activity in lupus. J. Immunol. 189, 3490–3496 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Ferretti, A. P., Bhargava, R., Dahan, S., Tsokos, M. G. & Tsokos, G. C. Calcium/Calmodulin kinase IV controls the function of both T cells and kidney resident cells. Front. Immunol. 9, 2113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Otomo, K. et al. Cutting edge: nanogel-based delivery of an inhibitor of CaMK4 to CD4+ T cells suppresses experimental autoimmune encephalomyelitis and lupus-like disease in mice. J. Immunol. 195, 5533–5537 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Bhargava, R. et al. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 6, e147789 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Blanchard, L. & Girard, J. P. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 24, 719–753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bahmani, B. et al. Targeted delivery of immune therapeutics to lymph nodes prolongs cardiac allograft survival. J. Clin. Invest. 128, 4770–4786 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jiang, L. et al. Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today 36, 101045 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Morel, L. Immunometabolism in systemic lupus erythematosus. Nat. Rev. Rheumatol. 13, 280–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  143. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  144. Crispin, J. C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181, 8761–8766 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Sharabi, A. et al. Regulatory T cells in the treatment of disease. Nat. Rev. Drug. Discov. 17, 823–844 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Munoz-Rojas, A. R. & Mathis, D. Tissue regulatory T cells: regulatory chameleons. Nat. Rev. Immunol. 21, 597–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. G.C.T., A.B., Y.E., R.A. and H.L reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to George C. Tsokos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Benjamin Stewart, Ulf Panzer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsokos, G.C., Boulougoura, A., Kasinath, V. et al. The immunoregulatory roles of non-haematopoietic cells in the kidney. Nat Rev Nephrol 20, 206–217 (2024). https://doi.org/10.1038/s41581-023-00786-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00786-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing