Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unravelling the complex genetics of common kidney diseases: from variants to mechanisms

Abstract

Genome-wide association studies (GWAS) have identified hundreds of loci associated with kidney-related traits such as glomerular filtration rate, albuminuria, hypertension, electrolyte and metabolite levels. However, these impressive, large-scale mapping approaches have not always translated into an improved understanding of disease or development of novel therapeutics. GWAS have several important limitations. Nearly all disease-associated risk loci are located in the non-coding region of the genome and therefore, their target genes, affected cell types and regulatory mechanisms remain unknown. Genome-scale approaches can be used to identify associations between DNA sequence variants and changes in gene expression (quantified through bulk and single-cell methods), gene regulation and other molecular quantitative trait studies, such as chromatin accessibility, DNA methylation, protein expression and metabolite levels. Data obtained through these approaches, used in combination with robust computational methods, can deliver robust mechanistic inferences for translational exploitation. Understanding the genetic basis of common kidney diseases means having a comprehensive picture of the genes that have a causal role in disease development and progression, of the cells, tissues and organs in which these genes act to affect the disease, of the cellular pathways and mechanisms that drive disease, and of potential targets for disease prevention, detection and therapy.

Key points

  • Genome-wide association studies (GWAS) have identified a large number of nucleotide variations that show strong and reproducible association with kidney-related traits such as serum and urine metabolites, estimated glomerular filtration rate, albuminuria and hypertension.

  • More than 95% of disease-associated GWAS signals are located in non-coding regions of the genome, which can be identified by analysing chromatin accessibility and conformation, DNA methylation and transcription factor binding.

  • Disease-associated genetic variants seem to be located in cell type-specific gene regulatory regions, where they modulate disease risk by quantitatively altering gene transcript levels.

  • The use of advanced computational approaches to combine datasets orthogonal to GWAS data, including molecular quantitative trait studies, single-cell transcriptomics and epigenetic information, is necessary for the prioritization of GWAS variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual model for translating genetic variants into disease mechanisms.
Fig. 2: Causal variant prioritization.
Fig. 3: Computational integration of GWAS and molecular QTLs.

Similar content being viewed by others

References

  1. Warejko, J. K. et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 13, 53–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Mallawaarachchi, A. C. et al. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. Eur. J. Hum. Genet. 24, 1584–1590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boucher, C. & Sandford, R. Autosomal dominant polycystic kidney disease (ADPKD, MIM 173900, PKD1 and PKD2 genes, protein products known as polycystin-1 and polycystin-2). Eur. J. Hum. Genet. 12, 347–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Dempfle, A. et al. Gene-environment interactions for complex traits: definitions, methodological requirements and challenges. Eur. J. Hum. Genet. 16, 1164–1172 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Bomba, L., Walter, K. & Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 18, 77 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Stringer, S. et al. Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLoS ONE 6, e27964 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Visscher, P. M. et al. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morris, A. P. et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat. Commun. 10, 29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 10, 3842 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Teumer, A. et al. Genome-wide association studies identify genetic loci associated with albuminuria in diabetes. Diabetes 65, 803–817 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Ehret, G. B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 48, 1171–1184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012). This study shows that disease-causing variants localize to gene regulatory regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schaub, M. A. et al. Linking disease associations with regulatory information in the human genome. Genome Res. 22, 1748–1759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 (2018). This study highlights the method of fine-mapping to identify causal variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dawn Teare, M. & Barrett, J. H. Genetic linkage studies. Lancet 366, 1036–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Brown, C. R. et al. Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol. 11, e1001621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018). First study in the kidney to elucidate kidney disease target genes at the cellular level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018). Study of human kidney compartment-specific eQTLs that identified and modelled target genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uh, H. W. et al. How to deal with the early GWAS data when imputing and combining different arrays is necessary. Eur. J. Hum. Genet. 20, 572–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Flister, M. J. et al. Identifying multiple causative genes at a single GWAS locus. Genome Res. 23, 1996–2002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, B. & Montgomery, S. B. Identifying causal variants and genes using functional genomics in specialized cell types and contexts. Hum. Genet. 139, 95–102 (2020).

    Article  PubMed  Google Scholar 

  26. Sebastiani, P. et al. Genome-wide association studies and the genetic dissection of complex traits. Am. J. Hematol. 84, 504–515 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pare, G., Mao, S. & Deng, W. Q. A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep. 7, 12665 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiryluk, K. et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13, e1006609 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhou, W. et al. Genome-wide prediction of DNase I hypersensitivity using gene expression. Nat. Commun. 8, 1038 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Buenrostro, J. D. et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beckerman, P., Ko, Y. A. & Susztak, K. Epigenetics: a new way to look at kidney diseases. Nephrol. Dial. Transplant. 29, 1821–1827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kimura, H. Histone modifications for human epigenome analysis. J. Hum. Genet. 58, 439–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: in the right place at the right time. Science 361, 1336–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wain, L. V. et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension 70, e4–e19 (2017).

    Article  CAS  Google Scholar 

  39. Moran, S. & Esteller, M. Infinium DNA methylation microarrays on formalin-fixed, paraffin-embedded samples. Methods Mol. Biol. 1766, 83–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Mendizabal, I. et al. Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol. 20, 135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gaudreault, M. et al. Electrophoretic mobility shift assays for the analysis of DNA-protein interactions. Methods Mol. Biol. 543, 15–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Perna, A. & Alberi, L. A. TF-ChIP method for tissue-specific gene targets. Front. Cell Neurosci. 13, 95 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vorontsov, I. E. et al. Genome-wide map of human and mouse transcription factor binding sites aggregated from ChIP-Seq data. BMC Res. Notes 11, 756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kidder, B. L., Hu, G. & Zhao, K. ChIP-Seq: technical considerations for obtaining high-quality data. Nat. Immunol. 12, 918–922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishizaki, S. S. et al. Predicting the effects of SNPs on transcription factor binding affinity. Bioinformatics 36, 364–372 (2020).

    CAS  PubMed  Google Scholar 

  46. Behera, V. et al. Exploiting genetic variation to uncover rules of transcription factor binding and chromatin accessibility. Nat. Commun. 9, 782 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pennacchio, L. A. et al. Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, C. & Pan, W. Integration of enhancer-promoter interactions with GWAS summary results identifies novel schizophrenia-associated genes and pathways. Genetics 209, 699–709 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dekker, J. et al. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, G. et al. Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics 15 (Suppl 12), S11 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, G. et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, R22 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Vanhille, L. et al. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nat. Commun. 6, 6905 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Muerdter, F., Boryn, L. M. & Arnold, C. D. STARR-seq – principles and applications. Genomics 106, 145–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Inoue, F. & Ahituv, N. Decoding enhancers using massively parallel reporter assays. Genomics 106, 159–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Zabidi, M. A. et al. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature 518, 556–559 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu, S. et al. Genome-wide association studies and CRISPR/Cas9-mediated gene editing identify regulatory variants influencing eyebrow thickness in humans. PLoS Genet. 14, e1007640 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 1516 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Roper, J. & Yilmaz, O. H. Breakthrough moments: genome editing and organoids. Cell Stem Cell 24, 841–842 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium. et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234–244 (2014).

    Article  CAS  Google Scholar 

  65. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533, 95–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wang, X. et al. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neumeyer, S., Hemani, G. & Zeggini, E. Strengthening causal inference for complex disease using molecular quantitative trait loci. Trends. Mol. Med. 26, 232–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Franke, L. & Jansen, R. C. eQTL analysis in humans. Methods Mol. Biol. 573, 311–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Guo, X. et al. A comprehensive cis-eQTL analysis revealed target genes in breast cancer susceptibility loci identified in genome-wide association studies. Am. J. Hum. Genet. 102, 890–903 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yao, C. et al. Dynamic role of trans regulation of gene expression in relation to complex traits. Am. J. Hum. Genet. 100, 985–986 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bryois, J. et al. Cis and trans effects of human genomic variants on gene expression. PLoS Genet. 10, e1004461 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. Preprint at https://www.biorxiv.org/content/10.1101/447367v1 (2018)

  76. Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022–1034.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. GTEx Consortium Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  78. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  79. Pastinen, T. & Hudson, T. J. Cis-acting regulatory variation in the human genome. Science 306, 647–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Barlow, D. P. & Bartolomei, M. S. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6, a018382 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Khansefid, M. et al. Comparing allele specific expression and local expression quantitative trait loci and the influence of gene expression on complex trait variation in cattle. BMC Genomics 19, 793 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Degner, J. F. et al. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25, 3207–3212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takata, A., Matsumoto, N. & Kato, T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci. Nat. Commun. 8, 14519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gate, R. E. et al. Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat. Genet. 50, 1140–1150 (2018). This study used ATAC-seq and RNA-seq data and showed that human risk variants can be detected within accessible chromatin in activated T cells and localize with RNA-seq data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide association studies. Nat. Genet. 51, 592–599 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Grubert, F. et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162, 1051–1065 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Porcu, E. et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun. 10, 3300 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lawlor, D. A., Tilling, K. & Davey Smith, G. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 45, 1866–1886 (2016).

    Article  PubMed  Google Scholar 

  94. Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lawlor, D. A. et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    Article  PubMed  Google Scholar 

  96. Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  PubMed  Google Scholar 

  97. Del Greco, M. F. et al. Serum iron level and kidney function: a Mendelian randomization study. Nephrol. Dial. Transplant. 32, 273–278 (2017).

    Article  Google Scholar 

  98. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lan, F. et al. Droplet barcoding for massively parallel single-molecule deep sequencing. Nat. Commun. 7, 11784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, X. et al. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol. Cell 73, 130–142.e5 (2019).

    Article  PubMed  Google Scholar 

  101. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jia, G. et al. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat. Commun. 9, 4877 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Giri, A. et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 51, 51–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Teumer, A. et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun. 10, 4130 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Nakatochi, M. et al. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun. Biol 2, 115 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Sieber, K. B. et al. Integrated functional genomic analysis enables annotation of kidney genome-wide association study loci. J. Am. Soc. Nephrol. 30, 421–441 (2019). This study used DNase-seq and RNA-seq and found that disease-causing variants in GWAS are localized in regulatory gene elements and affect gene expression.

    Article  CAS  PubMed Central  Google Scholar 

  108. Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, X. et al. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat. Commun. 9, 4800 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018). This human study identified eQTLs and potential target genes in patients with nephrotic syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kottgen, A. et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J. Am. Soc. Nephrol. 21, 337–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Trudu, M. et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat. Med. 19, 1655–1660 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Bernascone, I. et al. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum. Mol. Genet. 19, 2998–3010 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Menon, M. C. et al. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. J. Clin. Invest. 125, 208–221 (2015).

    Article  PubMed  Google Scholar 

  115. Khalili, H. et al. Developmental origins for kidney disease due to Shroom3 deficiency. J. Am. Soc. Nephrol. 27, 2965–2973 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yeo, N. C. et al. Shroom3 contributes to the maintenance of the glomerular filtration barrier integrity. Genome Res. 25, 57–65 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lovric, S. et al. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol. Dial. Transplant. 31, 1802–1813 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Bryer, J. S. & Susztak, K. Screening drugs for kidney disease: targeting the podocyte. Cell Chem. Biol. 25, 126–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Beck, L. H. Jr. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Foley, R. N. & Collins, A. J. The USRDS: what you need to know about what it can and can’t tell us about ESRD. Clin. J. Am. Soc. Nephrol. 8, 845–851 (2013).

    Article  PubMed  Google Scholar 

  121. Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Susztak, K. Understanding the epigenetic syntax for the genetic alphabet in the kidney. J. Am. Soc. Nephrol. 25, 10–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Braun, D. A. et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. 89, 468–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570, 71–76 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Ling, G. et al. Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. Mol. Cell Biol. 30, 5531–5544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lu, Q. & Richardson, B. DNaseI hypersensitivity analysis of chromatin structure. Methods Mol. Biol. 287, 77–86 (2004).

    CAS  PubMed  Google Scholar 

  128. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. O’Geen, H., Echipare, L. & Farnham, P. J. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol. 791, 265–286 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8, 389–399 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Sandoval, J. et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6, 692–702 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Li, Q., Hermanson, P. J. & Springer, N. M. Detection of DNA methylation by whole-genome bisulfite sequencing. Methods Mol. Biol. 1676, 185–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Gu, H. et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6, 468–481 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res. 16, 1046–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 21, 71–87 (2019).

    Article  PubMed  CAS  Google Scholar 

  136. Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Pelikan, R. C. et al. Enhancer histone-QTLs are enriched on autoimmune risk haplotypes and influence gene expression within chromatin networks. Nat. Commun. 9, 2905 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. McRae, A. F. et al. Identification of 55,000 replicated DNA methylation QTL. Sci. Rep. 8, 17605 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Yao, C. et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat. Commun. 9, 3268 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Nicholson, G. et al. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genet. 7, e1002270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ko, Y. A. et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 14, R108 (2013). First study to examine methylation changes in patients with chronic kidney disease showing that these changes occur in enhancer regions and affect fibrosis-related genes.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Qiu, C. et al. Cytosine methylation predicts renal function decline in American Indians. Kidney Int. 93, 1417–1431 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Simon, J. M., Giresi, P. G., Davis, I. J. & Lieb, J. D. A detailed protocol for formaldehyde-assisted isolation of regulatory elements (FAIRE). Curr. Protoc. Mol. Biol. 102, 21.26.1–21.26.15 (2013).

    Article  Google Scholar 

  147. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Futema, M. et al. Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations. J. Med. Genet. 51, 537–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Lata, S. et al. Whole-exome sequencing in adults with chronic kidney disease: a pilot study. Ann. Intern. Med. 168, 100–109 (2018).

    Article  PubMed  Google Scholar 

  150. Salem, R. M. et al. Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J. Am. Soc. Nephrol. 30, 2000–2016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.S. is supported by NIH National Institute of Diabetes and Digestive and Kidney Diseases grants R01DK076077, R01 DK087635 and DP3 DK108220.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote, reviewed or edited the manuscript before submission. K.M.S. researched data for the article and K.S. made substantial contributions to the discussion of content.

Corresponding author

Correspondence to Katalin Susztak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Encyclopedia of DNA Elements (ENCODE): https://www.encodeproject.org

Genotype–Tissue Expression (GTEx) Portal: https://gtexportal.org/home/

International Human Epigenome Consortium (IHEC): http://ihec-epigenomes.org

NEPH eQTL browser: http://nephqtl.org

NIH Roadmap Epigenomics Project: http://www.roadmapepigenomics.org

Susztaklab Human Kidney eQTL atlas: http://susztaklab.com/eqtl/

Glossary terms

Secondary chromatin structure

The structure formed by the folding of primary chromatin.

Fine mapping

The process by which a variant is assigned to a complex trait.

Quantitative trait loci

(QTL) Genetic loci that are associated with variation in a phenotype.

Imputation

The inclusion of genotypes that are not directly measured, by estimating the missing data based on reference genome datasets and SNP linkage.

Haplotype

A set of genetic polymorphisms that are inherited together.

Promoter

The DNA sequences on which transcription is initiated.

Enhancer

A DNA sequence that is bound by transcription factors to increase the transcription of a gene.

Insulator

A DNA sequence that limits chromatin activation.

Transposable elements

DNA sequences whose position can change within the genome.

Cis-regulatory elements

Regions of non-coding DNA that affect the expression of nearby genes.

Massively parallel reporter assays

High-throughput experiments, in which the transcriptional activities of many regulatory sequences can be determined.

Alternative splicing

A process by which multiple transcripts are produced from a single gene.

Posterior probability

The probability of an event occurring based on information from a prior event.

Mendelian randomization

A technique that uses genetic data to make causative inference.

Orthogonal datasets

Independent and uncorrelated datasets.

Cellular encapsulation

A technique whereby cells are entrapped in a spherical semipermeable polymeric membrane.

Cellular deconvolution

The estimation of gene expression data for individual cell types within a bulk expression dataset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, K.M., Susztak, K. Unravelling the complex genetics of common kidney diseases: from variants to mechanisms. Nat Rev Nephrol 16, 628–640 (2020). https://doi.org/10.1038/s41581-020-0298-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0298-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research