Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial invasions in terrestrial ecosystems

Abstract

Human travel and global trade have tremendously increased the spread of invasive microorganisms in new regions. Experimental and observational studies in terrestrial ecosystems are beginning to shed light on processes of microbial invasions, their ecological impacts and implications for ecosystem functioning. We provide examples of terrestrial invasive microorganisms, including bacteria, fungi, oomycetes and other protists, and viruses, and discuss the impacts of pathogenic and non-pathogenic invasive microorganisms at levels ranging from host species to ecosystems. This Review highlights that despite the recent progress in microbial invasion research, we are only beginning to understand how alien microorganisms interact with native microorganisms, and the implications of those interactions. Finally, we propose three research themes — microbial interactions, impacts and climate change — to make microbial invasion research a truly integrative discipline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of invasive microorganisms that cause tree diseases.
Fig. 2: The microbial invasion process and potential impacts.
Fig. 3: Pathways of spillover of alien pathogenic microorganisms.

Similar content being viewed by others

References

  1. Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).

    Article  Google Scholar 

  2. Sikes, B. A. et al. Import volumes and biosecurity interventions shape the arrival rate of fungal pathogens. PLOS Biol. 16, e2006025 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Weiss, H. et al. The airplane cabin microbiome. Microb. Ecol. 77, 87–95 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Santini, A., Liebhold, A., Migliorini, D. & Woodward, S. Tracing the role of human civilization in the globalization of plant pathogens. ISME J. 12, 647–652 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  6. Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).

    Article  PubMed  Google Scholar 

  7. Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).

    Article  PubMed  Google Scholar 

  8. Gladieux, P. et al. The population biology of fungal invasions. Mol. Ecol. 24, 1969–1986 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Desprez-Loustau, M. L. et al. The fungal dimension of biological invasions. Trends Ecol. Evol. 22, 472–480 (2007). This review is one of the first to highlight the potential invasion mechanisms and impacts of both pathogenic and non-pathogenic fungi.

    Article  PubMed  Google Scholar 

  10. Judelson, H. S. & Blanco, F. A. The spores of Phytophthora: weapons of the plant destroyer. Nat. Rev. Microbiol. 3, 47–58 (2005). This Review provides an overview of several pathogenesis strategies of Phytophthora.

    Article  CAS  PubMed  Google Scholar 

  11. Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

    Article  Google Scholar 

  13. Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    Article  PubMed  Google Scholar 

  14. Essl, F. et al. Which taxa are alien? Criteria, applications, and uncertainties. Bioscience 68, 496–509 (2018).

    Article  Google Scholar 

  15. Convention on Biological Diversity. COP 5 decision V/8: alien species that threaten ecosystems, habitats or species. CBD https://www.cbd.int/decision/cop/default.shtml?id=7150 (2000).

  16. Zenni, R. D. & Nuñez, M. A. The elephant in the room: the role of failed invasions in understanding invasion biology. Oikos 122, 801–815 (2013).

    Article  Google Scholar 

  17. Daszak, P., Cunningham, A. & Hyatt, A. Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287, 443–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kolar, C. S. & Lodge, D. M. Progress in invasion biology. Trends Ecol. Evol. 16, 199–204 (2001).

    Article  PubMed  Google Scholar 

  19. van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).

    Article  Google Scholar 

  20. Jeschke, J. et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1–20 (2012).

    Article  Google Scholar 

  21. Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).

    Article  Google Scholar 

  22. Dickie, I., Bolstridge, N., Cooper, J. & Peltzer, D. Co-invasion by Pinus and its mycorrhizal fungi. New Phytol. 187, 475–484 (2010). This study shows co-invasion of Pinus trees and their associated mycorrhizal fungi in New Zealand.

    Article  PubMed  Google Scholar 

  23. Mallon, C., Van Elsas, J. & Salles, J. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Van der Putten, W. H., Klironomos, J. N. & Wardle, D. A. Microbial ecology of biological invasions. ISME J. 1, 28–37 (2007).

    Article  PubMed  Google Scholar 

  25. Dickie, I. A. et al. The emerging science of linked plant–fungal invasions. New Phytol. 215, 1314–1332 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Vellinga, E., Wolfe, B. & Pringle, A. Global patterns of ectomycorrhizal introductions. New Phytol. 181, 960–973 (2009). This global analysis provides a list of ectomycorrhizal introductions.

    Article  PubMed  Google Scholar 

  27. Lymbery, A. J., Morine, M., Kanani, H. G., Beatty, S. J. & Morgan, D. L. Co-invaders: the effects of alien parasites on native hosts. Int. J. Parasitol. Parasites Wildl. 3, 171–177 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Correia, M., Heleno, R., da Silva, L. P., Costa, J. M. & Rodríguez-Echeverría, S. First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol. 222, 1054–1060 (2019).

    Article  PubMed  Google Scholar 

  29. Nuñez, M. A. et al. Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLOS ONE 8, e66832 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mitchell, C. & Torchin, M. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2, 183–190 (2004).

    Article  Google Scholar 

  31. Amsellem, L. et al. Importance of microorganisms to macroorganisms invasions. Adv. Ecol. Res. 57, 99–146 (2017).

    Article  Google Scholar 

  32. Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).

    Article  PubMed  Google Scholar 

  33. Dutech, C. et al. The chestnut blight fungus world tour: successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol. Ecol. 21, 3931–3946 (2012). This study reveals that C. parasitica became invasive in North America and western Europe owing to multiple introduction events.

    Article  CAS  PubMed  Google Scholar 

  34. Rigling, D. & Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol. Plant Pathol. 19, 7–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Young, H. S., Parker, I. M., Gilbert, G. S., Sofia Guerra, A. & Nunn, C. L. Introduced species, disease ecology, and biodiversity–disease relationships. Trends Ecol. Evol. 32, 41–54 (2017).

    Article  PubMed  Google Scholar 

  36. Parker, I. & Gilbert, G. The evolutionary ecology of novel plant-pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 35, 675–700 (2004).

    Article  Google Scholar 

  37. Anderson, R. & May, R. The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B 314, 533–570 (1986).

    Article  CAS  Google Scholar 

  38. Melotto, M., Underwood, W., Koczan, J., Nomura, K. & He, S. Y. Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969–980 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).

    Article  PubMed  Google Scholar 

  40. Tyler, B. M. et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–1266 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Grunwald, N., Goss, E. & Press, C. Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol. Plant Pathol. 9, 729–740 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Elton, C. The Ecology of Invasions by Animals and Plants (Methuen, 1958).

  43. Levine, J. Species diversity and biological invasions: relating local process to community pattern. Science 288, 852–854 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eisenhauer, N., Schulz, W., Scheu, S. & Jousset, A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct. Ecol. 27, 282–288 (2013).

    Article  Google Scholar 

  46. Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

    Article  PubMed  Google Scholar 

  47. Acosta, F., Zamor, R. M., Najar, F. Z., Roe, B. A. & Hambright, K. D. Dynamics of an experimental microbial invasion. Proc. Natl Acad. Sci. USA 112, 11594–11599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haas, S. E., Hooten, M. B., Rizzo, D. M. & Meentemeyer, R. K. Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol. Lett. 14, 1108–1116 (2011). This study confirmed diversity–invasibility relationships for a plant pathogen from a field study.

    Article  PubMed  Google Scholar 

  49. Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    Article  PubMed  Google Scholar 

  50. Cameron, E. K., Vilà, M. & Cabeza, M. Global meta-analysis of the impacts of terrestrial invertebrate invaders on species, communities and ecosystems. Glob. Ecol. Biogeogr. 25, 596–606 (2016).

    Article  Google Scholar 

  51. Litchman, E. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol. Lett. 13, 1560–1572 (2010).

    Article  PubMed  Google Scholar 

  52. Brader, G. et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 55, 61–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Jung, T., Colquhoun, I. J. & Hardy, G. E. S. J. New insights into the survival strategy of the invasive soilborne pathogen Phytophthora cinnamomi in different natural ecosystems in Western Australia. For. Pathol. 43, 266–288 (2013).

    Article  Google Scholar 

  55. Hee, W. Y., Torreña, P. S., Blackman, L. M. & Hardham, A. R. in Phytophthora: A Global Perspective Vol. 2 (ed. Lamour, K.) 124 (CABI, 2013).

  56. Day, N. J., Dunfield, K. E. & Antunes, P. M. Fungi from a non-native invasive plant increase its growth but have different growth effects on native plants. Biol. Invasions 18, 231–243 (2016).

    Article  Google Scholar 

  57. Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).

    Article  Google Scholar 

  58. Reisen, W. K. Landscape epidemiology of vector-borne diseases. Annu. Rev. Entomol. 55, 461–483 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Taerum, S. J. et al. Putative origins of the fungus Leptographium procerum. Fungal Biol. 121, 82–94 (2017).

    Article  PubMed  Google Scholar 

  60. Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl Acad. Sci. USA 109, 6999–7003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zukal, J. et al. White-nose syndrome without borders: Pseudogymnoascus destructans infection tolerated in Europe and Palearctic Asia but not in North America. Sci. Rep. 6, 19829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodríguez-Echeverría, S. Rhizobial hitchhikers from down under: invasional meltdown in a plant-bacteria mutualism? J. Biogeogr. 37, 1611–1622 (2010). This article reveals invasional meltdown in plant–microorganism interactions.

    Google Scholar 

  64. Kamutando, C. N. et al. The functional potential of the rhizospheric microbiome of an invasive tree species, Acacia dealbata. Microb. Ecol. 77, 191–200 (2019).

    Article  PubMed  Google Scholar 

  65. Klironomos, J. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003). This study is one of the first to show differences in plant responses to alien and native arbuscular mycorrhizal fungi.

    Article  Google Scholar 

  66. Chalkowski, K., Lepczyk, C. A. & Zohdy, S. Parasite ecology of invasive species: conceptual framework and new hypotheses. Trends Parasitol. 34, 655–663 (2018).

    Article  PubMed  Google Scholar 

  67. Johnson, P. T. J., De Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015). This study shows how community characteristics can influence disease outcomes.

    Article  CAS  PubMed  Google Scholar 

  69. Li, S.-P., Tan, J., Yang, X., Ma, C. & Jiang, L. Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. ISME J. 13, 402–412 (2019).

    Article  PubMed  Google Scholar 

  70. Kinnunen, M., Dechesne, A., Albrechtsen, H.-J. & Smets, B. F. Stochastic processes govern invasion success in microbial communities when the invader is phylogenetically close to resident bacteria. ISME J. 12, 2748–2756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).

    Article  PubMed  Google Scholar 

  72. McCary, M. A., Mores, R., Farfan, M. A. & Wise, D. H. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis. Ecol. Lett. 19, 328–335 (2016).

    Article  PubMed  Google Scholar 

  73. Vitousek, P. & Walker, L. Biological invasion by Myrica Faya in Hawaii: plant demography, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59, 247–265 (1989).

    Article  Google Scholar 

  74. Spoel, S. H. & Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12, 89–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Article  PubMed  Google Scholar 

  76. Newman, M., Barbási, A.-L. & Watts, D. The Structure and Dynamics of Networks (Princeton Univ. Press, 2011).

  77. Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).

    Article  Google Scholar 

  78. Ramirez, K. S., Geisen, S., Morriën, E., Snoek, B. L. & van der Putten, W. H. Network analyses can advance above-belowground ecology. Trends Plant Sci. 23, 759–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

    Article  Google Scholar 

  80. McGeoch, M. A. et al. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers. Distrib. 16, 95–108 (2010).

    Article  Google Scholar 

  81. Diaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  82. Roy, H. E. et al. Alien pathogens on the horizon: opportunities for predicting their threat to wildlife. Conserv. Lett. 10, 476–483 (2017).

    Article  Google Scholar 

  83. Rizzo, D. M. & Garbelotto, M. Sudden oak death: endangering California and Oregon forest ecosystems. Front. Ecol. Environ. 1, 197–204 (2003).

    Article  Google Scholar 

  84. Wingfield, M. J. et al. Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol. Invasions 18, 1045–1056 (2016).

    Article  Google Scholar 

  85. Dunn, A. M. & Hatcher, M. J. Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol. 31, 189–199 (2015).

    Article  PubMed  Google Scholar 

  86. Tedersoo, L., Tooming-Klunderud, A. & Anslan, S. Methods PacBio metabarcoding of fungi and other eukaryotes: errors, biases and perspectives. New Phytol. 217, 1370–1385 (2017).

    Article  PubMed  CAS  Google Scholar 

  87. Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1, 1606–1615 (2017).

    Article  PubMed  Google Scholar 

  88. Hanlon, S. J. O. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 627, 621–627 (2018). This study uses whole-genome sequencing of chytrid fungi to estimate spatiotemporal origins.

    Article  CAS  Google Scholar 

  89. Jeschke, J. M. General hypotheses in invasion ecology. Divers. Distrib. 20, 1229–1234 (2014).

    Article  Google Scholar 

  90. Milgroom, M. Population Biology of Plant Pathogens: Genetics, Ecology and Evolution (The American Phytopathological Society, 2015).

  91. Gilligan, C. A. & van den Bosch, F. Epidemiological models for invasion and persistence of pathogens. Annu. Rev. Phytopathol. 46, 385–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Madigan, M., Bender, K., Buckley, D., Sattley, W. & Stahl, D. Brock Biology of Microorganisms 15th edn (Pearson Education Limited, 2019).

  93. Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Mazza, G., Tricarico, E., Genovesi, P. & Gherardi, F. Biological invaders are threats to human health: an overview. Ethol. Ecol. Evol. 26, 112–129 (2014).

    Article  Google Scholar 

  95. Hulme, P. Invasive species challenge the global response to emerging diseases. Trends Parasitol. 30, 267–270 (2014).

    Article  PubMed  Google Scholar 

  96. Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 11, 1177–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Anda, P. et al. Waterborne outbreak of tularemia associated with crayfish fishing. Emerg. Infect. Dis. 7, 575–582 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mazza, G. & Tricarcio, E. (eds) Invasive Species and Human Health (CABI, 2018).

  99. Amalfitano, S., Coci, M., Corno, G. & Luna, G. M. A microbial perspective on biological invasions in aquatic ecosystems. Hydrobiologia 746, 13–22 (2014).

    Article  Google Scholar 

  100. Harvell, C. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Verant, M. L., Boyles, J. G., Waldrep, W., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat White-nose syndrome. PLOS ONE 7, e46280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. O’connor, M. I. & Bernhardt, J. R. The metabolic theory of ecology and the cost of parasitism. PLOS Biol. 16, e2005628 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).

    Article  PubMed  Google Scholar 

  104. Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B 371, 20150454 (2016).

    Article  CAS  Google Scholar 

  105. Mckinney, L., Thomsen, I., Kjær, E., Bengtsson, S. & Nielsen, L. Rapid invasion by an aggressive pathogenic fungus (Hymenoscyphus pseudoalbidus) replaces a native decomposer (Hymenoscyphus albidus): a case of local cryptic extinction? Fungal Ecol. 5, 663–669 (2012).

    Article  Google Scholar 

  106. Kozanitas, M., Osmundson, T. W., Linzer, R. & Garbelotto, M. Interspecific interactions between the sudden oak death pathogen Phytophthora ramorum and two sympatric Phytophthora species in varying ecological conditions. Fungal Ecol. 28, 86–96 (2017).

    Article  Google Scholar 

  107. Rizzo, D. M., Garbelotto, M. & Hansen, E. M. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 43, 309–335 (2005).

    Article  PubMed  CAS  Google Scholar 

  108. Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K. & Prospero, S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 20, 131–138 (2012).

    Article  PubMed  CAS  Google Scholar 

  109. Hardham, A. & Blackman, L. Phytophthora cinnamomi. Mol. Plant Pathol. 19, 260–285 (2018).

    Article  PubMed  Google Scholar 

  110. Robin, C. et al. Root and aerial infections of Chamaecyparis lawsoniana by Phytophthora lateralis: a new threat for European countries. For. Pathol. 41, 417–424 (2011).

    Article  Google Scholar 

  111. Thoirain, B., Husson, C. & Marçais, B. Risk factors for the Phytophthora -induced decline of alder in northeastern France. Phytopathology 97, 99–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Zambino, P. J. Biology and pathology of Ribes and their implications for management of white pine blister rust. For. Pathol. 40, 264–291 (2010).

    Article  Google Scholar 

  113. Geils, B. & Vogler, D. A. in The Future of High-Elevation, Five-Needle White Pines in Western North America: Proceedings of the High Five Symposium (eds Keane, R., Tomback, D., Murray, M. & Smith, C.) 210–217 (U.S. Department of Agriculture Forest Service, 2011).

  114. Kowalski, T. & Holdenrieder, O. Pathogenicity of Chalara fraxinea. For. Pathol. 39, 1–7 (2009).

    Article  Google Scholar 

  115. Cleary, M. et al. Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment. Sci. Rep. 6, 21895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Anagnostakis, S. L. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79, 23–37 (1987).

    Article  Google Scholar 

  117. Broders, K., Boraks, A., Barbison, L., Brown, J. & Boland, G. J. Recent insights into the pandemic disease butternut canker caused by the invasive pathogen Ophiognomonia clavigignenti-juglandacearum. For. Pathol. 45, 1–8 (2015).

    Article  Google Scholar 

  118. Carnegie, A. J. et al. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol. Invasions 18, 127–144 (2016).

    Article  Google Scholar 

  119. Carr, D. E. & Banas, L. E. Dogwood anthracnose (Discula destructiva): effects of and consequences for host (Cornus florida) demography. Am. Midl. Nat. 143, 169–177 (2000).

    Article  Google Scholar 

  120. Ploetz, R. C. et al. Responses of avocado to laurel wilt, caused by Raffaelea lauricola. Plant Pathol. 61, 801–808 (2012).

    Article  Google Scholar 

  121. Juzwik, J., Harrington, T. C., MacDonald, W. L. & Appel, D. N. The origin of Ceratocystis fagacearum, the oak wilt fungus. Annu. Rev. Phytopathol. 46, 13–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Wingfield, M. J. et al. Pitch canker caused by Fusarium circinatum – a growing threat to pine plantations and forests worldwide. Australas. Plant Pathol. 37, 319–334 (2008).

    Article  Google Scholar 

  123. Garbelotto, M. & Gonthier, P. Biology, epidemiology, and control of Heterobasidion Species worldwide. Annu. Rev. Phytopathol. 51, 39–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Brasier, C. in Genetics of Plant Pathogenic Fungi 1st edn Vol. 6 (ed. Sidhu, G. S.) 207–223 (Academic Press, 1988).

  125. Comeau, A. M. et al. Functional annotation of the ophiostoma novo-ulmi genome: insights into the phytopathogenicity of the fungal agent of Dutch elm disease. Genome Biol. Evol. 7, 410–430 (2015).

    Article  CAS  Google Scholar 

  126. Baker, C. J., Harrington, T. C., Krauss, U. & Alfenas, A. C. Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopathology 93, 1274–1284 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Muir, J. A. & Cobb, F. W. Infection of radiata and bishop pine by Mycosphaerella pini in California. Can. J. For. Res. 35, 2529–2538 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Steinauer (Netherlands Institute of Ecology) for her suggestions on the manuscript. M.P.T. acknowledges funding from the German Research Foundation (TH 2307/1-1). W.H.v.d.P. acknowledges support from ERC Advanced Grants (ERC-ADV 323020, SPECIALS). S.G. acknowledges funding from the Netherlands Organization for Scientific Research (016.Veni.181.078). This is publication 6755 of the Netherlands Institute of Ecology.

Author information

Authors and Affiliations

Authors

Contributions

M.P.T. and S.G. conceived the initial idea and carried out the systematic literature search. All co-authors provided insights to develop the manuscript. M.P.T. wrote the manuscript with inputs from all co-authors.

Corresponding author

Correspondence to Madhav P. Thakur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks M. Fisher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CAB International: https://www.cabi.org/ISC/

GRIIS database: http://www.griis.org/

Supplementary information

Glossary

Introduction

The second stage in the invasion process, when the alien species arrives in the new environment (including being kept in captivity or cultivation).

Spread

The fourth stage after the establishment, in which the alien species disperses to new locations and faces sequential establishment events.

Transport

The first stage in the invasion process, when a species is moved outside its known geographic boundary by human agency.

Establishment

The third stage in the invasion process, when the alien species is able to maintain populations in the new environment over a longer period without direct help of humans.

Microcosms

Simplified ecological units/systems that attempt to mimic some features of ecological systems in laboratory settings.

Spillover effects

The process in which a pathogen of one host infects another host.

Invasibility

The vulnerability of an environment (or a host) to invasion by alien organisms.

Virulence

The ability of microorganisms to cause disease in a host.

Propagule pressure

The initial size of the introduced population of an alien species in a new environment.

Invasional meltdown

Positive interactions among alien species leading to their invasion success.

Dilution

Reduction in disease risk due to a greater diversity of hosts.

Evenness

A measure of biological diversity based on the quantification of how equal the community is in terms of abundance across species.

Adaptive immunity

The acquired ability of an infected host to recognize and destroy the pathogen.

Community modules

Configurations of species interactions within a community, such as predator–prey or host–pathogen pairs.

Networks

Collection of units (such as species or taxa) potentially interacting as a system (such as a community or ecosystem).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M.P., van der Putten, W.H., Cobben, M.M.P. et al. Microbial invasions in terrestrial ecosystems. Nat Rev Microbiol 17, 621–631 (2019). https://doi.org/10.1038/s41579-019-0236-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0236-z

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology