Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and molecular control of vertebrate somitogenesis

Abstract

Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paraxial mesoderm segmentation and modules of somitogenesis.
Fig. 2: In vitro models of somitogenesis.
Fig. 3: The segmentation clock and gradients along the presomitic mesoderm.
Fig. 4: The clock and wavefront and clock-dependent oscillatory gradient models of somitogenesis.
Fig. 5: A framework of somite anteroposterior polarity patterning.
Fig. 6: An integrated view of somite morphogenesis.

Similar content being viewed by others

References

  1. Hubaud, A. & Pourquié, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Bulman, M. P. et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24, 438–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Sparrow, D. B., Guillén-Navarro, E., Fatkin, D. & Dunwoodie, S. L. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum. Mol. Genet. 17, 3761–3766 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Whittock, N. V. et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am. J. Hum. Genet. 74, 1249–1254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McInerney-Leo, A. M. et al. Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Hum. Mol. Genet. 24, 1234–1242 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Cornier, A. S. et al. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho–Levin syndrome. Am. J. Hum. Genet. 82, 1334–1341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sparrow, D. B. et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149, 295–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Bouman, A. et al. Homozygous DMRT2 variant associates with severe rib malformations in a newborn. Am. J. Med. Genet. A 176, 1216–1221 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Turnpenny, P. D. et al. Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J. Med. Genet. 40, 333–339 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sparrow, D. B. et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum. Mol. Genet. 22, 1625–1631 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Mohamed, J. Y. et al. Mutations in MEOX1, encoding mesenchyme homeobox 1, cause Klippel–Feil anomaly. Am. J. Hum. Genet. 92, 157–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bayrakli, F. et al. Mutation in MEOX1 gene causes a recessive Klippel–Feil syndrome subtype. BMC Genet. 14, 95 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sparrow, D. B. et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am. J. Hum. Genet. 78, 28–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Gomez, C. & Pourquié, O. Developmental control of segment numbers in vertebrates. J. Exp. Zool. B Mol. Dev. Evol. 312, 533–544 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuan, C.-Y. K., Tannahill, D., Cook, G. M. W. & Keynes, R. J. Somite polarity and segmental patterning of the peripheral nervous system. Mech. Dev. 121, 1055–1068 (2004).

    Article  PubMed  Google Scholar 

  17. Fleming, A., Kishida, M. G., Kimmel, C. B. & Keynes, R. J. Building the backbone: the development and evolution of vertebral patterning. Development 142, 1733–1744 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Scaal, M. Early development of the vertebral column. Semin. Cell Dev. Biol. 49, 83–91 (2016).

    Article  PubMed  Google Scholar 

  19. Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Diaz-Cuadros, M. & Pourquie, O. In vitro systems: a new window to the segmentation clock. Dev. Growth Differ. 63, 140–153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lauschke, V. M., Tsiairis, C. D., François, P. & Aulehla, A. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493, 101–105 (2013).

    Article  ADS  PubMed  Google Scholar 

  22. Hubaud, A., Regev, I., Mahadevan, L. & Pourquié, O. Excitable dynamics and yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simsek, M. F. & Özbudak, E. M. Spatial fold change of FGF signaling encodes positional information for segmental determination in zebrafish. Cell Rep. 24, 66–78.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Matsumiya, M., Tomita, T., Yoshioka-Kobayashi, K., Isomura, A. & Kageyama, R. ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock. Development 145, dev156836 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chu, L.-F. et al. An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep. 28, 2247–2255.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020). Together with references 25 and 26, this article establishes in vitro systems using human PSCs to identify the human segmentation clock.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405–409 (2020).

    Article  ADS  PubMed  Google Scholar 

  29. Veenvliet, J. V. et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 370, eaba4937 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Sanaki-Matsumiya, M. et al. Periodic formation of epithelial somites from human pluripotent stem cells. Nat. Commun. 13, 2325 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miao, Y. et al. Reconstruction and deconstruction of human somitogenesis in vitro. Nature 614, 500–508 (2023). This article establishes two organoid models of human somite formation, called somitoid and segmentoid, and reveals that cell sorting underlies somite anteroposterior polarity patterning.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Yamanaka, Y. et al. Reconstituting human somitogenesis in vitro. Nature 614, 509–520 (2023). Here, the authors establish an organoid model of human somite formation called axioloid, characterize the model in detail and identify a crucial role of retinoic acid in somite epithelization in vitro.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Yaman, Y. I. & Ramanathan, S. Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves. Cell 186, 497–512 (2023). This article reports the use of bioengineering tools to establish an organoid model of human trunk consisting of the neural tube and somites and delineates roles of signalling gradients in regulating the wave dynamics of clock oscillations.

    Article  Google Scholar 

  34. Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. Larsen’s Human Embryology E-Book (Elsevier Health Sciences, 2020).

  35. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl Acad. Sci. USA 103, 1313–1318 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 10, 186 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Webb, A. B. et al. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock. eLife 5, e08438 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tsiairis, C. D. & Aulehla, A. Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164, 656–667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sonnen, K. F. et al. Modulation of phase shift between wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172, 1079–1090.e12 (2018). The authors develop a microfluidic device to entrain oscillations of WNT and Notch signalling and propose that the phase relationship between clock sub-oscillators encodes positional information for segmental determination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chal, J. et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33, 962–969 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Iimura, T., Yang, X., Weijer, C. J. & Pourquié, O. Dual mode of paraxial mesoderm formation during chick gastrulation. Proc. Natl Acad. Sci. USA 104, 2744–2749 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tzouanacou, E., Wegener, A., Wymeersch, F. J., Wilson, V. & Nicolas, J.-F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Gouti, M. et al. A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev. Cell 41, 243–261.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Attardi, A. et al. Neuromesodermal progenitors are a conserved source of spinal cord with divergent growth dynamics. Development 145, dev166728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guillot, C., Djeffal, Y., Michaut, A., Rabe, B. & Pourquié, O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. eLife 10, e64819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Chapman, S. C., Brown, R., Lees, L., Schoenwolf, G. C. & Lumsden, A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev. Dyn. 229, 668–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Dubrulle, J. & Pourquié, O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419–422 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Streit, A. & Stern, C. D. Establishment and maintenance of the border of the neural plate in the chick: involvement of FGF and BMP activity. Mech. Dev. 82, 51–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Robertson, E. J. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin. Cell Dev. Biol. 32, 73–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Zinski, J., Tajer, B. & Mullins, M. C. TGF-β family signaling in early vertebrate development. Cold Spring Harb. Perspect. Biol. 10, a033274 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakajima, T. et al. Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development 145, dev165431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xi, H. et al. In vivo human somitogenesis guides somite development from hPSCs. Cell Rep. 18, 1573–1585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beccari, L. et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562, 272–276 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Moris, N. et al. An in vitro model of early anteroposterior organization during human development. Nature 582, 410–415 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Budjan, C. et al. Paraxial mesoderm organoids model development of human somites. eLife 11, e68925 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gribaudo, S. et al. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01956-9 (2023).

    Article  PubMed  Google Scholar 

  60. Anand, G. M. et al. Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation. Cell 186, 497–512.e23 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karzbrun, E. et al. Human neural tube morphogenesis in vitro by geometric constraints. Nature 599, 268–272 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science 375, eaaw9021 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Soroldoni, D. et al. Genetic oscillations. A doppler effect in embryonic pattern formation. Science 345, 222–225 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Delaune, E. A., François, P., Shih, N. P. & Amacher, S. L. Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev. Cell 23, 995–1005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pourquié, O. A brief history of the segmentation clock. Dev. Biol. 485, 24–36 (2022).

    Article  PubMed  Google Scholar 

  66. Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450–1455 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Diaz-Cuadros, M. et al. Metabolic regulation of species-specific developmental rates. Nature 613, 550–557 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lázaro, J. et al. A stem cell zoo uncovers intracellular scaling of developmental tempo across mammals. Cell Stem Cell 30, 907–908 (2023).

    Article  Google Scholar 

  69. Krol, A. J. et al. Evolutionary plasticity of segmentation clock networks. Development 138, 2783–2792 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prince, V. E. et al. Zebrafish lunatic fringe demarcates segmental boundaries. Mech. Dev. 105, 175–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquié, O. The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Forsberg, H., Crozet, F. & Brown, N. A. Waves of mouse lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr. Biol. 8, 1027–1030 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Aulehla, A. & Johnson, R. L. Dynamic expression of lunatic fringe suggests a link between Notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev. Biol. 207, 49–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Dale, J. K. et al. Periodic Notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 421, 275–278 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Evrard, Y. A., Lun, Y., Aulehla, A., Gan, L. & Johnson, R. L. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394, 377–381 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Morales, A. V., Yasuda, Y. & Ish-Horowicz, D. Periodic lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to Notch signaling. Dev. Cell 3, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez, P. G. L. et al. Arnold tongue entrainment reveals dynamical principles of the embryonic segmentation clock. eLife 11, e79575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maroto, M., Dale, J. K., Dequéant, M.-L., Petit, A.-C. & Pourquié, O. Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int. J. Dev. Biol. 49, 309–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Lewis, J. Autoinhibition with transcriptional delay. Curr. Biol. 13, 1398–1408 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Bessho, Y., Hirata, H., Masamizu, Y. & Kageyama, R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451–1456 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T. & Kageyama, R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep. 3, 1–7 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Hirata, H. et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36, 750–754 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Takashima, Y., Ohtsuka, T., González, A., Miyachi, H. & Kageyama, R. Intronic delay is essential for oscillatory expression in the segmentation clock. Proc. Natl Acad. Sci. USA 108, 3300–3305 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ay, A., Knierer, S., Sperlea, A., Holland, J. & Özbudak, E. M. Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock. Development 140, 3244–3253 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Schröter, C. et al. Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol. 10, e1001364 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dale, J. K. et al. Oscillations of the snail genes in the presomitic mesoderm coordinate segmental patterning and morphogenesis in vertebrate somitogenesis. Dev. Cell 10, 355–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Zinani, O. Q. H., Keseroğlu, K., Ay, A. & Özbudak, E. M. Pairing of segmentation clock genes drives robust pattern formation. Nature 589, 431–436 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Venzin, O. F. & Oates, A. C. What are you synching about? Emerging complexity of Notch signaling in the segmentation clock. Dev. Biol. 460, 40–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Yoshioka-Kobayashi, K. et al. Coupling delay controls synchronized oscillation in the segmentation clock. Nature 580, 119–123 (2020). This article establishes a live imaging system of clock oscillations with single-cell resolution in the mouse embryo and identifies a coupling delay control mechanism by Lfng in maintaining synchronized clock oscillations.

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Jiang, Y. J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S. & Takeda, H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441, 719–723 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Mara, A., Schroeder, J., Chalouni, C. & Holley, S. A. Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat. Cell Biol. 9, 523–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Herrgen, L. et al. Intercellular coupling regulates the period of the segmentation clock. Curr. Biol. 20, 1244–1253 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Okubo, Y. et al. Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat. Commun. 3, 1141 (2012).

    Article  ADS  PubMed  Google Scholar 

  96. Bone, R. A. et al. Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM. Development 141, 4806–4816 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shimojo, H. et al. Oscillatory control of delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes Dev. 30, 102–116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Geffers, I. et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 vivo. J. Cell Biol. 178, 465–476 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ladi, E. et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol. 170, 983–992 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wright, G. J. et al. DeltaC and DeltaD interact as Notch ligands in the zebrafish segmentation clock. Development 138, 2947–2956 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Oates, A. C. Waiting on the fringe: cell autonomy and signaling delays in segmentation clocks. Curr. Opin. Genet. Dev. 63, 61–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Liao, B.-K., Jörg, D. J. & Oates, A. C. Faster embryonic segmentation through elevated delta–Notch signalling. Nat. Commun. 7, 11861 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Morelli, L. G. et al. Delayed coupling theory of vertebrate segmentation. HFSP J. 3, 55–66 (2009).

    Article  PubMed  Google Scholar 

  104. Kim, W. et al. The period of the somite segmentation clock is sensitive to Notch activity. Mol. Biol. Cell 22, 3541–3549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wiedermann, G. et al. A balance of positive and negative regulators determines the pace of the segmentation clock. eLife 4, e05842 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Carrieri, F. A. et al. CDK1 and CDK2 regulate NICD1 turnover and the periodicity of the segmentation clock. EMBO Rep. 20, e46436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Takagi, A., Isomura, A., Yoshioka-Kobayashi, K. & Kageyama, R. Dynamic delta-like1 expression in presomitic mesoderm cells during somite segmentation. Gene Expr. Patterns 35, 119094 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Ay, A. et al. Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves. Development 141, 4158–4167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ishimatsu, K., Takamatsu, A. & Takeda, H. Emergence of traveling waves in the zebrafish segmentation clock. Development 137, 1595–1599 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Gibb, S. et al. Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev. Biol. 330, 21–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Keskin, S. et al. Noise in the vertebrate segmentation clock is boosted by time delays but tamed by Notch signaling. Cell Rep. 23, 2175–2185.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ferjentsik, Z. et al. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet. 5, e1000662 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Falk, H. J., Tomita, T., Mönke, G., McDole, K. & Aulehla, A. Imaging the onset of oscillatory signaling dynamics during mouse embryo gastrulation. Development 149, dev200083 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Riedel-Kruse, I. H., Müller, C. & Oates, A. C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Aulehla, A. & Pourquié, O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol. 2, a000869 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Niederreither, K., McCaffery, P., Dräger, U. C., Chambon, P. & Dollé, P. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Sakai, Y. et al. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213–225 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Oginuma, M. et al. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 584, 98–101 (2020). This paper identifies that glycolysis regulates WNT signalling in the tailbud by modulating intracellular pH and describes cascades of regulation that links gradients of FGF, glycolysis and WNT signalling along the PSM.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bulusu, V. et al. Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40, 331–341.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Miyazawa, H. et al. Glycolytic flux-signaling controls mouse embryo mesoderm development. eLife 11, e83299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Niwa, Y. et al. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and Notch signaling in the somite segmentation clock. Dev. Cell 13, 298–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Kawamura, A. et al. Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes Dev. 19, 1156–1161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gibb, S., Maroto, M. & Dale, J. K. The segmentation clock mechanism moves up a Notch. Trends Cell Biol. 20, 593–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wahl, M. B., Deng, C., Lewandoski, M. & Pourquié, O. FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development 134, 4033–4041 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Anderson, M. J., Magidson, V., Kageyama, R. & Lewandoski, M. Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function. eLife 9, e55608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dequéant, M.-L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006).

    Article  ADS  PubMed  Google Scholar 

  128. Niwa, Y. et al. Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev. 25, 1115–1120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Simsek, M. F. et al. Periodic inhibition of Erk activity drives sequential somite segmentation. Nature 613, 153–159 (2022). This article demonstrates the oscillatory dynamics of phosphorylated Erk gradient in zebrafish, shows that periodic FGF inhibition is sufficient to bring about sequential segmentation without the segmentation clock and proposes a segmentation model whereby the oscillatory clock serves as an upstream input to the wavefront.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  130. Stulberg, M. J., Lin, A., Zhao, H. & Holley, S. A. Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Dev. Biol. 369, 298–307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  132. Dubrulle, J., McGrew, M. J. & Pourquié, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal hox gene activation. Cell 106, 219–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Dunty, W. C. Jr et al. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135, 85–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Naiche, L. A., Holder, N. & Lewandoski, M. FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc. Natl Acad. Sci. USA 108, 4018–4023 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bajard, L. et al. Wnt-regulated dynamics of positional information in zebrafish somitogenesis. Development 141, 1381–1391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Akiyama, R., Masuda, M., Tsuge, S., Bessho, Y. & Matsui, T. An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 141, 1104–1109 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Sawada, A. et al. Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites. Development 127, 1691–1702 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Saga, Y., Hata, N., Koseki, H. & Taketo, M. M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Saga, Y. The mechanism of somite formation in mice. Curr. Opin. Genet. Dev. 22, 331–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Yasuhiko, Y. et al. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc. Natl Acad. Sci. USA 103, 3651–3656 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Oginuma, M., Niwa, Y., Chapman, D. L. & Saga, Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development 135, 2555–2562 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Takahashi, Y. et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat. Genet. 25, 390–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Morimoto, M., Takahashi, Y., Endo, M. & Saga, Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354–359 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  145. Morimoto, M. et al. The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 134, 1561–1569 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Takahashi, J. et al. Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev. Biol. 342, 134–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Zhao, W., Ajima, R., Ninomiya, Y. & Saga, Y. Segmental border is defined by Ripply2-mediated Tbx6 repression independent of Mesp2. Dev. Biol. 400, 105–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Moreno, T. A., Jappelli, R., Izpisúa Belmonte, J. C. & Kintner, C. Retinoic acid regulation of the Mesp–Ripply feedback loop during vertebrate segmental patterning. Dev. Biol. 315, 317–330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wanglar, C., Takahashi, J., Yabe, T. & Takada, S. Tbx protein level critical for clock-mediated somite positioning is regulated through interaction between Tbx and Ripply. PLoS ONE 9, e107928 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  150. Yabe, T., Hoshijima, K., Yamamoto, T. & Takada, S. Quadruple zebrafish mutant reveals different roles of Mesp genes in somite segmentation between mouse and zebrafish. Development 143, 2842–2852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kinoshita, H. et al. Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mech. Dev. 152, 21–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Ban, H. et al. Transcriptional autoregulation of zebrafish tbx6 is required for somite segmentation. Development 146, dev177063 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Yabe, T., Uriu, K. & Takada, S. Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation. Nat. Commun. 14, 2115 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Roy, M. N., Prince, V. E. & Ho, R. K. Heat shock produces periodic somitic disturbances in the zebrafish embryo. Mech. Dev. 85, 27–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Elsdale, T., Pearson, M. & Whitehead, M. Abnormalities in somite segmentation following heat shock to Xenopus embryos. Development 35, 625–635 (1976).

    Article  CAS  Google Scholar 

  156. Primmett, D. R., Norris, W. E., Carlson, G. J., Keynes, R. J. & Stern, C. D. Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105, 119–130 (1989).

    Article  CAS  PubMed  Google Scholar 

  157. Goldbeter, A., Gonze, D. & Pourquié, O. Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn. 236, 1495–1508 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Boareto, M., Tomka, T. & Iber, D. Positional information encoded in the dynamic differences between neighboring oscillators during vertebrate segmentation. Cell Dev. 168, 203737 (2021).

    Article  CAS  Google Scholar 

  159. Shih, N. P., François, P., Delaune, E. A. & Amacher, S. L. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity. Development 142, 1785–1793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cotterell, J., Robert-Moreno, A. & Sharpe, J. A local, self-organizing reaction–diffusion model can explain somite patterning in embryos. Cell Syst. 1, 257–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Aoyama, H. & Asamoto, K. The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick–quail chimeras. Mech. Dev. 99, 71–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Keynes, R. J. & Stern, C. D. Segmentation in the vertebrate nervous system. Nature 310, 786–789 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Aoyama, H. & Asamoto, K. Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104, 15–28 (1988).

    Article  CAS  PubMed  Google Scholar 

  164. Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H. & Saga, Y. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 133, 2517–2525 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Koizumi, K. et al. The role of presenilin 1 during somite segmentation. Development 128, 1391–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Oginuma, M. et al. The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral–caudal patterning within a somite. Development 137, 1515–1522 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Sasaki, N., Kiso, M., Kitagawa, M. & Saga, Y. The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development 138, 55–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Bussen, M. et al. The T-box transcription factor Tbx18 maintains the separation of anterior and posterior somite compartments. Genes Dev. 18, 1209–1221 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hughes, D. S. T., Keynes, R. J. & Tannahill, D. Extensive molecular differences between anterior- and posterior-half-sclerotomes underlie somite polarity and spinal nerve segmentation. BMC Dev. Biol. 9, 30 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Schrägle, J., Huang, R., Christ, B. & Pröls, F. Control of the temporal and spatial Uncx4.1 expression in the paraxial mesoderm of avian embryos. Anat. Embryol. 208, 323–332 (2004).

    Article  Google Scholar 

  171. Farin, H. F., Mansouri, A., Petry, M. & Kispert, A. T-box protein Tbx18 interacts with the paired box protein Pax3 in the development of the paraxial mesoderm. J. Biol. Chem. 283, 25372–25380 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Feller, J., Schneider, A., Schuster-Gossler, K. & Gossler, A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev. 22, 2166–2171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Burgess, R., Rawls, A., Brown, D., Bradley, A. & Olson, E. N. Requirement of the paraxis gene for somite formation and musculoskeletal patterning. Nature 384, 570–573 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  174. Nomura-Kitabayashi, A. et al. Hypomorphic Mesp allele distinguishes establishment of rostrocaudal polarity and segment border formation in somitogenesis. Development 129, 2473–2481 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Dias, A. S., de Almeida, I., Belmonte, J. M., Glazier, J. A. & Stern, C. D. Somites without a clock. Science 343, 791–795 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Horikawa, K., Radice, G., Takeichi, M. & Chisaka, O. Adhesive subdivisions intrinsic to the epithelial somites. Dev. Biol. 215, 182–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  177. Bessho, Y. et al. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes. Dev. 15, 2642–2647 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sari, D. W. K. et al. Time-lapse observation of stepwise regression of Erk activity in zebrafish presomitic mesoderm. Sci. Rep. 8, 4335 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  179. Naganathan, S. R. & Oates, A. C. Patterning and mechanics of somite boundaries in zebrafish embryos. Semin. Cell Dev. Biol. 107, 170–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Barrios, A. et al. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr. Biol. 13, 1571–1582 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Watanabe, T., Sato, Y., Saito, D., Tadokoro, R. & Takahashi, Y. EphrinB2 coordinates the formation of a morphological boundary and cell epithelialization during somite segmentation. Proc. Natl Acad. Sci. USA 106, 7467–7472 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jülich, D., Mould, A. P., Koper, E. & Holley, S. A. Control of extracellular matrix assembly along tissue boundaries via integrin and Eph/Ephrin signaling. Development 136, 2913–2921 (2009).

    Article  PubMed  Google Scholar 

  183. Koshida, S. et al. Integrin-α5-dependent fibronectin accumulation for maintenance of somite boundaries in zebrafish embryos. Dev. Cell 8, 587–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Nakaya, Y., Kuroda, S., Katagiri, Y. T., Kaibuchi, K. & Takahashi, Y. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev. Cell 7, 425–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Martins, G. G. et al. Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis. PLoS ONE 4, e7429 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  186. Rifes, P. et al. Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm. Development 134, 3155–3165 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Rifes, P. & Thorsteinsdóttir, S. Extracellular matrix assembly and 3D organization during paraxial mesoderm development in the chick embryo. Dev. Biol. 368, 370–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Rowton, M. et al. Regulation of mesenchymal-to-epithelial transition by PARAXIS during somitogenesis. Dev. Dyn. 242, 1332–1344 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Sánchez, R. S. & Sánchez, S. S. Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis. Dev. Dyn. 244, 973–987 (2015).

    Article  PubMed  Google Scholar 

  190. Jülich, D. et al. Cross-scale integrin regulation organizes ECM and tissue topology. Dev. Cell 34, 33–44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chal, J., Guillot, C. & Pourquié, O. PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion. Development 144, 664–676 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. McMillen, P., Chatti, V., Jülich, D. & Holley, S. A. A sawtooth pattern of cadherin 2 stability mechanically regulates somite morphogenesis. Curr. Biol. 26, 542–549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rhee, J., Takahashi, Y., Saga, Y., Wilson-Rawls, J. & Rawls, A. The protocadherin papc is involved in the organization of the epithelium along the segmental border during mouse somitogenesis. Dev. Biol. 254, 248–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Nelemans, B. K. A., Schmitz, M., Tahir, H., Merks, R. M. H. & Smit, T. H. Somite division and new boundary formation by mechanical strain. iScience 23, 100976 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Adhyapok, P. et al. A mechanical model of early somite segmentation. iScience 24, 102317 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Naganathan, S. R., Popović, M. & Oates, A. C. Left-right symmetry of zebrafish embryos requires somite surface tension. Nature 605, 516–521 (2022). Here, the authors demonstrate that initially imprecise somites are progressively adjusted by surface tension to achieve bilateral symmetry in zebrafish and show that the adjustment is independent of the molecular clock, highlighting roles of mechanics in achieving precise tissue shapes.

    Article  ADS  CAS  PubMed  Google Scholar 

  197. Vilhais-Neto, G. C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  198. Ishimatsu, K. et al. Size-reduced embryos reveal a gradient scaling-based mechanism for zebrafish somite formation. Development 145, dev161257 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Eckalbar, W. L., Fisher, R. E., Rawls, A. & Kusumi, K. Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip. Rev. Dev. Biol. 1, 401–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  200. Alexander, P. G. & Tuan, R. S. Role of environmental factors in axial skeletal dysmorphogenesis. Birth Defects Res. C. Embryo Today 90, 118–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Offiah, A. et al. Pilot assessment of a radiologic classification system for segmentation defects of the vertebrae. Am. J. Med. Genet. A 152A, 1357–1371 (2010).

    Article  PubMed  Google Scholar 

  202. Hou, D., Kang, N., Yin, P. & Hai, Y. Abnormalities associated with congenital scoliosis in high-altitude geographic regions. Int. Orthop. 42, 575–581 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the NIH under award numbers 5R01HD085121 (to O.P.) and K99HD111689 (to Y.M.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. and O.P. wrote the article.

Corresponding authors

Correspondence to Yuchuan Miao or Olivier Pourquié.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Andrew Oates, who co-reviewed with Laurel Rohde and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Pourquié, O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00709-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00709-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing