Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic microbiology in sustainability applications

Abstract

Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains — factory, farm and field — that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic biology enhances existing microbial applications.
Fig. 2: Domains of environmental interfacing for the organization of sustainability applications in synthetic microbiology.
Fig. 3: Microbially compatible steps in the mining process.
Fig. 4: The benefits of, and requirements for, cybergenetic control in factory domain systems.
Fig. 5: Synthetic microbial biocontainment systems.
Fig. 6: Grand challenges for applications of synthetic microbiology in the field domain.

Similar content being viewed by others

References

  1. IPCC. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P .R. et al.) (IPCC, 2019).

  2. IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (IPCC, 2022).

  3. Jansson, C. G. & Northen, T. Calcifying cyanobacteria — the potential of biomineralization for carbon capture and storage. Curr. Opin. Biotechnol. 21, 365–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. van Aswegen, P. C., van Niekerk, J. & Olivier, W. in Biomining (eds Rawlings, D. E. & Johnson, D. B.) 1–33 (Springer, 2007).

  5. Li, J., Yang, H., Tong, L. & Sand, W. Some aspects of industrial heap bioleaching technology: from basics to practice. Miner. Process. Extr. Metall. Rev. 43, 510–528 (2022).

    Article  Google Scholar 

  6. Marcellin, E. et al. Low carbon fuels and commodity chemicals from waste gases — systematic approach to understand energy metabolism in a model acetogen. Green Chem. 18, 3020–3028 (2016).

    Article  CAS  Google Scholar 

  7. Hwang, I. Y. et al. Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl. Microbiol. Biotechnol. 102, 3071–3080 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337–2342 (2015). This article introduces a novel hybrid organic–inorganic system that converts solar energy directly into biomass.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022). This article demonstrates the potential for commodity chemical production at industrial scale using acetogen-based gas fermentation.

    Article  CAS  PubMed  Google Scholar 

  10. Klemenčič, M. et al. in Microalgae-Based Biofuels and Bioproducts (eds Gonzalez-Fernandez, C. & Muñoz, R.) 305–325 (Woodhead, 2017).

  11. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016). This article showcases the potential of genetic engineering by improving a hybrid inorganic–organic solar-to-biomass system.

    Article  CAS  PubMed  Google Scholar 

  12. Nangle, S. N. et al. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metab. Eng. 62, 207–220 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, J. S. et al. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage. PeerJ 3, e1468 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodríguez, Y., Firmino, P. I. M., Pérez, V., Lebrero, R. & Muñoz, R. Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor. Waste Manag. 113, 395–403 (2020).

    Article  PubMed  Google Scholar 

  15. Raberg, M., Volodina, E., Lin, K. & Steinbüchel, A. Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Crit. Rev. Biotechnol. 38, 494–510 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Xiong, B. et al. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol. Biofuels 11, 172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Averesch, N. J. et al. High-performance polyesters from carbon dioxide — novel polyhydroxyarylates from engineered Cupriavidus necator. Preprint at bioRxiv https://doi.org/10.1101/2021.12.12.472320 (2023).

  18. Cantera, S. et al. A systematic comparison of ectoine production from upgraded biogas using Methylomicrobium alcaliphilum and a mixed haloalkaliphilic consortium. Waste Manag. 102, 773–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Sherbo, R. S., Silver, P. A. & Nocera, D. G. Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system. Proc. Natl Acad. Sci. USA 119, e2210538119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khoshnevisan, B., Tsapekos, P., Zhang, Y., Valverde-Pérez, B. & Angelidaki, I. Urban biowaste valorization by coupling anaerobic digestion and single cell protein production. Bioresour. Technol. 290, 121743 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Zha, X. et al. Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresour. Technol. 320, 124351 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).

    Article  PubMed  Google Scholar 

  24. Cho, J. S., Kim, G. B., Eun, H., Moon, C. W. & Lee, S. Y. Designing microbial cell factories for the production of chemicals. JACS Au 2, 1781–1799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    Article  CAS  Google Scholar 

  27. Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Cordell, W. T., Avolio, G., Takors, R. & Pfleger, B. F. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol. 41, 1442–1457 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Fabris, M. et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 11, 279 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tanner, R. S., Miller, L. M. & Yang, D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43, 232–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Takors, R. et al. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale. Microb. Biotechnol. 11, 606–625 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. LanzaTech. New waste-to-ethanol facility in Japan turns municipal solid waste into products. https://lanzatech.com/new-waste-to-ethanol-facility-in-japan-turns-municipal-solid-waste-into-products/ (2022).

  34. Bioenergy International. LanzaTech commission world’s first commercial waste gas to ethanol plant. https://bioenergyinternational.com/lanzatech-commission-worlds-first-commercial-waste-gas-ethanol-plant-china/ (2018).

  35. Sahoo, K. K., Goswami, G. & Das, D. Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: current state of art and future prospects. Front. Microbiol. 12, 636486 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pieja, A. J., Morse, M. C. & Cal, A. J. Methane to bioproducts: the future of the bioeconomy? Curr. Opin. Chem. Biol. 41, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Nguyen, A. D. & Lee, E. Y. Engineered methanotrophy: a sustainable solution for methane-based industrial biomanufacturing. Trends Biotechnol. 39, 381–396 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Cantera, S. et al. Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. World J. Microbiol. Biotechnol. 35, 16 (2019).

    Article  PubMed  Google Scholar 

  39. Cantera, S. et al. Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 50, 128–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Claassens, N. J. et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab. Eng. 62, 30–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Alagesan, S. et al. Functional genetic elements for controlling gene expression in Cupriavidus necator H16. Appl. Environ. Microbiol. 84, e00878-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sydow, A. et al. Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system. J. Biotechnol. 263, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019). This article demonstrates the ability of synthetic microbiologists to use continuous evolution to rewire a heterotrophic organism to autotrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, F. Y.-H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182, 933–946.e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Keller, P. et al. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat. Commun. 13, 5243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weijma, J., Wolthoorn, A. & Huisman, J. Solutions in practice for removal of selenium and molybdenum. Proc. Eur. Metall. Conf. EMC 2007, 519–527 (2007).

    Google Scholar 

  48. Hageman, S. P. W., Weijden, R. D., van der, Stams, A. J. M., van Cappellen, P. & Buisman, C. J. N. Microbial selenium sulfide reduction for selenium recovery from wastewater. J. Hazard. Mater. 329, 110–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Jeswiet, J. & Szekeres, A. Energy consumption in mining comminution. Procedia CIRP 48, 140–145 (2016).

    Article  Google Scholar 

  50. Allen, M. A high-level study into mining energy use for the key mineral commodities of the future. CEEC International https://www.ceecthefuture.org/resources/mining-energy-consumption-2021 (2021).

  51. Johnson, D. B. Biomining goes underground. Nat. Geosci. 8, 165–166 (2015).

    Article  Google Scholar 

  52. Pakostova, E., Grail, B. M. & Johnson, D. B. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Miner. Eng. 106, 102–107 (2017).

    Article  CAS  Google Scholar 

  53. Bomberg, M., Miettinen, H. & Kinnunen, P. The diverse indigenous bacterial community in the Rudna mine does not cause dissolution of copper from Kupferschiefer in oxic conditions. Minerals 12, 366 (2022).

    Article  CAS  Google Scholar 

  54. Vera, M., Schippers, A. & Sand, W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation — part A. Appl. Microbiol. Biotechnol. 97, 7529–7541 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Riekkola-Vanhanen, M. & Palmu, L. in Ni-Co 2013 (eds Battle, T. et al.) 269–278 (Springer, 2016).

  56. Olson, G. J. & Clark, T. R. Bioleaching of molybdenite. Hydrometallurgy 93, 10–15 (2008).

    Article  CAS  Google Scholar 

  57. Vahidi, E. & Zhao, F. in REWAS 2016: Towards Materials Resource Sustainability (eds Kirchain, R. E. et al.) 113–120 (Springer, 2016).

  58. Arshi, P. S., Vahidi, E. & Zhao, F. Behind the scenes of clean energy: the environmental footprint of rare earth products. ACS Sustain. Chem. Eng. 6, 3311–3320 (2018).

    Article  CAS  Google Scholar 

  59. Cheisson, T. & Schelter, E. J. Rare earth elements: Mendeleev’s bane, modern marvels. Science 363, 489–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Voncken, J. H. L. The Rare Earth Elements (Springer, 2016).

  61. Shin, D., Kim, J., Kim, B., Jeong, J. & Lee, J. Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals 5, 189–202 (2015).

    Article  CAS  Google Scholar 

  62. Corbett, M. K., Eksteen, J. J., Niu, X.-Z., Croue, J.-P. & Watkin, E. L. J. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite. Bioprocess. Biosyst. Eng. 40, 929–942 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Zeng, Q., Wu, X., Wang, J. & Ding, X. Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate. J. Microbiol. Biotechnol. 27, 844–855 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Fathollahzadeh, H., Becker, T., Eksteen, J. J., Kaksonen, A. H. & Watkin, E. L. J. Microbial contact enhances bioleaching of rare earth elements. Bioresour. Technol. Rep. 3, 102–108 (2018).

    Article  Google Scholar 

  65. Zhang, L. et al. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chem. Geol. 483, 544–557 (2018).

    Article  CAS  Google Scholar 

  66. Cockell, C. S. et al. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat. Commun. 11, 5523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmitz, A. M. et al. Generation of a Gluconobacter oxydans knockout collection for improved extraction of rare earth elements. Nat. Commun. 12, 6693 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmitz, A. M. et al. High efficiency rare earth element biomining with systems biology guided engineering of Gluconobacter oxydans. Preprint at bioRxiv https://doi.org/10.1101/2023.02.09.527855 (2023).

  69. Mattocks, J. A. et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 618, 87–93 (2023). This article reports the discovery and structure of a novel dimeric lanmodulin and demonstrates its utility through the creation of a single-stage purification system capable of separating heavy and light rare earth elements to >98% purity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cook, E. C., Featherston, E. R., Showalter, S. A. & Cotruvo, J. A. Structural basis for rare earth element recognition by Methylobacterium extorquens lanmodulin. Biochemistry 58, 120–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Deblonde, G. J.-P. et al. Selective and efficient biomacromolecular extraction of rare-earth elements using lanmodulin. Inorg. Chem. 59, 11855–11867 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Featherston, E. R. & Cotruvo, J. A. The biochemistry of lanthanide acquisition, trafficking, and utilization. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118864 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Zytnick, A. M. et al. Discovery and characterization of the first known biological lanthanide chelator. Preprint at bioRxiv https://doi.org/10.1101/2022.01.19.476857 (2023).

  74. Wegner, C.-E. et al. Extracellular and intracellular lanthanide accumulation in the methylotrophic Beijerinckiaceae bacterium RH AL1. Appl. Environ. Microbiol. 87, e03144–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Medin, S. et al. Genomic characterization of rare earth binding by Shewanella oneidensis. Sci. Rep. 13, 15975 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dong, Z. et al. Bridging hydrometallurgy and biochemistry: a protein-based process for recovery and separation of rare earth elements. ACS Cent. Sci. 7, 1798–1808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carrasco-López, C., García-Echauri, S. A., Kichuk, T. & Avalos, J. L. Optogenetics and biosensors set the stage for metabolic cybergenetics. Curr. Opin. Biotechnol. 65, 296–309 (2020).

    Article  PubMed  Google Scholar 

  78. Nasu, Y., Shen, Y., Kramer, L. & Campbell, R. E. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17, 509–518 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Nadler, D. C., Morgan, S.-A., Flamholz, A., Kortright, K. E. & Savage, D. F. Rapid construction of metabolite biosensors using domain-insertion profiling. Nat. Commun. 7, 12266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yaginuma, H. et al. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Sci. Rep. 4, 6522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707–11794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hackley, C. R., Mazzoni, E. O. & Blau, J. cAMPr: a single-wavelength fluorescent sensor for cyclic AMP. Sci. Signal. 11, eaah3738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hu, H. et al. Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Adv. 8, 2485–2489 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kostyuk, A. I., Demidovich, A. D., Kotova, D. A., Belousov, V. V. & Bilan, D. S. Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int. J. Mol. Sci. 20, 4200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baumschlager, A. & Khammash, M. Synthetic biological approaches for optogenetics and tools for transcriptional light-control in bacteria. Adv. Biol. 5, 2000256 (2021).

    Article  Google Scholar 

  86. Baumschlager, A., Aoki, S. K. & Khammash, M. Dynamic blue light-inducible T7 RNA polymerases (opto-t7rnaps) for precise spatiotemporal gene expression control. ACS Synth. Biol. 6, 2157–2167 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Romano, E. et al. Engineering AraC to make it responsive to light instead of arabinose. Nat. Chem. Biol. 17, 817–827 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Fernandez-Rodriguez, J., Moser, F., Song, M. & Voigt, C. A. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 13, 706–708 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Weber, A. M. et al. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol. 15, 1085–1092 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, X. et al. An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells. Cell Res. 26, 854–857 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li, X. et al. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Res. 48, e33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat. Chem. Biol. 13, 432–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Multamäki, E. et al. Optogenetic control of bacterial expression by red light. ACS Synth. Biol. 11, 3354–3367 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Piraner, D. I., Wu, Y. & Shapiro, M. G. Modular thermal control of protein dimerization. ACS Synth. Biol. 8, 2256–2262 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Xiong, L. L., Garrett, M. A., Buss, M. T., Kornfield, J. A. & Shapiro, M. G. Tunable temperature-sensitive transcriptional activation based on lambda repressor. ACS Synth. Biol. 11, 2518–2522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chee, W. K. D., Yeoh, J. W., Dao, V. L. & Poh, C. L. Highly reversible tunable thermal-repressible split-T7 RNA polymerases (Thermal-T7RNAPs) for dynamic gene regulation. ACS Synth. Biol. 11, 921–937 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Bhokisham, N. et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nat. Commun. 11, 2427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lawrence, J. M. et al. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. Sci. Adv. 8, eabm5091 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Terrell, J. L. et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nat. Nanotechnol. 16, 688–697 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, D. et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 9, eadd9186 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Halleran, A. D. & Murray, R. M. Cell-free and in vivo characterization of Lux, Las, and Rpa quorum activation systems in E. coli. ACS Synth. Biol. 7, 752–755 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Schuster, L. A. & Reisch, C. R. A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Res. 49, 7189–7202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Klewer, L. & Wu, Y. Light‐induced dimerization approaches to control cellular processes. Chem. Weinh. Bergstr. Ger. 25, 12452–12463 (2019).

    CAS  Google Scholar 

  106. Haskett, T. L., Tkacz, A. & Poole, P. S. Engineering rhizobacteria for sustainable agriculture. ISME J. 15, 949–964 (2021). This comprehensive review covers the various challenges and potentials of engineering plant growth promoting traits into rhizobacteria.

    Article  PubMed  Google Scholar 

  107. Marsh, J. W. & Ley, R. E. Microbiome engineering: taming the untractable. Cell 185, 416–418 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Dundas, C. M. & Dinneny, J. R. Genetic circuit design in rhizobacteria. BioDesign Res. 2022, 9858049 (2022).

    Article  Google Scholar 

  109. Pirttilä, A. M., Mohammad Parast Tabas, H., Baruah, N. & Koskimäki, J. J. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9, 817 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pankievicz, V. C. S., Irving, T. B., Maia, L. G. S. & Ané, J.-M. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol. 17, 99 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ke, J., Wang, B. & Yoshikuni, Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 39, 244–261 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Han, S.-W. & Yoshikuni, Y. Microbiome engineering for sustainable agriculture: using synthetic biology to enhance nitrogen metabolism in plant-associated microbes. Curr. Opin. Microbiol. 68, 102172 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. M, B. B. & R, D. Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem. Soc. Trans. 47, 603–614 (2019).

    Article  Google Scholar 

  114. Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12, 14490 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Henryson, K., Kätterer, T., Tidåker, P. & Sundberg, C. Soil N2O emissions, N leaching and marine eutrophication in life cycle assessment — a comparison of modelling approaches. Sci. Total Environ. 725, 138332 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Ryu, M.-H. et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol. 5, 314–330 (2020). This impressive study illustrates the promises of synthetic biology approaches for implementing nitrogen fixation in alternative bacterial strains.

    Article  CAS  PubMed  Google Scholar 

  117. Espah Borujeni, A., Zhang, J., Doosthosseini, H., Nielsen, A. A. K. & Voigt, C. A. Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage. Nat. Commun. 11, 5001 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Haskett, T. L. et al. Engineered plant control of associative nitrogen fixation. Proc. Natl Acad. Sci. USA 119, e2117465119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bergkessel, M., Basta, D. W. & Newman, D. K. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat. Rev. Microbiol. 14, 549–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bergkessel, M. Regulation of protein biosynthetic activity during growth arrest. Curr. Opin. Microbiol. 57, 62–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Bergkessel, M. & Delavaine, L. Diversity in starvation survival strategies and outcomes among heterotrophic Proteobacteria. Microb. Physiol. 31, 146–162 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).

    Article  Google Scholar 

  123. Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Rodrigo-Navarro, A., Sankaran, S., Dalby, M. J., del Campo, A. & Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 6, 1175–1190 (2021).

    Article  Google Scholar 

  125. Molinari, S., Tesoriero, R. F. & Ajo-Franklin, C. M. Bottom-up approaches to engineered living materials: challenges and future directions. Matter 4, 3095–3120 (2021).

    Article  CAS  Google Scholar 

  126. Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021).

    Article  CAS  Google Scholar 

  127. An, B. et al. Engineered living materials for sustainability. Chem. Rev. 123, 2349–2419 (2022).

    Article  PubMed  Google Scholar 

  128. Chen, B. et al. Programmable living assembly of materials by bacterial adhesion. Nat. Chem. Biol. 18, 289–294 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Molinari, S. et al. A de novo matrix for macroscopic living materials from bacteria. Nat. Commun. 13, 5544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 34–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. McBee, R. M. et al. Engineering living and regenerative fungal–bacterial biocomposite structures. Nat. Mater. 21, 471–478 (2022). This paper presents a promising approach towards functionalized macroscale engineered living materials that embeds engineered microorganisms into blocks made from fungal mycelia.

    Article  CAS  PubMed  Google Scholar 

  133. Jo, H. & Sim, S. Programmable living materials constructed with the dynamic covalent interface between synthetic polymers and engineered B. subtilis. ACS Appl. Mater. Interfaces 14, 20729–20738 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Meyer, V. Connecting materials sciences with fungal biology: a sea of possibilities. Fungal Biol. Biotechnol. 9, 5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Delvendahl, N. et al. Narratives of fungal-based materials for a new bioeconomy era. Innov. Eur. J. Soc. Sci. Res. 36, 96–106 (2023).

    Article  Google Scholar 

  136. Bagga, M. et al. Advancements in bacteria based self-healing concrete and the promise of modelling. Constr. Build. Mater. 358, 129412 (2022).

    Article  Google Scholar 

  137. Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. & Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230–235 (2010).

    Article  Google Scholar 

  138. Vijay, K., Murmu, M. & Deo, S. V. Bacteria based self healing concrete — a review. Constr. Build. Mater. 152, 1008–1014 (2017).

    Article  CAS  Google Scholar 

  139. Castro-Alonso, M. J. et al. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front. Mater. https://doi.org/10.3389/fmats.2019.00126 (2019).

  140. Biswas, M. et al. Bioremediase a unique protein from a novel bacterium BKH1, ushering a new hope in concrete technology. Enzym. Microb. Technol. 46, 581–587 (2010).

    Article  CAS  Google Scholar 

  141. Sarkar, M., Adak, D., Tamang, A., Chattopadhyay, B. & Mandal, S. Genetically-enriched microbe-facilitated self-healing concrete — a sustainable material for a new generation of construction technology. RSC Adv. 5, 105363–105371 (2015).

    Article  CAS  Google Scholar 

  142. Grand View Research Inc. Self-healing concrete market size, share & trends analysis report by form (intrinsic, capsule based, vascular), by application (residential, industrial, commercial, infrastructure), by region, and segment forecasts, 2020–2027 https://www.grandviewresearch.com/industry-analysis/self-healing-concrete-market (2020).

  143. Silva, F. B., da, Boon, N., Belie, N. D. & Verstraete, W. Industrial application of biological self-healing concrete: challenges and economical feasibility. J. Commer. Biotechnol. 21, 31–38 (2015).

    Article  Google Scholar 

  144. National Institute of Health. NIH guidelines for research involving recombinant or synthetic nucleic acid molecules (NIH Guidelines) — April 2019. NIH https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.pdf (2019).

  145. Stirling, F. & Silver, P. A. Controlling the implementation of transgenic microbes: are we ready for what synthetic biology has to offer? Mol. Cell 78, 614–623 (2020). This paper provides a comprehensive review on the challenges associated with biocontainment of engineered organisms, with a particular emphasis on the evolutionary stability of these systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Diwo, C. & Budisa, N. Alternative biochemistries for alien life: basic concepts and requirements for the design of a robust biocontainment system in genetic isolation. Genes 10, 17 (2019).

    Article  Google Scholar 

  148. Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nyerges, A. et al. A swapped genetic code prevents viral infections and gene transfer. Nature 615, 720–727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zürcher, J. F. et al. Refactored genetic codes enable bidirectional genetic isolation. Science 378, 516–523 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Guindani, C., da Silva, L. C., Cao, S., Ivanov, T. & Landfester, K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems. Angew. Chem. Int. Ed. Engl. 61, e202110855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gaut, N. J. & Adamala, K. P. Reconstituting natural cell elements in synthetic cells. Adv. Biol. 5, 2000188 (2021).

    Article  Google Scholar 

  154. Tang, T.-C. et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17, 724–731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. French, K. E., Zhou, Z. & Terry, N. Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Sci. Rep. 10, 15091 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Valderrama, J. A., Kulkarni, S. S., Nizet, V. & Bier, E. A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nat. Commun. 10, 5726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Coban, O., De Deyn, G. B. & van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 375, abe0725 (2022).

    Article  PubMed  Google Scholar 

  158. Downie, H. et al. Transparent soil for imaging the rhizosphere. PLoS ONE 7, e44276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Downie, H. F., Valentine, T. A., Otten, W., Spiers, A. J. & Dupuy, L. X. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo. Plant Signal. Behav. 9, e970421 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ma, L. et al. Hydrogel-based transparent soils for root phenotyping in vivo. Proc. Natl Acad. Sci. USA 116, 11063–11068 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sharma, K., Palatinszky, M., Nikolov, G., Berry, D. & Shank, E. A. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. eLife 9, e56275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tecon, R., Ebrahimi, A., Kleyer, H., Erev Levi, S. & Or, D. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc. Natl Acad. Sci. USA 115, 9791–9796 (2018). This paper is an elegant study linking experimental soil microcosms with mathematical modelling to reveal the central role of cell density in driving plasmid conjugation rates in soil.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Van Elsas, J. D., Turner, S. & Bailey, M. J. Horizontal gene transfer in the phytosphere. N. Phytol. 157, 525–537 (2003).

    Article  Google Scholar 

  164. Fernandez-Lopez, R. et al. Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology 151, 3517–3526 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Lima, T., Domingues, S. & Da Silva, G. J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci. 7, 110 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Berthold, T. et al. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Sci. Rep. 6, 36390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Greenlon, A. et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc. Natl Acad. Sci. USA 116, 15200–15209 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Del Valle, I., Gao, X., Ghezzehei, T. A., Silberg, J. J. & Masiello, C. A. Artificial soils reveal individual factor controls on microbial processes. mSystems 7, e00301–e00322 (2022).

    PubMed  PubMed Central  Google Scholar 

  169. Wang, Y.-J. & Leadbetter, J. R. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71, 1291–1299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13, 75–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Herron, P. M., Gage, D. J. & Cardon, Z. G. Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Env. 33, 199–210 (2010).

    Article  CAS  Google Scholar 

  172. Stirling, F. et al. Synthetic cassettes for pH-mediated sensing, counting, and containment. Cell Rep. 30, 3139–3148.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Del Valle, I. et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences. Front. Microbiol. 11, 618373 (2021). This excellent review covers the challenges and potentials of engineering and deploying microbial biosensors into environments.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Dieterle, P. B., Min, J., Irimia, D. & Amir, A. Dynamics of diffusive cell signaling relays. eLife 9, e61771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Larkin, J. W. et al. Signal percolation within a bacterial community. Cell Syst. 7, 137–145.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9, e87217 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gantner, S. et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 56, 188–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Wilpiszeski, R. L. et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 85, e00324-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media — a review. Adv. Water Resour. 30, 1505–1527 (2007).

    Article  Google Scholar 

  180. Schmieder, S. S. et al. Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae. Curr. Biol. 29, 217–228.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Cheng, H.-Y., Masiello, C. A., Bennett, G. N. & Silberg, J. J. Volatile gas production by methyl halide transferase: an in situ reporter of microbial gene expression in soil. Environ. Sci. Technol. 50, 8750–8759 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Fulk, E. M. et al. A split methyl halide transferase AND gate that reports by synthesizing an indicator gas. ACS Synth. Biol. 9, 3104–3113 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Fulk, E. M. et al. Nondestructive chemical sensing within bulk soil using 1000 biosensors per gram of matrix. ACS Synth. Biol. 11, 2372–2383 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Chemla, Y. et al. Parallel engineering of environmental bacteria and performance over years under jungle-simulated conditions. PLoS ONE 17, e0278471 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Koerner, E. Evolution, Function and Manipulation of Methyl Halide Production in Plants. PhD thesis, University of East Anglia (2012).

  186. Fisher, J. B. et al. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Glob. Change Biol. 22, 2596–2607 (2016).

    Article  Google Scholar 

  187. Barbour, K. M., Barrón‐Sandoval, A., Walters, K. E. & Martiny, J. B. H. Towards quantifying microbial dispersal in the environment. Environ. Microbiol. 25, 137–142 (2023).

    Article  PubMed  Google Scholar 

  188. Choudoir, M. J. & DeAngelis, K. M. A framework for integrating microbial dispersal modes into soil ecosystem ecology. iScience 25, 103887 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Custer, G. F., Bresciani, L. & Dini-Andreote, F. Ecological and evolutionary implications of microbial dispersal. Front. Microbiol. 13, 855859 (2022). Along with Barbour et al. (ref. 187) and Choudoir and DeAngelis (ref. 188), these reviews and perspectives are an excellent introduction to the emerging research area of microbial dispersal in natural environments.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).

    Article  PubMed  Google Scholar 

  191. Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B Biol. Sci. 286, 20191409 (2019).

    Article  CAS  Google Scholar 

  192. Kittredge, H. A., Dougherty, K. M. & Evans, S. E. Dead but not forgotten: how extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil. Appl. Environ. Microbiol. 88, e02280-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Qian, J. et al. Barcoded microbial system for high-resolution object provenance. Science 368, 1135–1140 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Q. Justman for the insightful comments and revisions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.M.J. and J.P.M. conceptualized the narrative framework, researched the literature and wrote the article. All authors contributed to discussions of the content and reviewed and edited the manuscript.

Corresponding author

Correspondence to Pamela A. Silver.

Ethics declarations

Competing interests

Pamela Silver is a founder of KulaBio and Circe Bioscience. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Nico J. Claassens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, E.M., Marken, J.P. & Silver, P.A. Synthetic microbiology in sustainability applications. Nat Rev Microbiol (2024). https://doi.org/10.1038/s41579-023-01007-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-023-01007-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology