Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted protein degradation: from mechanisms to clinic

Abstract

Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases — the principal waste disposal machines of a cell — and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ubiquitin-mediated degradation systems and degrons.
Fig. 2: Examples of natural means of biomolecule-induced degradation.
Fig. 3: Diverse molecular mechanisms can lead to substrate recruitment for targeted protein degradation.

Similar content being viewed by others

References

  1. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001). This study, to our knowledge, provides the first conceptualization of PROTACs and the first proof-of-principle demonstration of degradation via a peptide-based PROTAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao, L., Zhao, J., Zhong, K., Tong, A. & Jia, D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct. Target. Ther. 7, 113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chamberlain, P. P. et al. Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014). This study shows the crystal structure of cereblon bound to lenalidomide, revealing the binding site and of IMiD drugs.

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014). This study shows that the crystal structure of cereblon bound to thalidomide, lenalidomide and pomalidomide reveals the binding site of IMiD drugs and provides rationale for their activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020). This paper provides the first, to our knowledge, description of the LYTAC system and the first example of its use for the degradation of extracellular proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010). This study identifies cereblon as the molecular target of thalidomide.

    Article  CAS  PubMed  Google Scholar 

  7. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  Google Scholar 

  8. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014). Together with Kronke et al. (2014), this paper demonstrates that lenalidomide causes degradation of IKZF1 and IKZF3 in multiple myeloma cells.

    Article  CAS  PubMed  Google Scholar 

  9. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Li, Z., Zhu, C., Ding, Y., Fei, Y. & Lu, B. ATTEC: a potential new approach to target proteinopathies. Autophagy 16, 185–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, T. et al. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat. Struct. Mol. Biol. 27, 605–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schey, S. A. et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J. Clin. Oncol. 22, 3269–3276 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Bartlett, J. B., Dredge, K. & Dalgleish, A. G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 4, 314–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007). This study provides structural evidence for the mechanism of action of the plant hormone auxin as a molecular glue degrader binding to the E3 ligase TIR1 and forming a ternary complex with IAA7.

    Article  CAS  PubMed  Google Scholar 

  18. Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Ciechanover, A. Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew. Chem. Int. Ed. Engl. 44, 5944–5967 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Meyer, H. J. & Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910–921 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, X. et al. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164, 811–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Min, J. H. et al. Structure of an HIF-1α -pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002). This study provides structural evidence for HIF-1α hydroxyproline recognition by CRL2VHL E3 ubiquitin ligase.

    Article  CAS  PubMed  Google Scholar 

  29. Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling in mammalian cells. Science 322, 918–923 (2008). This study describes functional genomics as a method to identify global protein stability with GFP fusion constructs.

    Article  CAS  PubMed  Google Scholar 

  30. Grau-Bove, X., Sebe-Pedros, A. & Ruiz-Trillo, I. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin. Mol. Biol. Evol. 32, 726–739 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Hua, Z. & Yu, P. Diversifying evolution of the ubiquitin-26s proteasome system in Brassicaceae and Poaceae. Int. J. Mol. Sci. 20, 3226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hua, Z. Diverse evolution in 111 plant genomes reveals purifying and dosage balancing selection models for F-box genes. Int. J. Mol. Sci. 22, 871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simpson, L. M. et al. Target protein localization and its impact on PROTAC-mediated degradation. Cell Chem. Biol. 29, 1482–1504.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731.e10 (2020). This study demonstrates the global proteomic characterization of depth and selectivity of degradation of kinases using PROTAC approach.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayor-Ruiz, C. et al. Plasticity of the cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation. Mol. Cell 75, 849–858.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Mahon, C., Krogan, N. J., Craik, C. S. & Pick, E. Cullin E3 ligases and their rewiring by viral factors. Biomolecules 4, 897–930 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huh, K. et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J. Virol. 81, 9737–9747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Jager, S. et al. Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang, S. et al. HIV-1 viral protein R downregulates Ebp1 and stabilizes p53 in glioblastoma U87MG cells. Clin. Transl. Oncol. 16, 293–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Ito, F. et al. Structural basis for HIV-1 antagonism of host APOBEC3G via cullin E3 ligase. Sci. Adv. 9, eade3168 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li, Y. L. et al. The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature 615, 728–733 (2023). Together with Ito et al. (2023), this paper provides structural description of RNA acting as a molecular glue degrader between the human E3 ubiquitin ligase CRL5–EloB–EloC bound to viral factor Vif and human transcription factor CBFβ targeting human protein substrate APOBEC3G for degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teale, W. D., Paponov, I. A. & Palme, K. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Abel, S. & Theologis, A. Early genes and auxin action. Plant Physiol. 111, 9–17 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Manford, A. G. et al. Structural basis and regulation of the reductive stress response. Cell 184, 5375–5390.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lecoquierre, F. et al. Variant recurrence in neurodevelopmental disorders: the use of publicly available genomic data identifies clinically relevant pathogenic missense variants. Genet. Med. 21, 2504–2511 (2019).

    Article  PubMed  Google Scholar 

  50. Sakamoto, K. M. et al. Development of PROTACs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell Proteom. 2, 1350–1358 (2003).

    Article  CAS  Google Scholar 

  51. Schneekloth, A. R., Pucheault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904–5908 (2008). This paper, to our knowledge, shows the first description and validation of small molecule-based PROTAC.

    Article  CAS  PubMed  Google Scholar 

  52. Buckley, D. L. et al. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc. 134, 4465–4468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hornberger, K. R. & Araujo, E. M. V. Physicochemical property determinants of oral absorption for PROTAC protein degraders. J. Med. Chem. 66, 8281–8287 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Winter, G. E. et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zengerle, M., Chan, K. H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015). Together with Winter et al. (2015) and Lu et al. (2015), this paper shows the proof-of-principle demonstration that IMiD molecules can be conjugated to target binders and turned into efficient PROTACs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hines, J., Lartigue, S., Dong, H., Qian, Y. & Crews, C. M. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79, 251–262 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Han, X., Wei, W. & Sun, Y. PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective. Acta Mater. Med. 1, 244–259 (2022).

    PubMed  PubMed Central  Google Scholar 

  59. Zhang, X. et al. Discovery of IAP-recruiting BCL-XL PROTACs as potent degraders across multiple cancer cell lines. Eur. J. Med. Chem. 199, 112397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, C. et al. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J. Enzym. Inhib. Med. Chem. 37, 1437–1453 (2022).

    Article  CAS  Google Scholar 

  61. Khan, S. et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, H. T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Z. et al. An overview of PROTACs: a promising drug discovery paradigm. Mol. Biomed. 3, 46 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qi, S. M. et al. PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front. Pharmacol. 12, 692574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singhal, S. et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341, 1565–1571 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Dimopoulos, M. A., Anagnostopoulos, A. & Weber, D. Treatment of plasma cell dyscrasias with thalidomide and its derivatives. J. Clin. Oncol. 21, 4444–4454 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Rehman, W., Arfons, L. M. & Lazarus, H. M. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther. Adv. Hematol. 2, 291–308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McBride, W. G. Thalidomide and congenital abnormalities. Lancet 278, 1358 (1961).

    Article  Google Scholar 

  69. Lenz, W., Pfeiffer, R. A., Kosenow, W. & Hayman, D. J. Thalidomide and congenital abnormalities. Lancet 279, 45–46 (1962).

    Article  Google Scholar 

  70. D’Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA 91, 4082–4085 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pan, B. & Lentzsch, S. The application and biology of immunomodulatory drugs (IMiDs) in cancer. Pharmacol. Ther. 136, 56–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Holstein, S. A. & McCarthy, P. L. Immunomodulatory drugs in multiple myeloma: mechanisms of action and clinical experience. Drugs 77, 505–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petzold, G., Fischer, E. S. & Thoma, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532, 127–130 (2016). This paper provides structural description of cereblon lenalidomide-induced ternary complex and degradation of CK1α.

    Article  CAS  PubMed  Google Scholar 

  74. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535, 252–257 (2016). This paper provides structural characterization of cereblon ternary complex and degradation of GSPT1 induced by CC-885.

    Article  CAS  PubMed  Google Scholar 

  75. Teng, M. & Gray, N. S. The rise of degrader drugs. Cell Chem. Biol. 30, 864–878 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matyskiela, M. E. et al. Crystal structure of the SALL4-pomalidomide-cereblon-DDB1 complex. Nat. Struct. Mol. Biol. 27, 319–322 (2020). This paper provides structural characterization of cereblon ternary complex and degradation of SALL4 induced by pomalidomide.

    Article  CAS  PubMed  Google Scholar 

  78. Furihata, H. et al. Structural bases of IMiD selectivity that emerges by 5-hydroxythalidomide. Nat. Commun. 11, 4578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sellar, R. S. et al. Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells. J. Clin. Invest. 132, e153514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bonazzi, S. et al. Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy. Cell Chem. Biol. 30, 235–247.e12 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, E. S. et al. Acute pharmacological degradation of Helios destabilizes regulatory T cells. Nat. Chem. Biol. 17, 711–717 (2021). This study demonstrates structure-based design for cereblon molecular glue degraders targeting IKZF2.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tuan, M. N. et al. Proteolysis targeting chimeras with reduced off-targets. Nat. Chem. 16, 218–228 (2023).

    Google Scholar 

  83. Fasching, B., Ryckmans, T. & Ritzén, A. Compounds that mediate protein degradation and methods of use thereof. US patent WO2023069700A1 (2022).

  84. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane radial ray syndrome. eLife 7, e38430 (2018). This paper identifies SALL4 as a transcription factor implicated in genetic diseases such as Duane radial ray syndrome that phenocopies thalidomide teratogenicity, as a protein degraded by thalidomide.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Fink, E. C. et al. CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 132, 1535–1544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ichikawa, S. et al. The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature 610, 775–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heim, C., Spring, A. K., Kirchgassner, S., Schwarzer, D. & Hartmann, M. D. Identification and structural basis of C-terminal cyclic imides as natural degrons for cereblon. Biochem. Biophys. Res. Commun. 637, 66–72 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Oleinikovas, V., Gainza, P., Ryckmans, T., Fasching, B. & Thoma, N. H. From thalidomide to rational molecular glue design for targeted protein degradation. Annu. Rev. Pharmacol. Toxicol. 64, 291–312 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Heim, C., Spring, A. K., Kirchgassner, S., Schwarzer, D. & Hartmann, M. D. Cereblon neo-substrate binding mimics the recognition of the cyclic imide degron. Biochem. Biophys. Res. Commun. 646, 30–35 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Ichikawa, S. et al. The cyclimids: degron-inspired cereblon binders for targeted protein degradation. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2024.01.003 (2024).

  93. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article  PubMed  Google Scholar 

  94. Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017). Together with Han et al. (2017), this study identifies a new molecular glue degrader class of sulfonamides that bind DCAF15, a substrate receptor of CRL4DCAF15 E3 ubiquitin ligase, resulting in degradation of a splicing factor RBM39.

    Article  CAS  PubMed  Google Scholar 

  95. Ting, T. C. et al. Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15. Cell Rep. 29, 1499–1510.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gosavi, P. M. et al. Profiling the landscape of drug resistance mutations in neosubstrates to molecular glue degraders. ACS Cent. Sci. 8, 417–429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bussiere, D. E. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Du, X. et al. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625–1633.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Slabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kozicka, Z. et al. Design principles for cyclin K molecular glue degraders. Nat. Chem. Biol. 20, 93–107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lv, L. et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 9, e59994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Simonetta, K. R. et al. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat. Commun. 10, 1402 (2019). This paper, to our knowledge, provides the first report of prospective discovery of molecular glue degraders capable of strengthening a native interaction between phosphorylated β-catenin and β-TrCP.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. ANZCTR. A Phase 1, Randomized, Placebo-Controlled, Study Evaluate Safety, Pharmacokinetics, Pharmacodynamics Single Multiple Ascending Doses PLX-4545 Healthy Subjects. https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12623001265662 (ANZCTR, 2024).

  107. Hansen, J. D. et al. Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J. Med. Chem. 63, 6648–6676 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Hanzl, A. et al. E3-specific degrader discovery by dynamic tracing of substrate receptor abundance. J. Am. Chem. Soc. 145, 1176–1184 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mason, J. W. et al. DNA-encoded library-enabled discovery of proximity-inducing small molecules. Nat. Chem. Biol. 20, 170–179 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Kozicka, Z. & Thoma, N. H. Haven’t got a glue: protein surface variation for the design of molecular glue degraders. Cell Chem. Biol. 28, 1032–1047 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Domostegui, A., Nieto-Barrado, L., Perez-Lopez, C. & Mayor-Ruiz, C. Chasing molecular glue degraders: screening approaches. Chem. Soc. Rev. 51, 5498–5517 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L. & O’Malley, B. W. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl Acad. Sci. 96, 1858–1862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wallace, A. D. & Cidlowski, J. A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem. 276, 42714–42721 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Zhu, J. et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor α (RARα) and oncogenic RARα fusion proteins. Proc. Natl Acad. Sci. USA 96, 14807–14812 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tsai, J. M. et al. UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability. Mol. Cell 83, 2753–2767.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Long, X. & Nephew, K. P. Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J. Biol. Chem. 281, 9607–9615 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Carlson, R. W. The history and mechanism of action of fulvestrant. Clin. Breast Cancer 6, S5–S8 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Nathan, M. R. & Schmid, P. A review of fulvestrant in breast cancer. Oncol. Ther. 5, 17–29 (2017).

    Article  PubMed  Google Scholar 

  119. Osborne, C. K., Wakeling, A. & Nicholson, R. I. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br. J. Cancer 90, S2–S6 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guan, J. et al. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell 178, 949–963.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Hilmi, K. et al. Role of SUMOylation in full antiestrogenicity. Mol. Cell. Biol. 32, 3823–3837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xiong, Y. et al. Chemo-proteomics exploration of HDAC degradability by small molecule degraders. Cell Chem. Biol. 28, 1514–1527.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu, W. et al. Fragment-based covalent ligand discovery. RSC Chem. Biol. 2, 354–367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Knight, S., Gianni, D. & Hendricks, A. Fragment-based screening: a new paradigm for ligand and target discovery. SLAS Discov. 27, 3–7 (2022).

    Article  PubMed  Google Scholar 

  125. Crowley, V. M., Thielert, M. & Cravatt, B. F. Functionalized scout fragments for site-specific covalent ligand discovery and optimization. ACS Cent. Sci. 7, 613–623 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747–755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Grimster, N. P. Covalent PROTACs: the best of both worlds? RSC Med. Chem. 12, 1452–1458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nowak, R. P. et al. Development of a covalent cereblon-based PROTAC employing a fluorosulfate warhead. RSC Chem. Biol. 4, 906–912 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Forte, N. et al. Targeted protein degradation through E2 recruitment. ACS Chem. Biol. 18, 897–904 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, Y. D. et al. Template-assisted covalent modification of DCAF16 underlies activity of BRD4 molecular glue degraders. Preprint at bioRxiv https://doi.org/10.1101/2023.02.14.528208 (2023).

  133. Shergalis, A. G. et al. CRISPR screen reveals BRD2/4 molecular glue-like degrader via recruitment of DCAF16. ACS Chem. Biol. 18, 331–339 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Hsia, O. et al. Targeted protein degradation via intramolecular bivalent glues. Nature 627, 204–211 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kerres, N. et al. Chemically induced degradation of the oncogenic transcription factor BCL6. Cell Rep. 20, 2860–2875 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Slabicki, M. et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588, 164–168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, X. W. et al. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science 328, 240–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Liquori, A. et al. Acute promyelocytic leukemia: a constellation of molecular events around a single PML-RARA fusion gene. Cancers 12, 624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Martens, J. H. et al. PML-RARα/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 17, 173–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Ablain, J. et al. Uncoupling RARA transcriptional activation and degradation clarifies the bases for APL response to therapies. J. Exp. Med. 210, 647–653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bashore, C. et al. Targeted degradation via direct 26S proteasome recruitment. Nat. Chem. Biol. 19, 55–63 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Schiemer, J. et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat. Chem. Biol. 17, 152–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kannt, A. & Dikic, I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem. Biol. 28, 1014–1031 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Hoegenauer, K. et al. Discovery of ligands for TRIM58, a novel tissue-selective E3 ligase. ACS Med. Chem. Lett. 14, 1631–1639 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Okamoto, T., Imaizumi, K. & Kaneko, M. The role of tissue-specific ubiquitin ligases, RNF183, RNF186, RNF182 and RNF152, in disease and biological function. Int. J. Mol. Sci. 21, 3921 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Brand, M. et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 26, 300–306.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Jiang, B. et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew. Chem. Int. Ed. Engl. 58, 6321–6326 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Smith, B. E. et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10, 131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tovell, H. et al. Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader. ACS Chem. Biol. 14, 2024–2034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jauslin, W. T. et al. A high affinity pan-PI3K binding module supports selective targeted protein degradation of PI3Kα. Chem. Sci. 15, 683–691 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Hu, R. et al. Identification of a selective BRD4 PROTAC with potent antiproliferative effects in AR-positive prostate cancer based on a dual BET/PLK1 inhibitor. Eur. J. Med. Chem. 227, 113922 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Cantley, J. et al. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nat. Commun. 13, 6814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sperling, A. S. et al. Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood 134, 160–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liang, R. et al. ICP-490 is a highly potent and selective IKZF1/3 degrader with robust anti-tumor activities against multiple myeloma and non-Hodgkin’s lymphoma. Cancer Res. 83, abstr. 3427 (2023).

    Article  Google Scholar 

  158. Michot, J.-M. et al. Clinical activity of CC-99282, a novel, oral small molecule cereblon E3 ligase modulator (CELMoD) agent, in patients (Pts) with relapsed or refractory non-Hodgkin lymphoma (R/R NHL) - first results from a phase 1, open-label study. Blood 138, 3574–3574 (2021).

    Article  Google Scholar 

  159. Lonial, S. et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol. 9, e822–e832 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Richardson, P. G. et al. Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma. N. Engl. J. Med. 389, 1009–1022 (2023).

    Article  CAS  PubMed  Google Scholar 

  161. Berdeja, J. et al. A phase 1 study of CFT7455, a novel degrader of IKZF1/3, in multiple myeloma and non-Hodgkin lymphoma. Blood 138, 1675–1675 (2021).

    Article  Google Scholar 

  162. Bewersdorf, J. P. et al. A phase II clinical trial of E7820 for patients with relapsed/refractory myeloid malignancies with mutations in splicing factor genes. Blood 140, 9065–9067 (2022).

    Article  Google Scholar 

  163. Hamilton, E. P. et al. ARV-471, an estrogen receptor (ER) PROTAC degrader, combined with palbociclib in advanced ER+/human epidermal growth factor receptor 2-negative (HER2) breast cancer: phase 1b cohort (part C) of a phase 1/2 study. J. Clin. Oncol. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS1120 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Mato, A. et al. A first-in-human phase 1 trial of NX-2127, a first-in-class oral BTK degrader with IMiD-like activity, in patients with relapsed and refractory B-cell malignancies. J. Clin. Oncol. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS7581 (2022).

    Article  Google Scholar 

  165. Mato, A. R. et al. NX-2127-001, a first-in-human trial of NX-2127, a Bruton’s tyrosine kinase-targeted protein degrader, in patients with relapsed or refractory chronic lymphocytic leukemia and B-cell malignancies. Blood 140, 2329–2332 (2022).

    Article  Google Scholar 

  166. Linton, K. et al. Pb2331: an ongoing first-in-human phase 1 trial of Nx-5948, an oral Bruton’s tyrosine kinase (Btk) degrader, in patients with relapsed/refractory B cell malignancies. HemaSphere 7, e29005fd (2023).

    Article  PubMed Central  Google Scholar 

  167. Starodub, A. et al. Phase 1 study of KT-333, a targeted protein degrader, in patients with relapsed or refractory lymphomas, large granular lymphocytic leukemia, and solid tumors. J. Clin. Oncol. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS3171 (2022).

    Article  Google Scholar 

  168. Stevens, D. A. et al. Phase 1 study of KT-413, a targeted protein degrader, in adult patients with relapsed or refractory B-cell non-Hodgkin lymphoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.2022.40.16_suppl.TPS3170 (2022).

    Article  PubMed  Google Scholar 

  169. Gao, X. et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40, 17–17 (2022).

    Article  Google Scholar 

  170. Petrylak, D. P. et al. A phase 2 expansion study of ARV-766, a PROTAC androgen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. https://doi.org/10.1200/JCO.2023.41.6_suppl.TPS290 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Robbins, D. W. et al. Discovery and preclinical pharmacology of NX-2127, an orally bioavailable degrader of Bruton’s tyrosine kinase with immunomodulatory activity for the treatment of patients with B cell malignancies. J. Med. Chem. 67, 2321–2336 (2024).

    Article  CAS  PubMed  Google Scholar 

  172. Yang, Z. et al. Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently. Cell Res. 31, 1315–1318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lenz, W. A short history of thalidomide embryopathy. Teratology 38, 203–215 (1988).

    Article  CAS  PubMed  Google Scholar 

  174. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Zhang, L., Riley-Gillis, B., Vijay, P. & Shen, Y. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther. 18, 1302–1311 (2019).

    Article  PubMed  Google Scholar 

  176. Bjorklund, C. C. et al. Evidence of a role for activation of Wnt/β-catenin signaling in the resistance of plasma cells to lenalidomide. J. Biol. Chem. 286, 11009–11020 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Bjorklund, C. C. et al. Evidence of a role for CD44 and cell adhesion in mediating resistance to lenalidomide in multiple myeloma: therapeutic implications. Leukemia 28, 373–383 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Ocio, E. M. et al. In vivo murine model of acquired resistance in myeloma reveals differential mechanisms for lenalidomide and pomalidomide in combination with dexamethasone. Leukemia 29, 705–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Wei, S. et al. Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene 32, 1110–1120 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Martinez-Hoyer, S. & Karsan, A. Mechanisms of lenalidomide sensitivity and resistance. Exp. Hematol. 91, 22–31 (2020).

    Article  PubMed  Google Scholar 

  181. Kortum, K. M. et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 128, 1226–1233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kurimchak, A. M. et al. The drug efflux pump MDR1 promotes intrinsic and acquired resistance to PROTACs in cancer cells. Sci. Signal. 15, eabn2707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang, J. et al. Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase inhibition and protein degradation. Cell Chem. Biol. 27, e1513 (2020).

    Article  Google Scholar 

  184. Chen, Y. et al. Design, synthesis, and biological evaluation of IRAK4-targeting PROTACs. ACS Med. Chem. Lett. 12, 82–87 (2021).

    Article  PubMed  Google Scholar 

  185. Nunes, J. et al. Targeting IRAK4 for degradation with PROTACs. ACS Med. Chem. Lett. 10, 1081–1085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yamashita, H. et al. Application of protein knockdown strategy targeting β-sheet structure to multiple disease-associated polyglutamine proteins. Bioorg. Med. Chem. 28, 115175 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Gao, N., Chen, Y. X., Zhao, Y. F. & Li, Y. M. Chemical methods to knock down the amyloid proteins. Molecules 22, 916 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Hyun, S. & Shin, D. Chemical-mediated targeted protein degradation in neurodegenerative diseases. Life 11, 607 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tomoshige, S., Nomura, S., Ohgane, K., Hashimoto, Y. & Ishikawa, M. Degradation of huntingtin mediated by a hybrid molecule composed of IAP antagonist linked to phenyldiazenyl benzothiazole derivative. Bioorg. Med. Chem. Lett. 28, 707–710 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Lu, M. et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem. 146, 251–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Tomoshige, S., Nomura, S., Ohgane, K., Hashimoto, Y. & Ishikawa, M. Discovery of small molecules that induce the degradation of huntingtin. Angew. Chem. Int. Ed. Engl. 56, 11530–11533 (2017).

    Article  CAS  PubMed  Google Scholar 

  192. Fan, X., Jin, W. Y., Lu, J., Wang, J. & Wang, Y. T. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat. Neurosci. 17, 471–480 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zou, C. et al. The human E3 ligase RNF185 is a regulator of the SARS-CoV-2 envelope protein. iScience 26, 106601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Espinoza-Chavez, R. M. et al. Targeted protein degradation for infectious diseases: from basic biology to drug discovery. ACS Bio Med Chem Au 3, 32–45 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. de Wispelaere, M. et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 10, 3468 (2019). This paper, to our knowledge, provides the first report of PROTAC molecules targeting viral proteins for degradation using human host degradation machinery.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhao, J. et al. An anti-influenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat. Commun. 13, 2079 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Xu, Z. et al. Discovery of oseltamivir-based novel PROTACs as degraders targeting neuraminidase to combat H1N1 influenza virus. Cell Insight 1, 100030 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Morreale, F. E. et al. BacPROTACs mediate targeted protein degradation in bacteria. Cell 185, 2338–2353.e18 (2022). This paper provides proof of principle of BacPROTAC-induced protein degradation in bacteria using bacterial protease machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hoi, D. M. et al. Clp-targeting BacPROTACs impair mycobacterial proteostasis and survival. Cell 186, 2176–2192.e22 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Ding, Y., Fei, Y. & Lu, B. Emerging new concepts of degrader technologies. Trends Pharmacol. Sci. 41, 464–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sasso, J. M. et al. Molecular glues: the adhesive connecting targeted protein degradation to the clinic. Biochemistry 62, 601–623 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. Chamberlain, P. P. et al. Evolution of cereblon-mediated protein degradation as a therapeutic modality. ACS Med. Chem. Lett. 10, 1592–1602 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Imaide, S. et al. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol. 17, 1157–1167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gourisankar, S. et al. Rewiring cancer drivers to activate apoptosis. Nature 620, 417–425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Raina, K. et al. Regulated induced proximity targeting chimeras (RIPTACs): a novel heterobifunctional small molecule therapeutic strategy for killing cancer cells selectively. Preprint at bioRxiv https://doi.org/10.1101/2023.01.01.522436 (2023).

  206. Wang, W. W. et al. Targeted protein acetylation in cells using heterobifunctional molecules. J. Am. Chem. Soc. 143, 16700–16708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Soumbasis, A., Eldeeb, M. A., Ragheb, M. A. & Zorca, C. E. Dephosphorylation targeting chimaera (DEPTAC): targeting tau proteins in tauopathies. Curr. Protein Pept. Sci. 23, 129–132 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, Q. et al. Protein phosphatase 5-recruiting chimeras for accelerating apoptosis-signal-regulated kinase 1 dephosphorylation with antiproliferative activity. J. Am. Chem. Soc. 145, 1118–1128 (2023).

    Article  CAS  PubMed  Google Scholar 

  209. Chen, P. H. et al. Modulation of phosphoprotein activity by phosphorylation targeting chimeras (PhosTACs). ACS Chem. Biol. 16, 2808–2815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Siriwardena, S. U. et al. Phosphorylation-inducing chimeric small molecules. J. Am. Chem. Soc. 142, 14052–14057 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Henning, N. J. et al. Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat. Chem. Biol. 18, 412–421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017). This study provides the first, to our knowledge, crystal structure of CRL2VHL E3 ubiquitin ligase in complex with MZ-1 and neo-substrate BRD4BD2; the ternary complex is shown to exhibit positive cooperativity resulting in efficient degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gao, Y. et al. Catalytic degraders effectively address kinase site mutations in EML4-ALK oncogenic fusions. J. Med. Chem. 66, 5524–5535 (2023).

    Article  CAS  PubMed  Google Scholar 

  214. Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nabet, B. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat. Commun. 11, 4687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Fischer and Ebert labs for the discussions and input. R.P.N. is a member of the excellence cluster ImmunoSensation2 funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy — EXC2151–390873048.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Benjamin L. Ebert or Eric S. Fischer.

Ethics declarations

Competing interests

E.S.F. is a founder, member of the scientific advisory board and equity holder of Civetta Therapeutics, Proximity Therapeutics and Neomorph, Inc. (also board of directors). He is an equity holder and scientific advisory board member for Avilar Therapeutics and Photys Therapeutics, an equity holder in Lighthorse Therapeutics and a consultant to Novartis, Sanofi, EcoR1 Capital, Ajax, Odyssey and Deerfield. The Fischer lab receives or has received research funding from Deerfield, Novartis, Ajax, Bayer, Interline and Astellas. B.L.E. has received research funding from Celgene, Deerfield, Novartis and Calico and consulting fees from GRAIL. He is a member of the scientific advisory board and shareholder for Neomorph Inc., TenSixteen Bio, Skyhawk Therapeutics and Exo Therapeutics. R.P.N. and J.M.T. declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Marcus Hartmann, Ivan Dikic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Acetylation tagging

(AceTAG). Acetylation tagging system in which heterobifunctional molecules composed of ligands to acetyltransferase p300/CBP are linked by binder to FKBP12F36V and can acetylate FKBP12F36V-tagged target proteins.

Activity-based protein profiling

(ABPP). A proteomics-based technology that uses chemical probes, usually consisting of a reactive group (warhead), a chemical linker and a reporter group including a tag. Probes whose reactive groups react with target proteins are isolated and identified via proteomics.

Antibody targeting chimaeras

(AbTACs). Recombinant bispecific antibodies that recruit E3 ligases bound to the membrane for degradation of cell-surface proteins.

Cullin-RING E3 ubiquitin ligase

(CRL). Family of E3 ubiquitin ligases that contain a cullin protein (CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5 or CUL7). These multicomponent complexes frequently include adaptor proteins in between the substrate receptors.

DDB1 and cullin-associated factor

(DCAF). Proteins associated with cullin proteins, such as substrate receptors or substrate adaptors, in CRLs.

Dephosphorylation-targeting chimaeras

(DEPTACs). Heterobifunctional peptides that recruit a phosphatase to a target protein. The approach was demonstrated to dephosphorylate tau with chimaeric peptides composed of tau binding motif, linker, PP2A phosphatase binding motif and cell-penetrating sequence.

Deubiquitinase-targeting chimaeras

(DUBTACs). Heterobifunctional small molecules consisting of a deubiquitinase recruiter and a target binder. A DUBTAC has been demonstrated to deubiquitinate ΔF508-CFTR by using a covalent allosteric OTUB1 recruiter linked to lumacaftor, a ΔF508-CFTR binding small molecule.

Fragment-based ligand discovery

(FBLD). A ligand discovery approach that uses small chemical fragments instead of elaborated structures in an attempt to cover wider chemical spaces with fewer molecules. After initial low-affinity binding, fragments are discovered — often using chemoproteomics approaches; these fragments are elaborated (such as the addition of functional groups, atoms or other scaffolds) into larger molecules with improved binding affinity.

Immunomodulatory imide drugs

(IMiDs). A group of drugs that include the small molecules thalidomide, lenalidomide and pomalidomide, known for their immunomodulatory functions. IMiDs bind CRBN and cause degradation of transcription factors including IKZF1/3.

Lysosome-targeting chimaeras

(LYTACs). Antibodies modified with a lysosome-targeting ligand, such as the tri-GalNAc substrate of asialoglycoprotein receptor (ASGPR), thus enabling the internalization of the antibody bound with its protein target. LYTACs target cell surface proteins for lysosomal degradation.

mRNA display technology

A display-based technique that evolves peptides or proteins that bind to a specific target. A DNA library is first synthesized with sites for T7 RNA polymerase transcription and ribosomal binding. DNA libraries are transcribed in vitro to an mRNA library and ligated to a DNA spacer attached to puromycin. The resulting library is translated in vitro to a peptide library that is covalently linked to the mRNA and selected for binding to an immobilized target. The mRNA–DNA duplex resulting from the bound peptides is sequenced and amplified with error-prone PCR to increase diversity of the mRNA library for the next iterative cycle.

Nuclear co-activators

(NCOAs). A family of proteins that bind to nuclear hormone receptors to facilitate transcriptional activation. NCOAs often bind a conserved hydrophobic cleft within nuclear receptors, which allows them to engage a broad number of targets.

Phosphate-recruiting chimaeras

(PhoRCs). Heterobifunctional small molecules that recruit phosphatase to a target protein. The PhoRC system was demonstrated with DDO3711, which is a bifunctional small molecule that binds phosphatase PP5 and recruits it to ASK1 via the active site inhibitor of ASK1.

Phosphorylation inducing chimaeras

(PHICs). Heterobifunctional small molecules that recruit a kinase to a target protein. PHICs were demonstrated to phosphorylate BRD4 by recruitment of AMPK or PKC kinases.

Phosphorylation-targeting chimaeras

(PhosTACs). Heterobifunctional small molecules that recruit phosphatase to a target protein. The PhosTAC approach was demonstrated using FKBP12F36V-tagged phosphatase and HaloTagged-target protein with a PhosTAC composed of FKBP12F36V small-molecule binder and a halo ligand.

Regulated induced proximity targeting chimaeras

(RIPTACs). Bifunctional small molecules that bring into proximity two proteins, a disease-specific protein target with a pan-essential effector protein, resulting in context-specific toxicity.

Sumolyation

Sumolyation is a post-translational modification that involves the attachment of SUMO proteins (SUMO1, SUMO2 or SUMO3), small ubiquitin-like peptides, to lysine residues that lead to different aspects of protein regulation and/or function. SUMO proteins are attached to targets in an analogous process to ubiquitin, via an E1, SUMO E2 and SUMO E3 ligases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, J.M., Nowak, R.P., Ebert, B.L. et al. Targeted protein degradation: from mechanisms to clinic. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00729-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00729-9

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer