Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The rapid emergence of antifungal-resistant human-pathogenic fungi

Abstract

During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of the three emerging fungi Candida auris, azole-resistant Aspergillus fumigatus and Trichophyton indotineae.
Fig. 2: The more common mechanisms of acquired antifungal resistance of Candida auris.
Fig. 3: Possible routes of acquisition of antifungal-resistant Aspergillus fumigatus.
Fig. 4: Mechanisms of acquired resistance of azole-resistant Aspergillus fumigatus.
Fig. 5: Mechanisms of acquired resistance of Trichophyton indotineae.

Similar content being viewed by others

References

  1. Rigling, D. & Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol. Plant Pathol. 19, 7–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G. & Staver, C. P. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 9, 1468 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Hoyt, J. R., Kilpatrick, A. M. & Langwig, K. E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 19, 196–210 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Martin-Urdiroz, M., Oses-Ruiz, M., Ryder, L. S. & Talbot, N. J. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet. Biol. 90, 61–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Singh, R. P. et al. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105, 872–884 (2015).

    Article  PubMed  Google Scholar 

  7. Schorling, S. R., Kortinga, H. C., Froschb, M. & Mühlschlegel, F. A. The role of Candida dubliniensis in oral candidiasis in human immunodeficiency virus-infected individuals. Crit. Rev. Microbiol. 26, 59–68 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Maziarz, E. K. & Perfect, J. R. Cryptococcosis. Infect. Dis. Clin. N. Am. 30, 179–206 (2016).

    Article  Google Scholar 

  9. Dellière, S., Gits-Muselli, M., Bretagne, S. & Alanio, A. Outbreak-causing fungi: Pneumocystis jirovecii. Mycopathologia 185, 783–800 (2020).

    PubMed  Google Scholar 

  10. Satoh, K. et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 53, 41–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Kano, R. et al. Trichophyton indotineae sp. nov.: a new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 185, 947–958 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Snelders, E., Melchers, W. J. & Verweij, P. E. Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis? Future Microbiol. 6, 335–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10, e013970-19 (2019).

    Article  Google Scholar 

  14. Casadevall, A., Kontoyiannis, D. P. & Robert, V. Environmental Candida auris and the global warming emergence hypothesis. mBio 12, e00360-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nnadi, N. E. & Carter, D. A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 17, e1009503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gadre, A., Enbiale, W., Andersen, L. & Coate, S. The effects of climate change on fungal diseases with cutaneous manifestations: a report from the International Society of Dermatology Climate Change Committee. J. Clim. Change Health 4, 100156 (2022).

    Article  Google Scholar 

  17. Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).

    Article  PubMed  Google Scholar 

  19. Meena, M. et al. Multifarious responses of forest soil microbial community toward climate change. Microb. Ecol. 86, 49–84 (2022).

    Article  PubMed  Google Scholar 

  20. Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Ecology and evolution of the human microbiota: fire, farming and antibiotics. Genes 6, 841–857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, X. et al. Skin metagenomic sequence analysis of early Candida auris outbreaks in U.S. nursing homes. mSphere 6, e0028721 (2021).

    Article  PubMed  Google Scholar 

  22. Proctor, D. M. et al. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat. Med. 27, 1401–1409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chien, A. L. et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 155, 425–434 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xue, P., Liu, X., Zhao, L., Zhang, J. & He, Z. Integrating high-throughput sequencing and metabolomics to investigate the stereoselective responses of soil microorganisms to chiral fungicide cis-epoxiconazole. Chemosphere 300, 134198 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Han, L., Kong, X., Xu, M. & Nie, J. Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles. Environ. Pollut. 287, 117660 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, H. et al. Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. J. Hazard. Mater. 405, 124208 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Baćmaga, M., Wyszkowska, J., Borowik, A. & Kucharski, J. Effects of tebuconazole application on soil microbiota and enzymes. Molecules 27, 7501 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee, W. G. et al. First three reported cases of nosocomial fungemia caused by Candida auris. J. Clin. Microbiol. 49, 3139–3142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chowdhary, A. et al. New clonal strain of Candida auris, Delhi, India. Emerg. Infect. Dis. 19, 1670–1673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Magobo, R. E., Corcoran, C., Seetharam, S. & Govender, N. P. Candida auris-associated candidemia, South Africa. Emerg. Infect. Dis. 20, 1250–1251 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Rhodes, J. & Fisher, M. C. Global epidemiology of emerging Candida auris. Curr. Opin. Microbiol. 52, 84–89 (2019).

    Article  PubMed  Google Scholar 

  33. Jung, J. et al. Candida auris colonization or infection of the ear: a single-center study in South Korea from 2016 to 2018. Med. Mycol. 58, 124–127 (2020).

    Article  PubMed  Google Scholar 

  34. Desnos-Ollivier, M., Fekkar, A. & Bretagne, S. Earliest case of Candida auris infection imported in 2007 in Europe from India prior to the 2009 description in Japan. J. Mycol. Med. 31, 101139 (2021).

    Article  PubMed  Google Scholar 

  35. Iguchi, S. et al. Candida auris: a pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. J. Infect. Chemother. 25, 743–749 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11, e03364-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chow, N. A. et al. Potential fifth clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 25, 1780–1781 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chowdhary, A., Sharma, C. & Meis, J. F. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 13, e1006290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hallen-Adams, H. E. & Suhr, M. J. Fungi in the healthy human gastrointestinal tract. Virulence 8, 352–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Kühbacher, A., Burger-Kentischer, A. & Rupp, S. Interaction of Candida species with the skin. Microorganisms 5, 32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schelenz, S. et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control 5, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ruiz-Gaitan, A. et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 61, 498–505 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Biswal, M. et al. Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. J. Hosp. Infect. 97, 363–370 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Sexton, D. J. et al. Positive correlation between Candida auris skin-colonization burden and environmental contamination at a ventilator-capable skilled nursing facility in Chicago. Clin. Infect. Dis. 73, 1142–1148 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Adams, E. et al. Candida auris in healthcare facilities, New York, USA, 2013–2017. Emerg. Infect. Dis. 24, 1816–1824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chow, N. A. et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect. Dis. 18, 1377–1384 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lyman, M. et al. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann. Intern. Med. 176, 489–495 (2023).

    Article  PubMed  Google Scholar 

  48. Jackson, B. R. et al. On the origins of a species: what might explain the rise of Candida auris. J. Fungi 5, 58 (2019).

    Article  Google Scholar 

  49. Abastabar, M. et al. Candida auris otomycosis in Iran and review of recent literature. Mycoses 62, 101–105 (2019).

    Article  PubMed  Google Scholar 

  50. Arora, P. et al. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. mBio https://doi.org/10.1128/mBio.03181-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yadav, A. et al. Candida auris on apples: diversity and clinical significance. mBio 13, e0051822 (2022).

    Article  PubMed  Google Scholar 

  52. Escandón, P. Novel environmental niches for Candida auris: isolation from a coastal habitat in Colombia. J. Fungi 8, 748 (2022).

    Article  Google Scholar 

  53. Chakrabarti, A. & Singh, S. Multidrug-resistant Candida auris: an epidemiological review. Expert Rev. Anti Infect. Ther. 18, 551–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Chowdhary, A., Voss, A. & Meis, J. F. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J. Hosp. Infect. 94, 209–212 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Toda, M. et al. Population-based active surveillance for culture-confirmed candidemia — four sites, United States, 2012–2016. MMWR Surveill. Summ. 68, 1–15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kean, R. et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 3, e00334-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Singh, R., Kaur, M., Chakrabarti, A., Shankarnarayan, S. A. & Rudramurthy, S. M. Biofilm formation by Candida auris isolated from colonising sites and candidemia cases. Mycoses 62, 706–709 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Horton, M. V. et al. Candida auris forms high-burden biofilms in skin niche conditions and on porcine skin. mSphere https://doi.org/10.1128/mSphere.00910-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fakhim, H. et al. Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses 61, 377–382 (2018).

    Article  PubMed  Google Scholar 

  61. Yue, H. et al. Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg. Microbes Infect. 7, 188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Johnson, C. J., Davis, J. M., Huttenlocher, A., Kernien, J. F. & Nett, J. E. Emerging fungal pathogen Candida auris evades neutrophil attack. mBio 9, e01403-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Horton, M. V. et al. Candida auris cell wall mannosylation contributes to neutrophil evasion through pathways divergent from Candida albicans and Candida glabrata. mSphere 6, e0040621 (2021).

    Article  PubMed  Google Scholar 

  64. Weerasinghe, H. et al. Candida auris uses metabolic strategies to escape and kill macrophages while avoiding robust activation of the NLRP3 inflammasome response. Cell Rep. 42, 112522 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Lamoth, F., Lockhart, S. R., Berkow, E. L. & Calandra, T. Changes in the epidemiological landscape of invasive candidiasis. J. Antimicrob. Chemother. 73, i4–i13 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Chowdhary, A. et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 73, 891–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Arendrup, M. C., Prakash, A., Meletiadis, J., Sharma, C. & Chowdhary, A. Comparison of EUCAST and CLSI reference microdilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Antimicrob. Agents Chemother. 61, e00485-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rybak, J. M. et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 11, e00365-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ben-Ami, R. et al. Multidrug-resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg. Infect. Dis. 23, 195–203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lyman, M. et al. Notes from the field: transmission of pan-resistant and echinocandin-resistant Candida auris in health care facilities—Texas and the District of Columbia, January–April 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1022–1023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Berkow, E. L. & Lockhart, S. R. Activity of CD101, a long-acting echinocandin, against clinical isolates of Candida auris. Diagn. Microbiol. Infect. Dis. 90, 196–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Lepak, A. J., Zhao, M., Berkow, E. L., Lockhart, S. R. & Andes, D. R. Pharmacodynamic optimization for treatment of invasive Candida auris infection. Antimicrob. Agents Chemother. 61, e00791-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rybak, J. M. et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin. Microbiol. Infect. 28, 838–843 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Asner, S. A., Giulieri, S., Diezi, M., Marchetti, O. & Sanglard, D. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob. Agents Chemother. 59, 7715–7722 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ostrowsky, B. et al. Candida auris isolates resistant to three classes of antifungal medications—New York, 2019. MMWR Morb. Mortal. Wkly Rep. 69, 6–9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Alastruey-Izquierdo, A. et al. GEMICOMED/GEIRAS-SEIMC recommendations for the management of Candida auris infection and colonization [Spanish]. Rev. Iberoam. Micol. 36, 109–114 (2019).

    Article  PubMed  Google Scholar 

  77. Govender, N. P. et al. Federation of Infectious Diseases Societies of Southern Africa guideline: recommendations for the detection, management and prevention of healthcare-associated Candida auris colonisation and disease in South Africa. S. Afr. J. Infect. Dis. 34, 163 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Ong, C. W. et al. Diagnosis, management and prevention of Candida auris in hospitals: position statement of the Australasian Society for Infectious Diseases. Intern. Med. J. 49, 1229–1243 (2019).

    Article  PubMed  Google Scholar 

  79. Pappas, P. G. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 62, e1–e50 (2016).

    Article  PubMed  Google Scholar 

  80. Berkow, E. L. & Lockhart, S. R. Activity of novel antifungal compound APX001A against a large collection of Candida auris. J. Antimicrob. Chemother. 73, 3060–3062 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Berkow, E. L., Angulo, D. & Lockhart, S. R. In vitro activity of a novel glucan synthase inhibitor, SCY-078, against clinical isolates of Candida auris. Antimicrob. Agents Chemother. 61, e00435-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Benedict, K., Jackson, B. R., Chiller, T. & Beer, K. D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis. 68, 1791–1797 (2019).

    Article  PubMed  Google Scholar 

  83. Gold, J. A. W. et al. Increased deaths from fungal infections during the COVID-19 pandemic—National Vital Statistics System, United States, January 2020–December 2021. Clin. Infect. Dis. 76, e255–e262 (2022).

    Article  Google Scholar 

  84. Vallabhaneni, S., Benedict, K., Derado, G. & Mody, R. K. Trends in hospitalizations related to invasive aspergillosis and mucormycosis in the United States, 2000–2013. Open Forum Infect. Dis. 4, ofw268 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 3, 57 (2017).

    Article  Google Scholar 

  86. Denning, D. W., Pleuvry, A. & Cole, D. C. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med. Mycol. 51, 361–370 (2013).

    Article  PubMed  Google Scholar 

  87. Patterson, T. F. et al. Executive summary: practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 63, 433–442 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bueid, A. et al. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother. 65, 2116–2118 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Verweij, P. E., Snelders, E., Kema, G. H., Mellado, E. & Melchers, W. J. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use. Lancet Infect. Dis. 9, 789–795 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Howard, S. J. et al. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg. Infect. Dis. 15, 1068–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bradley, K. et al. Fatal fungicide-associated triazole-resistant Aspergillus fumigatus infection, Pennsylvania, USA. Emerg. Infect. Dis. 28, 1904–1905 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Verweij, P. E., Chowdhary, A., Melchers, W. J. & Meis, J. F. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 62, 362–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Resendiz Sharpe, A. et al. Triazole resistance surveillance in Aspergillus fumigatus. Med. Mycol. 56, 83–92 (2018).

    Article  PubMed  Google Scholar 

  94. Burks, C., Darby, A., Gómez Londoño, L., Momany, M. & Brewer, M. T. Azole-resistant Aspergillus fumigatus in the environment: identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog. 17, e1009711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van der Linden, J. W., Arendrup, M. C., Melchers, W. J. & Verweij, P. E. Azole resistance of Aspergillus fumigatus in immunocompromised patients with invasive aspergillosis. Emerg. Infect. Dis. 22, 158–159 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rosowski, E. E. et al. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog. 14, e1007229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Earle, K. et al. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 14, 2172264 (2023).

    Article  PubMed  Google Scholar 

  98. Latgé, J. P. & Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mortensen, K. L. et al. A prospective survey of Aspergillus spp. in respiratory tract samples: prevalence, clinical impact and antifungal susceptibility. Eur. J. Clin. Microbiol. Infect. Dis. 30, 1355–1363 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Pappas, P. G. et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin. Infect. Dis. 50, 1101–1111 (2010).

    Article  PubMed  Google Scholar 

  101. Kontoyiannis, D. P. et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin. Infect. Dis. 50, 1091–1100 (2010).

    Article  PubMed  Google Scholar 

  102. Sehgal, I. S., Muthu, V. & Agarwal, R. Aspergillus infection is an important complication of post-TB bronchiectasis. Int. J. Tuberc. Lung Dis. 27, 89a–89(1) (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Warris, A. Immunopathology of Aspergillus infections in children with chronic granulomatous disease and cystic fibrosis. Pediatr. Infect. Dis. J. 38, e96–e98 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Prattes, J. et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—a multinational observational study by the European Confederation of Medical Mycology. Clin. Microbiol. Infect. 28, 580–587 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Schauwvlieghe, A. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir. Med. 6, 782–792 (2018).

    Article  PubMed  Google Scholar 

  106. Lestrade, P. P. A., Meis, J. F., Melchers, W. J. G. & Verweij, P. E. Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin. Microbiol. Infect. 25, 799–806 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Lestrade, P. P. et al. Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin. Infect. Dis. 68, 1463–1471 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Chong, G. M. et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay® in 201 patients with haematological disease suspected for invasive aspergillosis. J. Antimicrob. Chemother. 71, 3528–3535 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Rhodes, J. et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 7, 663–674 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gonzalez-Jimenez, I. et al. Multiresistance to nonazole fungicides in Aspergillus fumigatus TR34/L98H azole-resistant isolates. Antimicrob. Agents Chemother. 65, e0064221 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Kang, S. E. et al. Evidence for the agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal pathogen of humans. G3 12, jkab427 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Mellado, E. et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Chemother. 51, 1897–1904 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van der Linden, J. W. et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin. Infect. Dis. 57, 513–520 (2013).

    Article  PubMed  Google Scholar 

  114. Chowdhary, A., Kathuria, S., Xu, J. & Meis, J. F. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 9, e1003633 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lestrade, P. P. A. et al. Paradoxal trends in azole-resistant Aspergillus fumigatus in a national multicenter surveillance program, the Netherlands, 2013–2018. Emerg. Infect. Dis. 26, 1447–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Snelders, E. et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 5, e219 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Paul, S., Verweij, P. E., Melchers, W. J. G. & Moye-Rowley, W. S. Differential functions of individual transcription factor binding sites in the tandem repeats found in clinically relevant cyp51A promoters in Aspergillus fumigatus. mBio 13, e0070222 (2022).

    Article  PubMed  Google Scholar 

  118. Riat, A., Plojoux, J., Gindro, K., Schrenzel, J. & Sanglard, D. Azole resistance of environmental and clinical Aspergillus fumigatus isolates from Switzerland. Antimicrob. Agents Chemother. 62, e02088-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sharma, C., Hagen, F., Moroti, R., Meis, J. F. & Chowdhary, A. Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: is it de novo or environmentally acquired? J. Glob. Antimicrob. Resist. 3, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Bader, O. et al. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob. Agents Chemother. 59, 4356–4359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, J. et al. The medical triazole voriconazole can select for tandem repeat variations in azole-resistant Aspergillus fumigatus harboring TR34/L98H via asexual reproduction. J. Fungi 6, 277 (2020).

    Article  CAS  Google Scholar 

  122. Zhang, J. et al. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence. mBio 8, e00791-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Satish, S. et al. Stress-induced changes in the lipid microenvironment of β-(1,3)-d-glucan synthase cause clinically important echinocandin resistance in Aspergillus fumigatus. mBio 10, e00779-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fakhim, H. et al. Trends in the prevalence of amphotericin B-resistance (AmBR) among clinical isolates of Aspergillus species. J. Mycol. Med. 32, 101310 (2022).

    Article  PubMed  Google Scholar 

  125. Etienne, K. A. et al. Genomic diversity of azole-resistant Aspergillus fumigatus in the United States. mBio 12, e0180321 (2021).

    Article  PubMed  Google Scholar 

  126. Toda, M., Beer, K. D., Kuivila, K. M., Chiller, T. M. & Jackson, B. R. Trends in agricultural triazole fungicide use in the United States, 1992–2016 and possible implications for antifungal-resistant fungi in human disease. Environ. Health Perspect. 129, 55001 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Dunne, K., Hagen, F., Pomeroy, N., Meis, J. F. & Rogers, T. R. Intercountry transfer of triazole-resistant Aspergillus fumigatus on plant bulbs. Clin. Infect. Dis. 65, 147–149 (2017).

    Article  PubMed  Google Scholar 

  128. Howard, S. J. & Arendrup, M. C. Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med. Mycol. 49, S90–S95 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Alvarez-Moreno, C. et al. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Sci. Rep. 7, 45631 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Verweij, P. E. et al. Dual use of antifungals in medicine and agriculture: how do we help prevent resistance developing in human pathogens? Drug Resist. Updat. 65, 100885 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Verweij, P. E. et al. International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist. Updat. 21–22, 30–40 (2015).

    Article  PubMed  Google Scholar 

  132. Shaw, K. J. & Ibrahim, A. S. Fosmanogepix: a review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi 6, 239 (2020).

    Article  CAS  Google Scholar 

  133. Buil, J. B. et al. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J. Antimicrob. Chemother. 72, 2548–2552 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Pfaller, M. A. et al. In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Aspergillus spp. determined by CLSI and EUCAST broth microdilution methods. Antimicrob. Agents Chemother. 55, 5155–5158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rinaldi, M. G. Dermatophytosis: epidemiological and microbiological update. J. Am. Acad. Dermatol. 43, S120–S124 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Havlickova, B., Czaika, V. A. & Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 51, 2–15 (2008).

    Article  PubMed  Google Scholar 

  137. Leung, A. K., Lam, J. M., Leong, K. F. & Hon, K. L. Tinea corporis: an updated review. Drugs Context https://doi.org/10.7573/dic.2020-5-6 (2020).

    Article  Google Scholar 

  138. Urban, K. et al. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: a cross-sectional analysis from the Global Burden of Disease Study 2017. JAAD Int. 2, 22–27 (2021).

    Article  PubMed  Google Scholar 

  139. Ebert, A. et al. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: a multicentre study. Mycoses 63, 717–728 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Dogra, S. & Uprety, S. The menace of chronic and recurrent dermatophytosis in India: is the problem deeper than we perceive? Indian Dermatol. Online J. 7, 73–76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tang, C. et al. Taxonomy of the Trichophyton mentagrophytes/T. interdigitale species complex harboring the highly virulent, multiresistant genotype T. indotineae. Mycopathologia 186, 315–326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Khurana, A. et al. Correlation of in vitro susceptibility based on MICs and squalene epoxidase mutations with clinical response to terbinafine in patients with tinea corporis/cruris. Antimicrob. Agents Chemother. 62, e01038-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Astvad, K. M. T. et al. Increasing terbinafine resistance in Danish Trichophyton isolates 2019–2020. J. Fungi 8, 150 (2022).

    Article  CAS  Google Scholar 

  144. Brasch, J. et al. “Indian” strains of Trichophyton mentagrophytes with reduced itraconazole susceptibility in Germany. J. Dtsch Dermatol. Ges. 19, 1723–1727 (2021).

    PubMed  Google Scholar 

  145. Jabet, A. et al. Extensive dermatophytosis caused by terbinafine-resistant Trichophyton indotineae, France. Emerg. Infect. Dis. 28, 229–233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Klinger, M., Theiler, M. & Bosshard, P. P. Epidemiological and clinical aspects of Trichophyton mentagrophytes/Trichophyton interdigitale infections in the Zurich area: a retrospective study using genotyping. J. Eur. Acad. Dermatol. Venereol. 35, 1017–1025 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Posso-De Los Rios, C. J., Tadros, E., Summerbell, R. C. & Scott, J. A. Terbinafine resistant Trichophyton indotineae isolated in patients with superficial dermatophyte infection in Canadian patients. J. Cutan. Med. Surg. 26, 371–376 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Dellière, S. et al. Emergence of difficult-to-treat tinea corporis caused by Trichophyton mentagrophytes complex isolates, Paris, France. Emerg. Infect. Dis. 28, 224–228 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sacheli, R. et al. Belgian National Survey on tinea capitis: epidemiological considerations and highlight of terbinafine-resistant T. mentagrophytes with a mutation on SQLE gene. J. Fungi 6, 195 (2020).

    Article  CAS  Google Scholar 

  150. Saunte, D. M. L. et al. Emerging antifungal treatment failure of dermatophytosis in Europe: take care or it may become endemic. J. Eur. Acad. Dermatol. Venereol. 35, 1582–1586 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Siopi, M., Efstathiou, I., Theodoropoulos, K., Pournaras, S. & Meletiadis, J. Molecular epidemiology and antifungal susceptibility of Trichophyton isolates in Greece: emergence of terbinafine-resistant Trichophyton mentagrophytes type VIII locally and globally. J. Fungi 7, 419 (2021).

    Article  CAS  Google Scholar 

  152. Fattahi, A. et al. Multidrug-resistant Trichophyton mentagrophytes genotype VIII in an Iranian family with generalized dermatophytosis: report of four cases and review of literature. Int. J. Dermatol. 60, 686–692 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Uhrlaß, S. et al. Trichophyton indotineae—an emerging pathogen causing recalcitrant dermatophytoses in India and worldwide—a multidimensional perspective. J. Fungi 8, 757 (2022).

    Article  Google Scholar 

  154. Ngo, T. M. C. et al. First detection of Trichophyton indotineae causing tinea corporis in central Vietnam. Med. Mycol. Case Rep. 36, 37–41 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bortoluzzi, P. et al. Report of terbinafine resistant Trichophyton spp. in Italy: clinical presentations, molecular identification, antifungal susceptibility testing and mutations in the squalene epoxidase gene. Mycoses 66, 680–687 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Caplan, A. S. et al. Notes from the field: first reported U.S. cases of tinea caused by Trichophyton indotineae—New York City, December 2021–March 2023. MMWR Morb. Mortal. Wkly Rep. 72, 536–537 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Jia, S. et al. The epidemic of the multiresistant dermatophyte Trichophyton indotineae has reached China. Front. Immunol. 13, 1113065 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Kumar, M. et al. Molecular epidemiology of Trichophyton infections among canines from Northern India. J. Mycol. Med. 33, 101352 (2022).

    Article  PubMed  Google Scholar 

  159. Achterman, R. R. & White, T. C. Dermatophyte virulence factors: identifying and analyzing genes that may contribute to chronic or acute skin infections. Int. J. Microbiol. 2012, 358305 (2012).

    Article  PubMed  Google Scholar 

  160. Celestrino, G. A., Verrinder Veasey, J., Benard, G. & Sousa, M. G. T. Host immune responses in dermatophytes infection. Mycoses 64, 477–483 (2021).

    Article  PubMed  Google Scholar 

  161. Gupta, A. K., Venkataraman, M., Hall, D. C., Cooper, E. A. & Summerbell, R. C. The emergence of Trichophyton indotineae: implications for clinical practice. Int. J. Dermatol. 62, 857–861 (2022).

    Article  PubMed  Google Scholar 

  162. Verma, S. B. & Vasani, R. Male genital dermatophytosis—clinical features and the effects of the misuse of topical steroids and steroid combinations—an alarming problem in India. Mycoses 59, 606–614 (2016).

    Article  PubMed  Google Scholar 

  163. Sardana, K., Gupta, A. & Mathachan, S. R. Immunopathogenesis of dermatophytoses and factors leading to recalcitrant infections. Indian Dermatol. Online J. 12, 389–399 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kumar, P. et al. Whole genome sequences of two Trichophyton indotineae clinical isolates from India emerging as threats during therapeutic treatment of dermatophytosis. 3 Biotech 11, 402 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kong, X. et al. Antifungal susceptibility and mutations in the squalene epoxidase gene in dermatophytes of the Trichophyton mentagrophytes species complex. Antimicrob. Agents Chemother. 65, e0005621 (2021).

    Article  PubMed  Google Scholar 

  166. Singh, A. et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 61, 477–484 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Burmester, A., Hipler, U. C., Elsner, P. & Wiegand, C. Point mutations in the squalene epoxidase erg1 and sterol 14-α demethylase erg11 gene of T indotineae isolates indicate that the resistant mutant strains evolved independently. Mycoses 65, 97–102 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Yamada, T. et al. Gene amplification of CYP51B: a new mechanism of resistance to azole compounds in Trichophyton indotineae. Antimicrob. Agents Chemother. 66, e0005922 (2022).

    Article  PubMed  Google Scholar 

  169. Singh, A. et al. A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: genomic insights and resistance profile. Fungal Genet. Biol. 133, 103266 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. van Zuuren, E. J., Fedorowicz, Z. & El-Gohary, M. Evidence-based topical treatments for tinea cruris and tinea corporis: a summary of a Cochrane Systematic Review. Br. J. Dermatol. 172, 616–641 (2015).

    Article  PubMed  Google Scholar 

  171. Singh, S. K., Subba, N. & Tilak, R. Efficacy of terbinafine and itraconazole in different doses and in combination in the treatment of tinea infection: a randomized controlled parallel group open labeled trial with clinico-mycological correlation. Indian J. Dermatol. 65, 284–289 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shaw, D. et al. MIC and upper limit of wild-type distribution for 13 antifungal agents against a Trichophyton mentagrophytesTrichophyton interdigitale complex of Indian origin. Antimicrob. Agents Chemother. 64, e01964-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gueneau, R. et al. Extensive dermatophytosis caused by terbinafine-resistant Trichophyton indotineae, successfully treated with topical voriconazole. Int. J. Antimicrob. Agents 60, 106677 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Alexander, B. D. et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 56, 1724–1732 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Magobo, R. E., Lockhart, S. R. & Govender, N. P. Fluconazole-resistant Candida parapsilosis strains with a Y132F substitution in the ERG11 gene causing invasive infections in a neonatal unit, South Africa. Mycoses 63, 471–477 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Corzo-Leon, D. E., Peacock, M., Rodriguez-Zulueta, P., Salazar-Tamayo, G. J. & MacCallum, D. M. General hospital outbreak of invasive candidiasis due to azole-resistant Candida parapsilosis associated with an Erg11 Y132F mutation. Med. Mycol. 59, 664–671 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Alcoceba, E. et al. Fluconazole-resistant Candida parapsilosis clonally related genotypes: first report proving the presence of endemic isolates harbouring the Y132F ERG11 gene substitution in Spain. Clin. Microbiol. Infect. 28, 1113–1119 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Arastehfar, A. et al. First report of candidemia clonal outbreak caused by emerging fluconazole-resistant Candida parapsilosis isolates harboring Y132F and/or Y132F+K143R in Turkey. Antimicrob. Agents Chemother. 64, e01001-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Castanheira, M., Deshpande, L. M., Messer, S. A., Rhomberg, P. R. & Pfaller, M. A. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int. J. Antimicrob. Agents 55, 105799 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. & Thomaz, D. Y. et al. Environmental clonal spread of azole-resistant Candida parapsilosis with Erg11-Y132F mutation causing a large candidemia outbreak in a Brazilian cancer referral center. J. Fungi 7, 259 (2021).

    Article  CAS  Google Scholar 

  181. Zhou, Z. L. et al. Genetic relatedness among azole-resistant Candida tropicalis clinical strains in Taiwan from 2014 to 2018. Int. J. Antimicrob. Agents 59, 106592 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Kano, R., Kimura, U., Noguchi, H. & Hiruma, M. Clinical isolate of a multi-antifungal-resistant Trichophyton rubrum. Antimicrob. Agents Chemother. 66, e0239321 (2022).

    Article  PubMed  Google Scholar 

  183. Gu, D., Hatch, M., Ghannoum, M. & Elewski, B. E. Treatment-resistant dermatophytosis: a representative case highlighting an emerging public health threat. JAAD Case Rep. 6, 1153–1155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. WHO. WHO fungal priority pathogens list. WHO https://www.who.int/publications/i/item/9789240060241 (2023).

  185. Price, C. L., Parker, J. E., Warrilow, A. G., Kelly, D. E. & Kelly, S. L. Azole fungicides — understanding resistance mechanisms in agricultural fungal pathogens. Pest Manag. Sci. 71, 1054–1058 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pfaller, M. A., Marco, F., Messer, S. A. & Jones, R. N. In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn. Microbiol. Infect. Dis. 30, 251–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  188. Fera, M. T., La Camera, E. & De Sarro, A. New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev. Anti Infect. Ther. 7, 981–998 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Orozco, A. S. et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob. Agents Chemother. 42, 2645–2649 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Guinea, J., Sánchez-Somolinos, M., Cuevas, O., Peláez, T. & Bouza, E. Fluconazole resistance mechanisms in Candida krusei: the contribution of efflux-pumps. Med. Mycol. 44, 575–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  191. Centers for Disease Control and Prevention. 2019 AR Threats Report. US Department of Health and Human Services and CDC https://www.cdc.gov/drugresistance/biggest-threats.html (2019).

  192. Revie, N. M., Iyer, K. R., Robbins, N. & Cowen, L. E. Antifungal drug resistance: evolution, mechanisms and impact. Curr. Opin. Microbiol. 45, 70–76 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Whaley, S. G. et al. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 7, 2173 (2016).

    PubMed  Google Scholar 

  194. Mba, I. E., Nweze, E. I., Eze, E. A. & Anyaegbunam, Z. K. G. Genome plasticity in Candida albicans: a cutting-edge strategy for evolution, adaptation, and survival. Infect. Genet. Evol. 99, 105256 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Zafar, H., Altamirano, S., Ballou, E. R. & Nielsen, K. A titanic drug resistance threat in Cryptococcus neoformans. Curr. Opin. Microbiol. 52, 158–164 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Singh-Babak, S. D. et al. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog. 8, e1002718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Duxbury, S. J. N., Bates, S., Beardmore, R. E. & Gudelj, I. Evolution of drug-resistant and virulent small colonies in phenotypically diverse populations of the human fungal pathogen Candida glabrata. Proc. Biol. Sci. 287, 20200761 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Fan, S., Li, C., Bing, J., Huang, G. & Du, H. Discovery of the diploid form of the emerging fungal pathogen Candida auris. ACS Infect. Dis. 6, 2641–2646 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Weil, T. et al. Adaptive mistranslation accelerates the evolution of fluconazole resistance and induces major genomic and gene expression alterations in Candida albicans. mSphere 2, e00167-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Zhang, H. et al. Global screening of genomic and transcriptomic factors associated with phenotype differences between multidrug-resistant and -susceptible Candida haemulonii strains. mSystems 4, e00459-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. McCloskey for her assistance with data collection. A.C. is a fellow of the CIFAR programme Fungal Kingdom: Threats & Opportunities.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Shawn R. Lockhart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Matthew Fisher, David Perlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Disclaimer The findings and conclusions of this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CDC Infection Prevention and Control for Candida auris: https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html

Centers for Disease Control and Prevention antimicrobial-resistant Aspergillus: https://www.cdc.gov/fungal/diseases/aspergillosis/antifungal-resistant.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lockhart, S.R., Chowdhary, A. & Gold, J.A.W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 21, 818–832 (2023). https://doi.org/10.1038/s41579-023-00960-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-023-00960-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing