Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus

Abstract

Infections caused by non-tuberculous mycobacteria (NTM) are increasing globally and are notoriously difficult to treat due to intrinsic resistance of these bacteria to many common antibiotics. NTM are diverse and ubiquitous in the environment, with only a few species causing serious and often opportunistic infections in humans, including Mycobacterium abscessus. This rapidly growing mycobacterium is one of the most commonly identified NTM species responsible for severe respiratory, skin and mucosal infections in humans. It is often regarded as one of the most antibiotic-resistant mycobacteria, leaving us with few therapeutic options. In this Review, we cover the proposed infection process of M. abscessus, its virulence factors and host interactions and highlight the commonalities and differences of M. abscessus with other NTM species. Finally, we discuss drug resistance mechanisms and future therapeutic options. Taken together, this knowledge is essential to further our understanding of this overlooked and neglected global threat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The M. abscessus infection cycle.
Fig. 2: Glycopeptidolipids and the smooth-to-rough morphotype transition of M. abscessus.
Fig. 3: The type VII secretion system ESX-4 in M. abscessus and other mycobacteria.

Similar content being viewed by others

References

  1. Tortoli, E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin. Microbiol. Rev. 27, 727–752 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tortoli, E. et al. The new phylogeny of the genus Mycobacterium: the old and the news. Infect. Genet. Evol. 56, 19–25 (2017).

    Article  PubMed  Google Scholar 

  3. Turenne, C. Y. Nontuberculous mycobacteria: Insights on taxonomy and evolution. Infect. Genet. Evol. 72, 159–168 (2019).

    Article  PubMed  Google Scholar 

  4. Runyon, E. H. Anonymous mycobacteria in pulmonary disease. Med. Clin. North Am. 43, 273–290 (1959).

    Article  CAS  PubMed  Google Scholar 

  5. Wolinsky, E. Mycobacterial diseases other than tuberculosis. Clin. Infect. Dis. 15, 1–10 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Brown-Elliott, B. A. & Philley, J. V. Rapidly growing mycobacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.TNMI7-0027-2016 (2017).

    Article  PubMed  Google Scholar 

  8. Falkinham, J. O. Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 36, 35–41 (2015).

    Article  PubMed  Google Scholar 

  9. Roux, A.-L. et al. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J. Clin. Microbiol. 47, 4124–4128 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  10. Olivier, K. N. et al. Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am. J. Respir. Crit. Care Med. 167, 828–834 (2003).

    Article  PubMed  Google Scholar 

  11. Collins, F. M. AIDS-related mycobacterial disease. Springer Semin. Immunopathol. 10, 375–391 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Collins, F. M. Mycobacterial disease, immunosuppression, and acquired immunodeficiency syndrome. Clin. Microbiol. Rev. 2, 360–377 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Catherinot, E. et al. Mycobacterium avium and Mycobacterium abscessus complex target distinct cystic fibrosis patient subpopulations. J. Cyst. Fibros. 12, 74–80 (2013).

    Article  PubMed  Google Scholar 

  14. Baldwin, S. L., Larsen, S. E., Ordway, D., Cassell, G. & Coler, R. N. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl. Trop. Dis. 13, e0007083 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wu, M.-L., Aziz, D. B., Dartois, V. & Dick, T. NTM drug discovery: status, gaps and the way forward. Drug Discov. Today 23, 1502–1519 (2018). This article provides a good overview of the current status of NTM drug discovery.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Adjemian, J., Olivier, K. N., Seitz, A. E., Holland, S. M. & Prevots, D. R. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am. J. Respir. Crit. Care Med. 185, 881–886 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  17. Swenson, C., Zerbe, C. S. & Fennelly, K. Host variability in NTM disease: implications for research needs. Front. Microbiol. 9, 2901 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Falkinham, J. O. The changing pattern of nontuberculous mycobacterial disease. Can. J. Infect. Dis. 14, 281–286 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  19. Brown-Elliott, B. A. & Wallace, R. J. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin. Microbiol. Rev. 15, 716–746 (2002).

    Article  PubMed Central  PubMed  Google Scholar 

  20. Mei, Y. et al. Cutaneous tuberculosis and nontuberculous mycobacterial infections at a national specialized hospital in China. Acta Derm. Venereol. https://doi.org/10.2340/00015555-3283 (2019).

    Article  PubMed  Google Scholar 

  21. Misch, E. A., Saddler, C. & Davis, J. M. Skin and soft tissue infections due to nontuberculous mycobacteria. Curr. Infect. Dis. Rep. 20, 6 (2018).

    Article  PubMed  Google Scholar 

  22. Griffith, D. E. et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175, 367–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Floto, R. A. et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax 71, 88–90 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Koh, W.-J. et al. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M. avium complex lung disease. Chest 142, 1482–1488 (2012).

    Article  PubMed  Google Scholar 

  25. Kim, B.-J. et al. A description of Mycobacterium chelonae subsp. gwanakae subsp. nov., a rapidly growing mycobacterium with a smooth colony phenotype due to glycopeptidolipids. Int. J. Syst. Evol. Microbiol. 68, 3772–3780 (2018).

    Article  PubMed  Google Scholar 

  26. Jankovic, M. et al. Microbiological criteria in non-tuberculous mycobacteria pulmonary disease: a tool for diagnosis and epidemiology. Int. J. Tuberc. Lung Dis. 20, 934–940 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Choo, S. W. et al. Genomic reconnaissance of clinical isolates of emerging human pathogen Mycobacterium abscessus reveals high evolutionary potential. Sci. Rep. 4, 4061 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sapriel, G. et al. Genome-wide mosaicism within Mycobacterium abscessus: evolutionary and epidemiological implications. BMC Genomics 17, 118 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ringuet, H. et al. hsp65 sequencing for identification of rapidly growing mycobacteria. J. Clin. Microbiol. 37, 852–857 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Adékambi, T. & Drancourt, M. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int. J. Syst. Evol. Microbiol. 54, 2095–2105 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Adékambi, T., Berger, P., Raoult, D. & Drancourt, M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int. J. Syst. Evol. Microbiol. 56, 133–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Tortoli, E. et al. Emended description of Mycobacterium abscessus, Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. bolletii and designation of Mycobacterium abscessus subsp. massiliense comb. nov. Int. J. Syst. Evol. Microbiol. 66, 4471–4479 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Ryan, K. & Byrd, T. F. Mycobacterium abscessus: shapeshifter of the mycobacterial world. Front. Microbiol. 9, 2642 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gutiérrez, A. V., Viljoen, A., Ghigo, E., Herrmann, J.-L. & Kremer, L. Glycopeptidolipids, a double-edged sword of the Mycobacterium abscessus complex. Front. Microbiol. 9, 1145 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Rottman, M. et al. Importance of T cells, gamma interferon, and tumor necrosis factor in immune control of the rapid grower Mycobacterium abscessus in C57BL/6 mice. Infect. Immun. 75, 5898–5907 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bernut, A. et al. Mycobacterium abscessus-induced granuloma formation is strictly dependent on TNF signaling and neutrophil trafficking. PLoS Pathog. 12, e1005986 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dorhoi, A., Reece, S. T. & Kaufmann, S. H. E. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection: immunology and pathology in tuberculosis. Immunol. Rev. 240, 235–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Bernut, A. et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc. Natl Acad. Sci. USA 111, E943–E952 (2014). This article describes the use of zebrafish to study pathogenicity of M. abscessus with special emphasis on cording in escaping innate immunity.

    Article  CAS  PubMed  Google Scholar 

  39. Rosain, J. et al. Mendelian susceptibility to mycobacterial disease: 2014-2018 update. Immunol. Cell Biol. 97, 360–367 (2019).

    Article  PubMed  Google Scholar 

  40. Casanova, J.-L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mufti, A. H., Toye, B. W., Mckendry, R. R. J. & Angel, J. B. Mycobacterium abscessus infection after use of tumor necrosis factor alpha inhibitor therapy: case report and review of infectious complications associated with tumor necrosis factor alpha inhibitor use. Diagn. Microbiol. Infect. Dis. 53, 233–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Sfeir, M. et al. Mycobacterium abscessus complex infections: a retrospective cohort study. Open. Forum Infect. Dis. 5, ofy022 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Esther, C. R., Esserman, D. A., Gilligan, P., Kerr, A. & Noone, P. G. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J. Cyst. Fibros. 9, 117–123 (2010).

    Article  PubMed  Google Scholar 

  44. Qvist, T. et al. Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia. J. Cyst. Fibros. 14, 46–52 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  45. Park, I. K. & Olivier, K. N. Nontuberculous mycobacteria in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin. Respir. Crit. Care Med. 36, 217–224 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kwak, N. et al. Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur. Respir. J. 54, 1801991 (2019).

    Article  PubMed  Google Scholar 

  47. Choi, H. et al. Treatment outcomes of macrolide-susceptible Mycobacterium abscessus lung disease. Diagn. Microbiol. Infect. Dis. 90, 293–295 (2018).

    Article  PubMed  Google Scholar 

  48. Koh, W.-J. et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin. Infect. Dis. 64, 309–316 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Pierre-Audigier, C. et al. Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis. J. Clin. Microbiol. 43, 3467–3470 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  50. Cullen, A. R., Cannon, C. L., Mark, E. J. & Colin, A. A. Mycobacterium abscessus infection in cystic fibrosis. Colonization or infection? Am. J. Respir. Crit. Care Med. 161, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Jönsson, B. E. et al. Molecular epidemiology of Mycobacterium abscessus, with focus on cystic fibrosis. J. Clin. Microbiol. 45, 1497–1504 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Catherinot, E. et al. Acute respiratory failure involving an R variant of Mycobacterium abscessus. J. Clin. Microbiol. 47, 271–274 (2009).

    Article  PubMed  Google Scholar 

  53. Tomashefski, J. F., Stern, R. C., Demko, C. A. & Doershuk, C. F. Nontuberculous mycobacteria in cystic fibrosis. An autopsy study. Am. J. Respir. Crit. Care Med. 154, 523–528 (1996).

    Article  PubMed  Google Scholar 

  54. Drancourt, M. Looking in amoebae as a source of mycobacteria. Microb. Pathog. 77, 119–124 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Adékambi, T. et al. Amoebal coculture of ‘Mycobacterium massiliense’ sp. nov. from the sputum of a patient with hemoptoic pneumonia. J. Clin. Microbiol. 42, 5493–5501 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  56. Bakala N’Goma, J. C. et al. Mycobacterium abscessus phospholipase C expression is induced during coculture within amoebae and enhances M. abscessus virulence in mice. Infect. Immun. 83, 780–791 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Le Moigne, V. et al. MgtC as a host-induced factor and vaccine candidate against Mycobacterium abscessus infection. Infect. Immun. 84, 2895–2903 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Ovrutsky, A. R. et al. Cooccurrence of free-living amoebae and nontuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl. Environ. Microbiol. 79, 3185–3192 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Dubois, V. et al. Mycobacterium abscessus virulence traits unraveled by transcriptomic profiling in amoeba and macrophages. PLoS Pathog. 15, e1008069 (2019).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Burgess, W., Margolis, A., Gibbs, S., Duarte, R. S. & Jackson, M. Disinfectant susceptibility profiling of glutaraldehyde-resistant nontuberculous mycobacteria. Infect. Control. Hosp. Epidemiol. 38, 784–791 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  61. Thomson, R. et al. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J. Clin. Microbiol. 51, 3006–3011 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Feazel, L. M. et al. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl Acad. Sci. USA 106, 16393–16399 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Thomson, R., Tolson, C., Sidjabat, H., Huygens, F. & Hargreaves, M. Mycobacterium abscessus isolated from municipal water - a potential source of human infection. BMC Infect. Dis. 13, 241 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  64. September, S. M., Brözel, V. S. & Venter, S. N. Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl. Environ. Microbiol. 70, 7571–7573 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Huang, W.-C., Chiou, C.-S., Chen, J.-H. & Shen, G.-H. Molecular epidemiology of Mycobacterium abscessus infections in a subtropical chronic ventilatory setting. J. Med. Microbiol. 59, 1203–1211 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Falkinham, J. O., Norton, C. D. & Le Chevallier, M. W. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 67, 1225–1231 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Dubrou, S. et al. Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system. Appl. Environ. Microbiol. 79, 5498–5508 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. van Ingen, J., Blaak, H., de Beer, J., de Roda Husman, A. M. & van Soolingen, D. Rapidly growing nontuberculous mycobacteria cultured from home tap and shower water. Appl. Environ. Microbiol. 76, 6017–6019 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bryant, J. M. et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381, 1551–1560 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Bryant, J. M. et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 354, 751–757 (2016). This article proposes that M. abscessus infections are acquired through transmission, presumably via fomites and aerosols.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Malcolm, K. C. et al. Mycobacterium abscessus displays fitness for fomite transmission. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00562-17 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  72. Bernut, A. et al. Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Mol. Microbiol. 99, 866–883 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Belisle, J. T. & Brennan, P. J. Chemical basis of rough and smooth variation in mycobacteria. J. Bacteriol. 171, 3465–3470 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Agustí, G., Astola, O., Rodríguez-Güell, E., Julián, E. & Luquin, M. Surface spreading motility shown by a group of phylogenetically related, rapidly growing pigmented mycobacteria suggests that motility is a common property of mycobacterial species but is restricted to smooth colonies. J. Bacteriol. 190, 6894–6902 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Prinzis, S., Rivoire, B. & Brennan, P. J. Search for the molecular basis of morphological variation in Mycobacterium avium. Infect. Immun. 62, 1946–1951 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Schaefer, W. B., Davis, C. L. & Cohn, M. L. Pathogenicity of transparent, opaque, and rough variants of Mycobacterium avium in chickens and mice. Am. Rev. Respir. Dis. 102, 499–506 (1970).

    CAS  PubMed  Google Scholar 

  77. Howard, S. T. et al. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiol. Read. Engl. 152, 1581–1590 (2006).

    Article  CAS  Google Scholar 

  78. Pawlik, A. et al. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol. Microbiol. 90, 612–629 (2013). This report describes the genetic changes that are associated with the smooth-to-rough transition.

    Article  CAS  PubMed  Google Scholar 

  79. Ripoll, F. et al. Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae. BMC Genomics 8, 114 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Schorey, J. S. & Sweet, L. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18, 832–841 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Belisle, J. T., Klaczkiewicz, K., Brennan, P. J., Jacobs, W. R. & Inamine, J. M. Rough morphological variants of Mycobacterium avium. Characterization of genomic deletions resulting in the loss of glycopeptidolipid expression. J. Biol. Chem. 268, 10517–10523 (1993).

    CAS  PubMed  Google Scholar 

  82. Brennan, P. J. & Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 64, 29–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Billman-Jacobe, H., McConville, M. J., Haites, R. E., Kovacevic, S. & Coppel, R. L. Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Mol. Microbiol. 33, 1244–1253 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Medjahed, H. & Reyrat, J.-M. Construction of Mycobacterium abscessus defined glycopeptidolipid mutants: comparison of genetic tools. Appl. Environ. Microbiol. 75, 1331–1338 (2009). This is the first description of specific gene disruption in M. abscessus.

    Article  CAS  PubMed  Google Scholar 

  85. Deshayes, C. et al. MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. Mol. Microbiol. 78, 989–1003 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Viljoen, A. et al. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments. Mol. Microbiol. 104, 889–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Sondén, B. et al. Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface. Mol. Microbiol. 58, 426–440 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Park, I. K. et al. Clonal diversification and changes in lipid traits and colony morphology in Mycobacterium abscessus clinical isolates. J. Clin. Microbiol. 53, 3438–3447 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Zhang, B. et al. Crystal structures of membrane transporter MmpL3, an anti-TB drug target. Cell 176, 636–648.e13 (2019). This article provides the first high-resolution crystal structure of MmpL3 in mycobacteria.

    Article  CAS  PubMed  Google Scholar 

  90. Kocíncová, D. et al. Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis 88, 390–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Le Moigne, V. et al. Lsr2 Is an important determinant of intracellular growth and virulence in Mycobacterium abscessus. Front. Microbiol. 10, 905 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  92. Jankute, M. et al. The role of hydrophobicity in tuberculosis evolution and pathogenicity. Sci. Rep. 7, 1315 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Viljoen, A. et al. A simple and rapid gene disruption strategy in Mycobacterium abscessus: on the design and application of glycopeptidolipid mutants. Front. Cell. Infect. Microbiol. 8, 69 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Krasowska, A. & Sigler, K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 4, 112 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Brambilla, C. et al. Mycobacteria clumping increase their capacity to damage macrophages. Front. Microbiol. 7, 1562 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Clary, G. et al. Mycobacterium abscessus smooth and rough morphotypes form antimicrobial-tolerant biofilm phenotypes but are killed by acetic acid. Antimicrob. Agents Chemother. 62, e01782-17 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  97. Kansal, R. G., Gomez-Flores, R. & Mehta, R. T. Change in colony morphology influences the virulence as well as the biochemical properties of the Mycobacterium avium complex. Microb. Pathog. 25, 203–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Catherinot, E. et al. Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect. Immun. 75, 1055–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Laencina, L. et al. Identification of genes required for Mycobacterium abscessus growth in vivo with a prominent role of the ESX-4 locus. Proc. Natl Acad. Sci. USA 115, E1002–E1011 (2018). This article describes the importance of ESX-4 in M. abscessus virulence.

    Article  CAS  PubMed  Google Scholar 

  100. Richard, M. et al. Mutations in the MAB_2299c TetR regulator confer cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob. Agents Chemother. 63, e01316–e01318 (2019).

    CAS  PubMed  Google Scholar 

  101. Ripoll, F. et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 4, e5660 (2009). This is the first report of the complete genome of M. abscessus.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Maloney, K. E. & Valvano, M. A. The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect. Immun. 74, 5477–5486 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Mathee, K. et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc. Natl Acad. Sci. USA 105, 3100–3105 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Blanc-Potard, A.-B. & Lafay, B. MgtC as a horizontally-acquired virulence factor of intracellular bacterial pathogens: evidence from molecular phylogeny and comparative genomics. J. Mol. Evol. 57, 479–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Belon, C., Gannoun-Zaki, L., Lutfalla, G., Kremer, L. & Blanc-Potard, A.-B. Mycobacterium marinum MgtC plays a role in phagocytosis but is dispensable for intracellular multiplication. PLoS One 9, e116052 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Titball, R. W. Bacterial phospholipases C. Microbiol. Rev. 57, 347–366 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Le Chevalier, F. et al. Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis. Sci. Rep. 5, 16918 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Cirillo, J. D., Falkow, S., Tompkins, L. S. & Bermudez, L. E. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65, 3759–3767 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Astarie-Dequeker, C. et al. Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog. 5, e1000289 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Cambier, C. J., O’Leary, S. M., O’Sullivan, M. P., Keane, J. & Ramakrishnan, L. Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47, 552–565.e4 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Cao, Z., Casabona, M. G., Kneuper, H., Chalmers, J. D. & Palmer, T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2, 16183 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Vaziri, F. & Brosch, R. ESX/Type VII secretion systems — An important way out for mycobacterial proteins. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.PSIB-0029-2019 (2019).

    Article  PubMed  Google Scholar 

  113. Abdallah, A. M. et al. Type VII secretion–mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Gray, T. A. et al. Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science 354, 347–350 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Dumas, E. et al. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol. Evol. 8, 387–402 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Simeone, R. et al. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 8, e1002507 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Guinn, K. M. et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 51, 359–370 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Lienard, J. et al. The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms. Proc. Natl Acad. Sci. USA 117, 1160–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Coros, A., Callahan, B., Battaglioli, E. & Derbyshire, K. M. The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol. Microbiol. 69, 794–808 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Clark, R. R. et al. Direct cell-cell contact activates SigM to express the ESX-4 secretion system in Mycobacterium smegmatis. Proc. Natl Acad. Sci. USA 115, E6595–E6603 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. McNamara, M., Danelishvili, L. & Bermudez, L. E. The Mycobacterium avium ESX-5 PPE protein, PPE25-MAV, interacts with an ESAT-6 family protein, MAV_2921, and localizes to the bacterial surface. Microb. Pathog. 52, 227–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Li, Y., Miltner, E., Wu, M., Petrofsky, M. & Bermudez, L. E. A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cell. Microbiol. 7, 539–548 (2005). This is the first report of a PPE protein in M. avium virulence.

    Article  CAS  PubMed  Google Scholar 

  123. Abdallah, A. M. et al. The ESX-5 secretion system of Mycobacterium marinum modulates the macrophage response. J. Immunol. 181, 7166–7175 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Mackenzie, N., Alexander, D. C., Turenne, C. Y., Behr, M. A. & De Buck, J. M. Genomic comparison of PE and PPE genes in the Mycobacterium avium complex. J. Clin. Microbiol. 47, 1002–1011 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Soler-Arnedo, P., Sala, C., Zhang, M., Cole, S. T. & Piton, J. Polarly localized EccE 1 is required for ESX-1 function and stabilization of ESX-1 membrane proteins in Mycobacterium tuberculosis. J. Bacteriol. 202, e00662-19 (2019).

    Article  Google Scholar 

  126. Trias, J., Jarlier, V. & Benz, R. Porins in the cell wall of mycobacteria. Science 258, 1479–1481 (1992).

    Article  CAS  PubMed  Google Scholar 

  127. Luthra, S., Rominski, A. & Sander, P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front. Microbiol. 9, 219 (2018). This is a compelling review describing the drug resistance mechanisms involving modification of either drug targets or drug-modifying enzymes in M. abscessus.

    Article  Google Scholar 

  128. Nessar, R., Cambau, E., Reyrat, J. M., Murray, A. & Gicquel, B. Mycobacterium abscessus: a new antibiotic nightmare. J. Antimicrob. Chemother. 67, 810–818 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Trias, J. & Benz, R. Permeability of the cell wall of Mycobacterium smegmatis. Mol. Microbiol. 14, 283–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Jarlier, V. & Nikaido, H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett. 123, 11–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Lambert, P. A. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J. Appl. Microbiol. 92, 46S–54S (2002).

    Article  PubMed  Google Scholar 

  132. Alcaide, F., Pfyffer, G. E. & Telenti, A. Role of embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob. Agents Chemother. 41, 2270–2273 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Guillemin, I., Jarlier, V. & Cambau, E. Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria. Antimicrob. Agents Chemother. 42, 2084–2088 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Rominski, A., Roditscheff, A., Selchow, P., Böttger, E. C. & Sander, P. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J. Antimicrob. Chemother. 72, 376–384 (2017). This study demonstrates that ADP-ribosylation inactivates rifamycins in M. abscessus.

    Article  CAS  PubMed  Google Scholar 

  135. Obata, S. et al. Association of rpoB mutations with rifampicin resistance in Mycobacterium avium. Int. J. Antimicrob. Agents 27, 32–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Soroka, D. et al. Characterization of broad-spectrum Mycobacterium abscessus class A β-lactamase. J. Antimicrob. Chemother. 69, 691–696 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Dubée, V. et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J. Antimicrob. Chemother. 70, 1051–1058 (2015).

    PubMed  Google Scholar 

  138. Lefebvre, A.-L. et al. Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob. Agents Chemother. 61, e02440-16 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  139. Rominski, A. et al. Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes. J. Antimicrob. Chemother. 72, 2191–2200 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Ung, K. L., Alsarraf, H. M. A. B., Olieric, V., Kremer, L. & Blaise, M. Crystal structure of the aminoglycosides N-acetyltransferase Eis2 from Mycobacterium abscessus. FEBS J. 286, 4342–4355 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Dal Molin, M. et al. Molecular mechanisms of intrinsic streptomycin resistance in Mycobacterium abscessus. Antimicrob. Agents Chemother. 62, e01427–17 (2018).

    PubMed  Google Scholar 

  142. Halloum, I. et al. Resistance to thiacetazone derivatives active against Mycobacterium abscessus involves mutations in the MmpL5 transcriptional repressor MAB_4384. Antimicrob. Agents Chemother. 61, 02509–02516 (2017).

    Article  Google Scholar 

  143. Richard, M. et al. Mechanistic and structural insights into the unique TetR-dependent regulation of a drug efflux pump in Mycobacterium abscessus. Front. Microbiol. 9, 649 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  144. Gutiérrez, A. V., Richard, M., Roquet-Banères, F., Viljoen, A. & Kremer, L. The TetR-family transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL efflux pumps involved in cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob. Agents Chemother. 63, e01000-19 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  145. Rodrigues, L. et al. The role of efflux pumps in macrolide resistance in Mycobacterium avium complex. Int. J. Antimicrob. Agents 34, 529–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Alexander, D. C. et al. Emergence of mmpT5 variants during bedaquiline treatment of Mycobacterium intracellulare lung disease. J. Clin. Microbiol. 55, 574–584 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Nash, K. A., Brown-Elliott, B. A. & Wallace, R. J. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob. Agents Chemother. 53, 1367–1376 (2009). This is the first description of erm41 in macrolide-inducible resistance in M. abscessus.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Kim, H.-Y. et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol. Immunol. 54, 347–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Richard, M., Gutiérrez, A. V. & Kremer, L. Dissecting erm(41)-mediated macrolide inducible resistance in Mycobacterium abscessus. Antimicrob. Agents Chemother. 64, e01879-19 (2019).

    Article  Google Scholar 

  150. Hurst-Hess, K., Rudra, P. & Ghosh, P. Mycobacterium abscessus WhiB7 regulates a species-specific repertoire of genes to confer extreme antibiotic resistance. Antimicrob. Agents Chemother. 61, e01347-17 (2017). This study highlights the importance of WhiB7 regulating expression of various genes conferring resistance to antibiotics in M. abscessus.

    Article  PubMed Central  PubMed  Google Scholar 

  151. Pryjma, M., Burian, J., Kuchinski, K. & Thompson, C. J. Antagonism between front-line antibiotics clarithromycin and amikacin in the treatment of Mycobacterium abscessus infections is mediated by the whiB7 gene. Antimicrob. Agents Chemother. 61, 01353-17 (2017).

    Article  Google Scholar 

  152. Bastian, S. et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob. Agents Chemother. 55, 775–781 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Maurer, F. P., Rüegger, V., Ritter, C., Bloemberg, G. V. & Böttger, E. C. Acquisition of clarithromycin resistance mutations in the 23S rRNA gene of Mycobacterium abscessus in the presence of inducible erm(41). J. Antimicrob. Chemother. 67, 2606–2611 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Prammananan, T. et al. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J. Infect. Dis. 177, 1573–1581 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Moon, S. M. et al. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant Mycobacterium avium complex lung disease. Antimicrob. Agents Chemother. 60, 6758–6765 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Brown-Elliott, B. A. et al. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J. Clin. Microbiol. 51, 3389–3394 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Lefebvre, A.-L. et al. Bactericidal and intracellular activity of β-lactams against Mycobacterium abscessus. J. Antimicrob. Chemother. 71, 1556–1563 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Kaushik, A. et al. In vitro activity of the New β-lactamase inhibitors relebactam and vaborbactam in combination with β-lactams against Mycobacterium abscessus complex clinical isolates. Antimicrob. Agents Chemother. 63, e02623-18 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  159. Pandey, R. et al. Dual β-lactam combinations highly active against Mycobacterium abscessus complex in vitro. mBio 10, e02895-18 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  160. Ganapathy, U. S., Dartois, V. & Dick, T. Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opin. Drug Discov. 14, 867–878 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Pryjma, M., Burian, J. & Thompson, C. J. Rifabutin acts in synergy and is bactericidal with frontline Mycobacterium abscessus antibiotics clarithromycin and tigecycline, suggesting a potent treatment combination. Antimicrob. Agents Chemother. 62, e00283-18 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  162. Rudra, P., Hurst-Hess, K., Lappierre, P. & Ghosh, P. High levels of intrinsic tetracycline resistance in Mycobacterium abscessus are conferred by a tetracycline-modifying monooxygenase. Antimicrob. Agents Chemother. 62, e00119-18 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  163. Wallace, R. J. et al. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J. Antimicrob. Chemother. 69, 1945–1953 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Yang, B. et al. Clofazimine-containing regimen for the treatment of Mycobacterium abscessus lung disease. Antimicrob. Agents Chemother. 61, e02052-16 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  165. Dupont, C. et al. Bedaquiline inhibits the ATP synthase in Mycobacterium abscessus and is effective in infected zebrafish. Antimicrob. Agents Chemother. 61, e01225-17 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  166. Ruth, M. M. et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J. Antimicrob. Chemother. 74, 935–943 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Viljoen, A. et al. Verapamil improves the activity of bedaquiline against Mycobacterium abscessus in vitro and in macrophages. Antimicrob. Agents Chemother. 63, e00705-19 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  168. Griffith, D. E. et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am. J. Respir. Crit. Care Med. 198, 1559–1569 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Dupont, C. et al. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus. Mol. Microbiol. 101, 515–529 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Kozikowski, A. P. et al. Targeting mycolic acid transport by indole-2-carboxamides for the treatment of Mycobacterium abscessus infections. J. Med. Chem. 60, 5876–5888 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Franz, N. D. et al. Design, synthesis and evaluation of indole-2-carboxamides with pan anti-mycobacterial activity. Bioorg. Med. Chem. 25, 3746–3755 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  172. Pandya, A. N. et al. Indole-2-carboxamides are active against Mycobacterium abscessus in a mouse model of acute infection. Antimicrob. Agents Chemother. 63, e02245-18 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  173. Raynaud, C. et al. Active benzimidazole derivatives targeting the MmpL3 transporter in Mycobacterium abscessus. ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.9b00389 (2019).

    Article  Google Scholar 

  174. Locher, C. P. et al. A novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and nontuberculosis mycobacterial infections. Antimicrob. Agents Chemother. 59, 1455–1465 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Brown-Elliott, B. A., Rubio, A. & Wallace, R. J. In vitro susceptibility testing of a novel benzimidazole, SPR719, against nontuberculous mycobacteria. Antimicrob. Agents Chemother. 62, e01503-18 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  176. Madani, A. et al. Cyclipostins and cyclophostin analogues as multitarget inhibitors that impair growth of Mycobacterium abscessus. ACS Infect. Dis. 5, 1597–1608 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019). This study describes the first administration of genetically engineered phages in a patient with cystic fibrosis chronically infected with a drug-resistant M. massiliense strain.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Bernut, A., Herrmann, J.-L., Ordway, D. & Kremer, L. The diverse cellular and animal models to decipher the physiopathological traits of Mycobacterium abscessus infection. Front. Cell. Infect. Microbiol. 7, 100 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Bernut, A. et al. In vivo assessment of drug efficacy against Mycobacterium abscessus using the embryonic zebrafish test system. Antimicrob. Agents Chemother. 58, 4054–4063 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Lerat, I. et al. In vivo evaluation of antibiotic activity against Mycobacterium abscessus. J. Infect. Dis. 209, 905–912 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. De Groote, M. A. et al. GM-CSF knockout mice for preclinical testing of agents with antimicrobial activity against Mycobacterium abscessus. J. Antimicrob. Chemother. 69, 1057–1064 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Obregón-Henao, A. et al. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob. Agents Chemother. 59, 6904–6912 (2015).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Byrd, T. F. & Lyons, C. R. Preliminary characterization of a Mycobacterium abscessus mutant in human and murine models of infection. Infect. Immun. 67, 4700–4707 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Meir, M., Grosfeld, T. & Barkan, D. Establishment and validation of Galleria mellonella as a novel model organism to study Mycobacterium abscessus infection, pathogenesis, and treatment. Antimicrob. Agents Chemother. 62, e02539-17 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  185. Oh, C.-T., Moon, C., Jeong, M. S., Kwon, S.-H. & Jang, J. Drosophila melanogaster model for Mycobacterium abscessus infection. Microbes Infect. 15, 788–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Ferro, B. E. et al. Amikacin pharmacokinetics/pharmacodynamics in a novel hollow-fiber Mycobacterium abscessus disease model. Antimicrob. Agents Chemother. 60, 1242–1248 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  187. Angenent, L. T., Kelley, S. T., St Amand, A., Pace, N. R. & Hernandez, M. T. Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc. Natl Acad. Sci. USA 102, 4860–4865 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Falkinham, J. O., Iseman, M. D., de Haas, P. & van Soolingen, D. Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health 6, 209–213 (2008).

    Article  PubMed  Google Scholar 

  189. Koch, R. Die Atiologie der Tuberkulose. Berl. Klin. Wochenschr. 15, 221–230 (1882).

    Google Scholar 

  190. Glickman, M. S., Cox, J. S. & Jacobs, W. R. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Julián, E. et al. Microscopic cords, a virulence-related characteristic of Mycobacterium tuberculosis, are also present in nonpathogenic mycobacteria. J. Bacteriol. 192, 1751–1760 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Sánchez-Chardi, A. et al. Demonstration of cord formation by rough Mycobacterium abscessus variants: implications for the clinical microbiology laboratory. J. Clin. Microbiol. 49, 2293–2295 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  193. Bernut, A. et al. CFTR protects against Mycobacterium abscessus infection by fine-tuning host oxidative defenses. Cell Rep. 26, 1828–1840.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Halloum, I. et al. Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent. Proc. Natl Acad. Sci. USA 113, E4228–E4237 (2016). This article highlights the importance of a dehydratase required for cording in M. abscessus and its role in pathogenicity.

    Article  CAS  PubMed  Google Scholar 

  195. Roux, A.-L. et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol. 6, 160185 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Frehel, C., Ryter, A., Rastogi, N. & David, H. The electron-transparent zone in phagocytized Mycobacterium avium and other mycobacteria: formation, persistence and role in bacterial survival. Ann. Inst. Pasteur Microbiol. 137B, 239–257 (1986).

    Article  CAS  PubMed  Google Scholar 

  197. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12, 352–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Kim, B.-R., Kim, B.-J., Kook, Y.-H. & Kim, B.-J. Phagosome escape of rough Mycobacterium abscessus strains in murine macrophage via phagosomal rupture can lead to type I interferon production and their cell-to-cell spread. Front. Immunol. 10, 125 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Dubois, V. et al. MmpL8MAB controls Mycobacterium abscessus virulence and production of a previously unknown glycolipid family. Proc. Natl Acad. Sci. USA 115, E10147–E10156 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Rhoades, E. R. et al. Mycobacterium abscessus glycopeptidolipids mask underlying cell wall phosphatidyl- myo-inositol mannosides blocking induction of human macrophage TNF-α by preventing interaction with TLR2. J. Immunol. 183, 1997–2007 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Roux, A.-L. et al. Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants. Cell. Microbiol. 13, 692–704 (2011). This article emphasizes the importance of surface-exposed lipoproteins in the inflammatory responses to infection with rough M. abscessus.

    Article  CAS  PubMed  Google Scholar 

  202. Davidson, L. B., Nessar, R., Kempaiah, P., Perkins, D. J. & Byrd, T. F. Mycobacterium abscessus glycopeptidolipid prevents respiratory epithelial TLR2 signaling as measured by HβD2 gene expression and IL-8 release. PLoS One 6, e29148 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Beckham, K. S. H. et al. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat. Microbiol. 2, 17047 (2017). This is the first report of the X-ray structure of an ESX system in a mycobacterium.

    Article  CAS  PubMed  Google Scholar 

  204. Incandela, M. L. et al. DprE1, a new taxonomic marker in mycobacteria. FEMS Microbiol. Lett. 348, 66–73 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the L.K team (Montpellier) and the J.-L.H. team (Montigny-le-Bretonneux) for their contribution to the work presented in this Review. The authors are also grateful to the Fondation pour la Recherche Médicale (grant no. DEQ20150331719), the Association Gregory Lemarchal and Vaincre la Mucoviscidose (grants no. RIF20180502320 and no. RIF20170502057), the Labex EpiGenMed ‘Investissements d’Avenir’ programme (grant no. ANR-10-LABX-12-01) and the French National Research Agency (grant no. DIMYVIR ANR-13-BSV3-0007-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for this article, contributed substantially to discussion of the content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Laurent Kremer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cystic fibrosis

A progressive, genetic disease that causes persistent lung infections and limits the ability to breathe.

Bronchiectasis

A disease in which the airways of the lungs become abnormally widened, leading to an excess of mucus that can make the lungs more vulnerable to infection.

Granuloma

An aggregation of immune cells formed during inflammation in different diseases such as mycobacterial infections.

Trophozoites

Protozoans in the early growth stage.

Fomites

Inanimate objects which, when contaminated with infectious agents, can transmit disease to a new host.

Minimum inhibitory concentration

The lowest concentration of a chemical or drug that is able to prevent visible bacterial growth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansen, M.D., Herrmann, JL. & Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 18, 392–407 (2020). https://doi.org/10.1038/s41579-020-0331-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-0331-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing