Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Invasive species drive cross-ecosystem effects worldwide

Abstract

Invasive species are pervasive around the world and have profound impacts on the ecosystem they invade. Invasive species, however, can also have impacts beyond the ecosystem they invade by altering the flow of non-living materials (for example, nutrients or chemicals) or movement of organisms across the boundaries of the invaded ecosystem. Cross-ecosystem interactions via spatial flows are ubiquitous in nature, for example, connecting forests and lakes, grasslands and rivers, and coral reefs and the deep ocean. Yet, we have a limited understanding of the cross-ecosystem impacts invasive species have relative to their local effects. By synthesizing emerging evidence, here we demonstrate the cross-ecosystem impacts of invasive species as a ubiquitous phenomenon that influences biodiversity and ecosystem functioning around the world. We identify three primary ways by which invasive species have cross-ecosystem effects: first, by altering the magnitude of spatial flows across ecosystem boundaries; second, by altering the quality of spatial flows; and third, by introducing novel spatial flows. Ultimately, the strong impacts invasive species can drive across ecosystem boundaries suggests the need for a paradigm shift in how we study and manage invasive species around the world, expanding from a local to a cross-ecosystem perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Invasive species drive cross-ecosystem effects by altering flows of non-living materials and the movement of organisms across ecosystem boundaries.
Fig. 2: Invasive species modify the magnitude of spatial flows across major ecosystem boundaries.

Similar content being viewed by others

References

  1. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

  2. Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2023).

  3. Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    Article  ADS  Google Scholar 

  4. Walsh, J. R., Carpenter, S. R. & Zanden, M. J. V. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 4081–4085 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hejda, M., Pyšek, P. & Jarošik, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).

    Article  Google Scholar 

  6. Bradley, B. A. et al. Disentangling the abundance–impact relationship for invasive species. Proc. Natl Acad. Sci. USA 116, 9919–9924 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cameron, E. K., Vilà, M. & Cabeza, M. Global meta-analysis of the impacts of terrestrial invertebrate invaders on species, communities and ecosystems. Glob. Ecol. Biogeogr. 25, 596–606 (2016).

    Article  Google Scholar 

  8. Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects of species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    Article  PubMed  Google Scholar 

  9. Linders, T. E. W. et al. Direct and indirect effects of invasive species: biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. 107, 2660–2672 (2019).

    Article  Google Scholar 

  10. Polis, G. A., Anderson, W. B. & Holt, R. D. Towards an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Evol. Syst. 28, 289–316 (1997).

    Article  Google Scholar 

  11. Gounand, I., Harvey, E., Little, C. J. & Altermatt, F. Meta-ecosystems 2.0: rooting the theory into the field. Trends Ecol. Evol. 33, 36–46 (2018).

    Article  PubMed  Google Scholar 

  12. Montagano, L., Leroux, S. J., Giroux, M. A. & Lecomte, N. The strength of ecological subsidies across ecosystems: a latitudinal gradient of direct and indirect impacts on food webs. Ecol. Lett. 22, 265–274 (2019).

    Article  PubMed  Google Scholar 

  13. Peller, T., Andrews, S., Leroux, S. & Guichard, F. From marine metacommunities to meta-ecosystems: examining the nature, scale and significance of resource flows in benthic marine environments. Ecosystems 24, 1239–1252 (2021).

    Article  Google Scholar 

  14. Richardson, J. S. & Wipfli, M. S. Getting quantitative about consequences of cross-ecosystem resource subsidies on recipient consumers. Can. J. Fish. Aquat. Sci. 73, 1609–1615 (2016).

    Article  Google Scholar 

  15. Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Swain, N. R., Hocking, M. D., Harding, J. N. & Reynolds, J. D. Effects of salmon on the diet and condition of stream-resident sculpins. Can. J. Fish. Aquat. Sci. 71, 521–532 (2014).

    Article  CAS  Google Scholar 

  17. Marcarelli, A. M., Baxter, C. V., Mineau, M. M. & Hall, R. O. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92, 1215–1225 (2011).

    Article  PubMed  Google Scholar 

  18. Peller, T., Guichard, F. & Altermatt, F. The significance of partial migration for food web and ecosystem dynamics. Ecol. Lett. 26, 3–22 (2023).

    Article  PubMed  Google Scholar 

  19. Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Harvey, E., Gounand, I., Ganesanandamoorthy, P. & Altermatt, F. Spatially cascading effect of perturbations in experimental meta-ecosystems. Proc. R. Soc. B 283, 20161496 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mineau, M. M., Baxter, C. V., Marcarelli, A. M. & Minshall, G. W. An invasive riparian tree reduces stream ecosystem efficiency via a recalcitrant organic matter subsidy. Ecology 93, 1501–1508 (2012).

    Article  PubMed  Google Scholar 

  22. Wasserman, R. J., Sanga, S., Buxton, M., Dalu, T. & Cuthbert, R. N. Does invasive river red gum (Eucalyptus camaldulensis) alter leaf litter decomposition dynamics in arid zone temporary rivers? Inland Waters 11, 104–113 (2020).

    Article  Google Scholar 

  23. Hladyz, S., Åbjörnsson, K., Giller, P. S. & Woodward, G. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48, 443–452 (2011).

    Article  Google Scholar 

  24. Gunn, R. L. et al. Terrestrial invasive species alter marine vertebrate behaviour. Nat. Ecol. Evol. 7, 82–91 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).

    Article  ADS  Google Scholar 

  26. Koel, T. M. et al. Predatory fish invasion induces within and across ecosystem effects in Yellowstone National Park. Sci. Adv. 5, eaav1139 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Kurle, C. M., Croll, D. A. & Tershy, B. R. Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated. Proc. Natl Acad. Sci. USA 105, 3800–3804 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kurle, C. M. et al. Indirect effects of invasive rat removal result in recovery of island rocky intertidal community structure. Sci. Rep. 11, 5395 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baxter, C. V., Fausch, K. D., Murakami, M. & Chapman, P. L. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85, 2656–2663 (2004).

    Article  Google Scholar 

  30. Epanchin, P. N., Knapp, R. A. & Lawler, S. P. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies. Ecology 91, 2406–2415 (2010).

    Article  PubMed  Google Scholar 

  31. Benjamin, J. R., Fausch, K. D. & Baxter, C. V. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders. Oecologia 167, 503–512 (2011).

    Article  ADS  PubMed  Google Scholar 

  32. Merkley, S. S., Radar, R. B. & Schaalje, G. B. Introduced western mosquitofish (Gambusia affinis) reduce the emergence of aquatic insects in a desert spring. Freshw. Sci. 34, 564–573 (2015).

    Article  Google Scholar 

  33. Jackson, M. C. et al. Trophic overlap between fish and riparian spiders: potential impacts of an invasive fish on terrestrial consumers. Ecol. Evol. 6, 1745–1752 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Collins, S. F. & Wahl, D. H. Invasive planktivores as mediators of organic matter exchanges within and across ecosystems. Oecologia 184, 521–530 (2017).

    Article  ADS  PubMed  Google Scholar 

  35. Gergs, R., Koester, M., Schulz, R. S. & Schulz, R. Potential alteration of cross-ecosystem resource subsidies by an invasive aquatic macroinvertebrate: implications for the terrestrial food web. Freshw. Biol. 59, 2645–2655 (2014).

    Article  Google Scholar 

  36. Finlay, J. C. & Vredenburg, V. T. Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian. Ecology 88, 2187–2198 (2007).

    Article  PubMed  Google Scholar 

  37. McCauley, D. J. et al. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, B. et al. Long-distance facilitation of coastal ecosystem structure and resilience. Proc. Natl Acad. Sci. USA 119, e2123274119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Novais, A., Souza, A. T., Ilarri, M., Pascoal, C. & Sousa, R. From water to land: how an invasive clam may function as a resource pulse to terrestrial invertebrates. Sci. Total Environ. 538, 664–671 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Crait, J. R., Regehr, E. V. & Ben-David, M. Indirect effects of bioinvasions in Yellowstone Lake: the response of river otters to declines in native cutthroat trout. Biol. Conserv. 191, 596–605 (2015).

    Article  Google Scholar 

  41. Middleton, A. D. et al. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone. Proc. R. Soc. B 280, 20130870 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Burkle, L. A., Mihaljevic, J. R. & Smith, K. G. Effects of an invasive plant transcend ecosystem boundaries through a dragonfly-mediated trophic pathway. Oecologia 170, 1045–1052 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Ertel, B. D., McMahon, T. E., Koel, T. M., Gresswell, R. E. & Burckhardt, J. C. Life history migrations of adult Yellowstone cutthroat trout in the upper Yellowstone River. N. Am. J. Fish. Manag. 37, 743–755 (2017).

    Article  Google Scholar 

  44. Sousa, R. et al. Massive die-offs of freshwater bivalves as resource pulses. Int. J. Limnol. 48, 105–112 (2012).

    Article  Google Scholar 

  45. Bódis, E., Tóth, B. & Sousa, R. Massive mortality of invasive bivalves as a potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia 735, 253–262 (2014).

    Article  Google Scholar 

  46. Larsen, S., Muehlbauer, J. D. & Marti, E. Resource subsidies between stream and terrestrial ecosystems under global change. Glob. Change Biol. 22, 2489–2504 (2015).

    Article  ADS  Google Scholar 

  47. Schulz, R. et al. Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Sci. Total Environ. 538, 246–261 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. López, B. E. et al. Global environmental changes more frequently offset than intensify detrimental effects of biological invasions. Proc. Natl Acad. Sci. USA 119, e2117389119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Riedl, H. L., Stinson, L., Pejchar, L. & Clements, W. H. An introduced plant affects aquatic-derived carbon in the diets of riparian birds. PLoS ONE 13, e0207389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Julian, P., Everham, E. M. & Main, M. B. Influence of a large-scale removal of an invasive plant (Melaleuca quinquenervia) on home-range size and habitat selection by female Florida panthers (Puma concolor coryi) within Big Cypress National Preserve, Florida. Southeast. Nat. 11, 337–348 (2012).

    Article  Google Scholar 

  51. Hardesty-Moore, M., Orr, D. & McCauley, D. J. Invasive plant Arundo donax alters habitat use by carnivores. Biol. Invasions 22, 1983–1995 (2020).

    Article  Google Scholar 

  52. Lym, R. G. & Kirby, D. R. Cattle foraging behaviour in leafy spurge-infested rangeland. Weed Technol. 1, 314–318 (1987).

    Article  Google Scholar 

  53. Natusch, D. J. D., Mayer, M., Lyons, J. A. & Shine, R. Interspecific interactions between feral pigs and native birds reveal both positive and negative effects. Austral Ecol. 42, 479–485 (2017).

    Article  Google Scholar 

  54. Tarr, M. D. Effects of non-native shrubs on caterpillars and shrubland-dependent passerines within three transmission line rights-of-way in southeastern New Hampshire. Northeast. Nat. 29, 1–43 (2022).

    Article  Google Scholar 

  55. Peller, T., Marleau, J. & Guichard, F. Traits affecting nutrient recycling by mobile consumers can explain coexistence and spatially heterogeneous trophic regulation across a meta-ecosystem. Ecol. Lett. 25, 440–452 (2022).

    Article  PubMed  Google Scholar 

  56. Roon, D. A., Wipfli, M. S., Wurtz, T. L. & Blanchard, A. L. Invasive European bird cherry (Prunus padus) reduces terrestrial prey subsidies to urban Alaskan salmon streams. Can. J. Fish. Aquat. Sci. 73, 1679–1690 (2016).

    Article  Google Scholar 

  57. Roon, D. A., Wipfli, M. S. & Kruse, J. J. Riparian defoliation by the invasive green alder sawfly influences terrestrial prey subsidies to salmon streams. Ecol. Freshw. Fish. 27, 963–975 (2018).

    Article  Google Scholar 

  58. Riedl, H. L., Clements, W. H. & Pejchar, L. An introduced plant is associated with declines in terrestrial arthropods, but no change in stream invertebrates. Can. J. Fish. Aquat. Sci. 76, 1314–1325 (2019).

    Article  Google Scholar 

  59. Rundio, D. E. & Lindley, S. T. Importance of non-native isopods and other terrestrial prey resources to steelhead/rainbow trout Oncorhynchus mykiss in coastal streams in Big Sur, California. Ecol. Freshw. Fish. 30, 419–432 (2021).

    Article  Google Scholar 

  60. Baxter, C. V., Fausch, K. D. & Saunders, W. C. Tangled webs: reciprocal flows of invertebrate prey link stream and riparian zones. Freshw. Biol. 50, 201–220 (2005).

    Article  Google Scholar 

  61. Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-dombois, D. & Matson, P. A. Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238, 802–804 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Atkinson, C. L., Opsahl, S. P., Covich, A. P., Golladay, S. W. & Conner, L. M. Stable isotopic signatures, tissue stoichiometry, and nutrient cycling (C and N) of native and invasive freshwater bivalves. J. N. Am. Benthol. Soc. 29, 496–505 (2010).

    Article  Google Scholar 

  63. Kennedy, T. A. & Hobbie, S. E. Saltcedar (Tamarix ramosissima) invasion alters organic matter dynamics in a desert stream. Freshw. Biol. 49, 65–76 (2004).

    Article  Google Scholar 

  64. Lecerf, A. et al. Stream ecosystems respond to riparian invasion by Japanese knotweed (Fallopia japonica). Can. J. Fish. Aquat. Sci. 64, 1273–1283 (2007).

    Article  CAS  Google Scholar 

  65. Hladyz, S., Gessner, M. O., Giller, P. S., Pozo, J. & Woodward, G. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshw. Biol. 54, 957–970 (2009).

    Article  CAS  Google Scholar 

  66. Stephens, J. P., Berven, K. A. & Tiegs, S. D. Anthropogenic changes to leaf litter input affect the fitness of a larval amphibian. Freshw. Biol. 58, 1539–1565 (2013).

    Article  Google Scholar 

  67. Leonard, N. E. The Effects of the Invasive Exotic Chinese Tallow Tree (Triadica sebifera) on Amphibians and Aquatic Invertebrates. PhD thesis, Univ. New Orleans (2008).

  68. Kuglerova, L., Garcia, L., Pardo, I., Mottiar, Y. & Richardson, J. S. Does leaf litter from invasive plants contribute the same support of a stream ecosystem function as native vegetation. Ecosphere 8, e01779 (2017).

    Article  Google Scholar 

  69. Stewart, S. D., Young, M. B., Harding, J. S. & Horton, T. W. Invasive nitrogen-fixing plant amplifies terrestrial–aquatic nutrient flow and alters ecosystem function. Ecosystems 22, 587–601 (2019).

    Article  CAS  Google Scholar 

  70. Heinrich, K. K., Baxter, C. V., Bell, A. T. C. & Hood, J. M. Of olives and carp: interactive effects of an aquatic and a terrestrial invader on a stream–riparian ecosystem. Ecosphere 12, e03789 (2021).

    Article  Google Scholar 

  71. Ferreira, V., Figueiredo, A., Graça, M. A. S., Marchante, E. & Pereira, A. Invasion of temperate deciduous broadleaf forests by N-fixing tree species – consequences for stream ecosystems. Biol. Rev. 96, 877–902 (2021).

    Article  PubMed  Google Scholar 

  72. Atwood, T. B., Wiegner, T. N., Turner, P. & MacKenzie, R. A. Potential effects of an invasive nitrogen-fixing tree on a Hawaiin stream food web. BioOne 64, 367–379 (2010).

    CAS  Google Scholar 

  73. Maerz, J. C., Cohen, J. S. & Blossey, B. Does detritus quality predict the effect of native and non-native plants on the performance of larval amphibians. Freshw. Biol. 55, 1694–1704 (2010).

    Article  Google Scholar 

  74. Cohen, J. S., Maerz, J. C. & Blossey, B. Traits, not origin, explain impacts of plants on larval amphibians. Ecol. Appl. 22, 218–228 (2012).

    Article  PubMed  Google Scholar 

  75. Milanovich, J. R., Barrett, K. & Crawford, J. A. Detritus quality and locality determines survival and mass, but no export, of wood frogs at metamorphosis. PLoS ONE 11, e0166296 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rodrigues, A. C. M. et al. Invasive species mediate insecticide effects on community and ecosystem functioning. Environ. Sci. Technol. 52, 4889–4900 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Krumhasl, K. A. & Scheibling, R. E. Detrital subsidy from subtidal kelp beds is altered by the invasive green alga Codium fragile ssp. fragile. Mar. Ecol. Prog. Ser. 456, 73–85 (2012).

    Article  ADS  Google Scholar 

  78. Rodil, I. F., Olabarria, C., Lastra, M. & López, J. Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches. J. Exp. Mar. Biol. Ecol. 358, 1–13 (2008).

    Article  Google Scholar 

  79. Suárez-Jiménez, R. et al. Importance of the invasive macroalga Undaria pinnatifida as trophic subsidy for a beach consumer. Mar. Biol. 164, 113 (2017).

  80. Bishop, M. J. & Kelaher, B. P. Replacement of native seagrass with invasive algal detritus: impacts to estuarine sediment communities. Biol. Invasions 15, 45–59 (2013).

    Article  Google Scholar 

  81. Jiménez, R. S., Hepburn, C. D., Hyndes, G. A., McLeod, R. J. & Hurd, C. L. Contributions of an annual invasive kelp to native algal assemblages: algal resource allocation and seasonal connectivity across ecotones. Phycologia 54, 530–544 (2015).

    Article  Google Scholar 

  82. Sitters, J., Atkinson, C. L., Guelzow, N., Kelly, P. & Sullivan, L. L. Spatial stoichiometry: cross-ecosystem material flows and their impact on recipient ecosystems and organisms. Oikos 124, 920–930 (2015).

    Article  ADS  Google Scholar 

  83. Taylor, S. L., Bishop, M. J., Kelaher, B. P. & Glasby, T. M. Impacts of detritus from the invasive alga Caulerpa taxofolia on a soft sediment community. Mar. Ecol. Prog. Ser. 420, 73–81 (2010).

    Article  ADS  Google Scholar 

  84. Schmitz, O. J. et al. Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).

    Article  PubMed  Google Scholar 

  85. Capps, K. A. & Flecker, A. S. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system. PLoS ONE 8, e54093 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huser, B. J., Bajer, P. G., Kittelson, S., Christenson, S. & Menken, K. Changes to water quality and sediment phosphorus forms in a shallow, eutrophic lake after removal of common carp (Cyprinus carpio). Inland Waters 12, 33–46 (2020).

    Article  Google Scholar 

  87. Li, J. et al. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. Proc. Natl Acad. Sci. USA 118, e2008223118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cappuccino, N. & Arnason, J. T. Novel chemistry of invasive exotic plants. Biol. Lett. 2, 189–193 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Diller, J. G. P., Hüftlein, F., Lücker, D., Feldhaar, H. & Laforsch, C. Allelochemical run-off from the invasive terrestrial plant Impatiens glandulifera decreases defensibility in Daphnia. Sci. Rep. 13, 1207 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Diller, J. G. P. et al. The beauty is a beast: does leachate from the invasive terrestrial plant Impatiens glandulifera affect aquatic food webs? Ecol. Evol. 12, e8781 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Griffiths, M. R., Strobel, B. W., Hama, J. R. & Cedergreen, N. Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ. Sci. Eur. 33, 10 (2021).

    Article  CAS  Google Scholar 

  92. Custer, K. W., Borth, E. B., Mahoney, S. D. & McEwan, R. W. Lethal and sublethal effects of novel terrestrial subsidies from an invasive shrub (Lonicera maackii) on stream macroinvertebrates. Freshw. Sci. 36, 750–759 (2017).

    Article  Google Scholar 

  93. McNeish, R. E., Benbow, M. E. & McEwan, R. W. Removal of the invasive shrub, Lonicera maackii (Amur honeysuckle), from a headwater stream riparian zone shifts taxonomic and functional composition of the aquatic biota. Invasive Plant Sci. Manag. 10, 232–246 (2017).

    Article  Google Scholar 

  94. Watling, J. I., Hickman, C. R., Lee, E., Wang, K. & Orrock, J. L. Extracts of the invasive shrub Lonicera maackii increase mortality and alter behaviour of amphibian larvae. Oecologia 165, 153–159 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Hickman, C. R. & Watling, J. I. Leachates from an invasive shrub causes risk-prone behaviour in a larval amphibian. Behav. Ecol. 25, 300–305 (2008).

    Article  Google Scholar 

  96. Iglesias-Carrasco, M., Cabido, C. & Ord, T. J. Natural toxins leached from Eucalyptus globulus plantations affect the development and life-history of anuran tadpoles. Freshw. Biol. 67, 278–388 (2022).

    Article  Google Scholar 

  97. Maerz, J. C., Brown, C. J., Chapin, C. T. & Blossey, B. Can secondary compounds of an invasive plant affect larval amphibians? Funct. Ecol. 19, 970–975 (2005).

    Article  Google Scholar 

  98. Sato, T., El-Sabaawi, R. W., Campbell, K., Ohta, T. & Richardson, J. S. A test of the effects of timing of a pulsed resource subsidy on stream ecosystems. J. Anim. Ecol. 85, 1136–1146 (2016).

    Article  PubMed  Google Scholar 

  99. Rossi, F., Olabarria, C., Incera, M. & Garrido, J. The trophic significance of the invasive seaweed Sargassum muticum in sandy beaches. J. Sea Res. 63, 52–61 (2010).

    Article  ADS  Google Scholar 

  100. Kuebbing, S. E. & Nuñez, M. A. Negative, neutral, and positive interactions among nonnative plants: patterns, processes, and management implications. Glob. Change Biol. 21, 926–934 (2014).

    Article  ADS  Google Scholar 

  101. Fryxell, D. X., Diluzio, A. R., Friedman, M. A., Menge, N. A. & Palkovacs, E. P. Cross-habitat effects shape the ecosystem consequences of co-invasion by a pelagic and a benthic consumer. Oecologia 182, 519–528 (2016).

    Article  ADS  PubMed  Google Scholar 

  102. Fontoura, L. et al. Protecting connectivity promotes successful biodiversity and fisheries conservation. Science 375, 336–340 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, M. & Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. 31, 2704–2711 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Guzman, L. M. et al. Towards a multi-trophic extension of metacommunity ecology. Ecol. Lett. 22, 19–33 (2019).

    Article  PubMed  Google Scholar 

  105. Fortin, M.-J., Dale, M. R. T. & Brimacombe, C. Network ecology in dynamic landscapes. Proc. R. Soc. B 288, 20201889 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Krumhansl, K. A., Lee, J. M. & Scheibling, R. E. Grazing damage and encrustation by an invasive bryozoan reduce the ability of kelps to withstand breakage by waves. J. Exp. Mar. Biol. Ecol. 407, 12–18 (2011).

    Article  Google Scholar 

  108. Aiyer, A., Shine, R., Somaweera, R., Bell, T. & Ward-Fear, G. Shifts in the foraging tactics of crocodiles following invasion by toxic prey. Sci. Rep. 12, 1267 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    Article  PubMed  Google Scholar 

  110. Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 55, 135–151 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Brosse for preparing Fig. 1 and the figure in Box 1. Funding is from the Swiss National Science Foundation (grant no. 10030_197410) and the University of Zurich Research Priority Programme on Global Change and Biodiversity (URPP GCB) to F.A.

Author information

Authors and Affiliations

Authors

Contributions

T.P. conceptualized the study, carried out the synthesis and led the writing of the manuscript, with substantial contributions from F.A. on all elements.

Corresponding authors

Correspondence to Tianna Peller or Florian Altermatt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Montserrat Vilà and Stefano Larsen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information describing search strategy.

Supplementary Table

Supplementary Table 1. List of studies included in the qualitative and quantitative data synthesis. All studies in this list were included in the qualitative synthesis. Studies included in the quantitative synthesis are indicated in the quantitative synthesis column.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peller, T., Altermatt, F. Invasive species drive cross-ecosystem effects worldwide. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02380-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing