Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The origin and evolution of Wnt signalling

Abstract

The Wnt signal transduction pathway has essential roles in the formation of the primary body axis during development, cellular differentiation and tissue homeostasis. This animal-specific pathway has been studied extensively in contexts ranging from developmental biology to medicine for more than 40 years. Despite its physiological importance, an understanding of the evolutionary origin and primary function of Wnt signalling has begun to emerge only recently. Recent studies on very basal metazoan species have shown high levels of conservation of components of both canonical and non-canonical Wnt signalling pathways. Furthermore, some pathway proteins have been described also in non-animal species, suggesting that recruitment and functional adaptation of these factors has occurred in metazoans. In this Review, we summarize the current state of research regarding the evolutionary origin of Wnt signalling, its ancestral function and the characteristics of the primal Wnt ligand, with emphasis on the importance of genomic studies in various pre-metazoan and basal metazoan species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wnt signalling pathways.
Fig. 2: Overview of components of Wnt secretion, trafficking and inhibition pathways in pre-metazoans and metazoans.
Fig. 3: Overview of the components of the canonical and non-canonical Wnt signalling pathways in pre-metazoans and metazoans.
Fig. 4: The evolutionary origin of Wnt signalling.

Similar content being viewed by others

References

  1. Holstein, T. W. The evolution of the Wnt pathway. Cold Spring Harb. Perspect. Biol. 4, a007922 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jung, H.-C. & Kim, K. Identification of MYCBP as a β-catenin/LEF-1 target using DNA microarray analysis. Life Sci. 77, 1249–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Pate, K. T. et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33, 1454–1473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jho, E. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swarup, S. & Verheyen, E. M. Wnt/Wingless signaling in Drosophila. Cold Spring Harb. Perspect. Biol. 4, a007930 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Philipp, I. et al. Wnt/β-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc. Natl Acad. Sci. USA 106, 4290–4295 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Lengfeld, T. et al. Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev. Biol. 330, 186–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Gurley, K. A., Rink, J. C. & Alvarado, A. S. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Pond, K. W., Doubrovinski, K. & Thorne, C. A. Wnt/β-catenin signaling in tissue self-organization. Genes 11, 939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. White, J. J. WNT signaling perturbations underlie the genetic heterogeneity of Robinow syndrome. Am. J. Hum. Genet. 102, 27–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, C. et al. Novel pathogenic variants and quantitative phenotypic analyses of Robinow syndrome: WNT signaling perturbation and phenotypic variability. HGG Adv. 3, 100074 (2022).

    CAS  PubMed  Google Scholar 

  13. Caricasole, A. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J. Neurosci. 24, 6021–6027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pang, K. et al. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 1, 10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Janssen, R. et al. Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol. Biol. 10, 374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hobmayer, B. et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186–189 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Ros-Rocher, N., Pérez-Posada, A., Leger, M. M. & Ruiz-Trillo, I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol. 11, 200359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruiz-Trillo, I. & de Mendoza, A. Towards understanding the origin of animal development. Development 147, dev192575 (2020). The paper provides a theoretical approach to understanding the transition from unicellular to multicellular organisms.

    Article  CAS  PubMed  Google Scholar 

  19. Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Caricasole, A., Ferraro, T., Rimland, J. M. & Terstappen, G. C. Molecular cloning and initial characterization of the MG61/PORC gene, the human homologue of the Drosophila segment polarity gene Porcupine. Gene 288, 147–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Coombs, G. S. et al. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J. Cell Sci. 123, 3357–3367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kadowaki, T., Wilder, E., Klingensmith, J., Zachary, K. & Perrimon, N. The segment polarity gene Porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev. 10, 3116–3128 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Bänziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006).

    Article  PubMed  Google Scholar 

  24. Bartscherer, K., Pelte, N., Ingelfinger, D. & Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125, 523–533 (2006). Together with Bänziger et al. (2006), this paper describes the discovery of a key component in Wnt secretion (EVI/WLS).

    Article  CAS  PubMed  Google Scholar 

  25. Goodman, R. M. et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133, 4901–4911 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Torres, V. I., Barrera, D. P., Varas-Godoy, M., Arancibia, D. & Inestrosa, N. C. Selective surface and intraluminal localization of Wnt ligands on small extracellular vesicles released by HT-22 hippocampal neurons. Front. Cell Dev. Biol. 9, 735888 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mehta, S., Hingole, S. & Chaudhary, V. The emerging mechanisms of Wnt secretion and signaling in development. Front. Cell Dev. Biol. 9, 714746 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Routledge, D. & Scholpp, S. Mechanisms of intercellular Wnt transport. Development 146, dev176073 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Gross, J. C. Extracellular WNTs: trafficking, exosomes, and ligand–receptor interaction. Handb. Exp. Pharmacol. 269, 29–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Leyns, L., Bouwmeester, T., Kim, S.-H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rattner, A. et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of Frizzled receptors. Proc. Natl Acad. Sci. USA 94, 2859–2863 (1997).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Takada, S., Fujimori, S., Shinozuka, T., Takada, R. & Mii, Y. Differences in the secretion and transport of Wnt proteins. J. Biochem. 161, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Üren, A. et al. Secreted Frizzled-related protein-1 binds directly to wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).

    Article  PubMed  Google Scholar 

  35. Mulligan, K. A. et al. Secreted Wingless-interacting molecule (SWIM) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl Acad. Sci. USA 109, 370–377 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Giráldez, A. J., Copley, R. R. & Cohen, S. M. HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev. Cell 2, 667–676 (2002).

    Article  PubMed  Google Scholar 

  37. McGough, I. J. et al. Glypicans shield the Wnt lipid moiety to enable signalling at a distance. Nature 585, 85–90 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Mii, Y. & Takada, S. Heparan sulfate proteoglycan clustering in Wnt signaling and dispersal. Front. Cell Dev. Biol. 8, 631 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mihara, E. et al. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin. eLife 5, e11621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Naschberger, A. et al. Structural evidence for a role of the multi-functional human glycoprotein afamin in Wnt transport. Structure 25, 1907–1915.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Brunt, L. & Scholpp, S. The function of endocytosis in Wnt signaling. Cell Mol. Life Sci. 75, 785–795 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Mattes, B. et al. Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. eLife 7, e36953 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stanganello, E. & Scholpp, S. Role of cytonemes in Wnt transport. J. Cell Sci. 129, 665–672 (2016).

    CAS  PubMed  Google Scholar 

  44. Stanganello, E. et al. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun. 6, 5846 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Hsieh, J.-C. et al. A new secreted protein that binds to Wnt proteins and inhibits their activites. Nature 398, 431–436 (1999).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Malinauskas, T., Aricescu, A. R., Lu, W., Siebold, C. & Jones, E. Y. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat. Struct. Mol. Biol. 18, 886–893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gerlitz, O. & Basler, K. Wingful, an extracellular feedback inhibitor of Wingless. Genes Dev. 16, 1055–1059 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kakugawa, S. et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519, 187–192 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Mittermeier, L. & Virshup, D. M. An itch for things remote: the journey of Wnts. Curr. Top. Dev. Biol. 150, 91–128 (2022). This paper provides a detailed review of Wnt signalling and secretion pathways.

    Article  CAS  PubMed  Google Scholar 

  51. Acebron, S. P. & Niehrs, C. β-Catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol. 26, 956–967 (2016). This paper describes the discovery of the Wnt–STOP pathway.

    Article  CAS  PubMed  Google Scholar 

  52. Habib, S. J. & Acebrón, S. P. Wnt signalling in cell division: from mechanisms to tissue engineering. Trends Cell Biol. 32, 1035–1048 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Niehrs, C. & Acebron, S. P. Mitotic and mitogenic Wnt signalling: mitotic and mitogenic Wnt signalling. EMBO J. 31, 2705–2713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loh, K. M., van Amerongen, R. & Nusse, R. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev. Cell 38, 643–655 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Hayat, R., Manzoor, M. & Hussain, A. Wnt signaling pathway: a comprehensive review. Cell Biol. Int. 46, 863–877 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Yu, J. & Virshup, D. M. Updating the Wnt pathways. Biosci. Rep. 34, e00142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wolf, L. & Boutros, M. The role of Evi/Wntless in exporting Wnt proteins. Development 150, dev201352 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Daniels, D. L. & Weis, W. I. β-Catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12, 364–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Mosimann, C., Hausmann, G. & Basler, K. β-Catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 10, 276–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Borrelli, C. et al. Differential regulation of β-catenin-mediated transcription via N- and C-terminal co-factors governs identity of murine intestinal epithelial stem cells. Nat. Commun. 12, 1368 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Huang, Y.-L., Anvarian, Z., Döderlein, G., Acebron, S. P. & Niehrs, C. Maternal Wnt/STOP signaling promotes cell division during early Xenopus embryogenesis. Proc. Natl Acad. Sci. USA 112, 5732–5737 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Albrecht, L. V., Tejeda-Muñoz, N. & De Robertis, E. M. Cell biology of canonical Wnt signaling. Annu. Rev. Cell Dev. Biol. 37, 369–389 (2021). This paper is an important review on canonical Wnt signalling.

    Article  CAS  PubMed  Google Scholar 

  64. Acebron, S. P., Karaulanov, E., Berger, B. S., Huang, Y.-L. & Niehrs, C. Mitotic Wnt signaling promotes protein stabilization and regulates cell size. Mol. Cell 54, 663–674 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Da Silva, F. et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 40, e108041 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Humphries, A. C. & Mlodzik, M. From instruction to output: Wnt/PCP signaling in development and cancer. Curr. Opin. Cell Biol. 51, 110–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Corda, G. & Sala, A. Non-canonical WNT/PCP signalling in cancer: Fzd6 takes centre stage. Oncogenesis 6, e364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akoumianakis, I., Polkinghorne, M. & Antoniades, C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat. Rev. Cardiol. 19, 783–797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Strutt, H., Gamage, J. & Strutt, D. Robust asymmetric localization of planar polarity proteins is associated with organization into signalosome-like domains of variable stoichiometry. Cell Rep. 17, 2660–2671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bazan, J. F., Janda, C. Y. & Garcia, K. C. Structural architecture and functional evolution of Wnts. Dev. Cell 23, 227–232 (2013). This paper is a study of the evolutionary origins of Wnt ligands, identifying the precursor proteins of Wnts.

    Article  Google Scholar 

  71. Alegado, R. A. et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 1, e00013 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Nusse, R. Wnt signaling in disease and in development. Cell Res. 15, 28–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PloS ONE 2, e1031 (2007).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  75. Adamska, M. et al. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica: Wnt pathway components in Amphimedon queenslandica. Evol. Dev. 12, 494–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Borisenko, I., Adamski, M., Ereskovsky, A. & Adamska, M. Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini. BMC Evol. Biol. 16, 123 (2016). This study identifies the complexity of Wnt proteins in Porifera, indicating a lineage-specific diversification in these species.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Borisenko, I., Bolshakov, F. V., Ereskovsky, A. & Lavrov, A. I. Expression of Wnt and TGF-beta pathway components during whole-body regeneration from cell aggregates in demosponge Halisarca dujardinii. Genes 12, 944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  79. Garriock, R. J., Warkman, A. S., Meadows, S. M., D’Agostino, S. & Krieg, P. A. Census of vertebrate Wnt genes: isolation and developmental expression of Xenopus Wnt2, Wnt3, Wnt9a, Wnt9b, Wnt10a, and Wnt16. Dev. Dyn. 236, 1249–1258 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Khalturin, K. et al. Medusozoan genomes inform the evolution of the jellyfish body plan. Nat. Ecol. Evol. 3, 811–822 (2019).

    Article  PubMed  Google Scholar 

  81. Kusserow, A. et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160 (2005). This study identifies the complexity of Wnt proteins in Cnidaria and provides evidence for the function of Wnt genes in eumetazoan body plan evolution.

    Article  CAS  PubMed  ADS  Google Scholar 

  82. Jager, M. et al. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. PloS ONE 8, e84363 (2013).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  83. Moroz, L. L. et al. The ctenophore genome and the evolutionary origins of neural systems. Nature 510, 109–114 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. Adamska, M., Degnan, B. M., Green, K. & Zwafink, C. What sponges can tell us about the evolution of developmental processes. Zoology 114, 1–10 (2011).

    Article  PubMed  Google Scholar 

  85. Leininger, S. et al. Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat. Commun. 5, 3905 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  86. Schultz, D. T. et al. Ancient gene linkages support ctenophores as sister to other animals. Nature 618, 110–117 (2023). This paper is a recent study on the origin of Metazoa, supporting the Ctenophora-sister hypothesis.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. 27, 958–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Whelan, N. V. et al. Ctenophore relationships and their placement as the sister group to all other animals. Nat. Ecol. Evol. 1, 1737–1746 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12, 1783 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Redmond, A. K. & McLysaght, A. Reply to: Available data do not rule out Ctenophora as the sister group to all other Metazoa. Nat. Commun. 14, 710 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Whelan, N. V. & Halanych, K. M. Available data do not rule out Ctenophora as the sister group to all other Metazoa. Nat. Commun. 14, 711 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  92. Hofmann, K. A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling. Trends Biochem. Sci. 25, 111–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Hoel, C. M., Zhang, L. & Brohawn, S. G. Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A. eLife 11, e81704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chapman, J. A. et al. The dynamic genome of hydra. Nature 464, 592–596 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  95. Kenny, N. J. et al. Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nat. Commun. 11, 3676 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342, 1242592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Santini, S. et al. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol. 21, 139 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788 (2008).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl Acad. Sci. USA 103, 12451–12456 (2006).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Krishnan, A., Almén, M. S., Fredriksson, R. & Schiöth, H. B. The origin of GPCRs: identification of mammalian like rhodopsin, adhesion, glutamate and Frizzled GPCRs in fungi. PloS ONE 7, e29817 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. Pei, J. & Grishin, N. V. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins. Protein Sci. 21, 1172–1184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Harwood, A. J. Dictyostelium development: a prototypic Wnt pathway? Methods Mol. Biol. 469, 21–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Grimson, M. J. et al. Adherens junctions and b-catenin-mediated cell signalling in a non-metazoan organism. Nature 408, 727–731 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  105. Hollenstein, D. M. et al. Vac8 spatially confines autophagosome formation at the vacuole. J. Cell Sci. 132, jcs235002 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pan, X. & Goldfarb, D. S. YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J. Cell Sci. 111, 2137–2147 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Tang, F., Peng, Y., Nau, J. J., Kauffman, E. J. & Weisman, L. S. Vac8p, an armadillo repeat protein, coordinates vacuole inheritance with multiple vacuolar processes. Traffic 7, 1368–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Dickinson, D. J., Nelson, W. J. & Weis, W. I. A polarized epithelium organized by β- and α-catenin predates cadherin and metazoan origins. Science 331, 1336–1339 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Croce, J. C. & McClay, D. R. Evolution of the Wnt pathways. Methods Mol. Biol. 469, 3–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Prabhu, Y. & Eichinger, L. The Dictyostelium repertoire of seven transmembrane domain receptors. Eur. J. Cell. Biol. 85, 937–946 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  112. Abedin, M. & King, N. Diverse evolutionary paths to cell adhesion. Trends Cell Biol. 20, 734–742 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Belahbib, H. et al. New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genom. 19, 393 (2018).

    Article  Google Scholar 

  114. Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004). This review paper discusses the evolutionary early functions of β-catenin.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Schenkelaars, Q. et al. Animal multicellularity and polarity without Wnt signaling. Sci. Rep. 7, 15383 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  117. Salinas-Saavedra, M. & Martindale, M. Q. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 9, e54927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mesny, F. et al. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat. Commun. 12, 7227 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  119. Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Cadigan, K. M. & Waterman, M. L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 4, a007906 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Harcet, M. et al. Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoans. Mol. Biol. Evol. 27, 2747–2756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reid, P. J. W. Wnt signaling and polarity in freshwater sponges. BMC Evol. Biol. 18, 12 (2018).

    Article  Google Scholar 

  123. Kumburegama, S., Wijesena, N., Xu, R. & Wikramanayake, A. H. Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/b-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): implications for the evolution of gastrulation. EvoDevo 2, 1–15 (2011).

    Article  Google Scholar 

  124. Momose, T., Derelle, R. & Houliston, E. A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 135, 2105–2113 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Wikramanayake, A. H. et al. An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation. Nature 426, 446–449 (2003). This paper is a study on the function of β-catenin in the axial polarity of cnidarians.

    Article  CAS  PubMed  ADS  Google Scholar 

  126. Isaeva, V. V. & Kasyanov, N. V. Symmetry transformations in metazoan evolution and development. Symmetry 13, 160 (2021).

    Article  CAS  ADS  Google Scholar 

  127. Niehrs, C. On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137, 845–857 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Petersen, C. P. & Reddien, P. W. Wnt signaling and the polarity of the primary body axis. Cell 139, 1056–1068 (2009). Together with Niehrs (2010), this paper describes the importance of Wnt signalling for patterning of the primary body axis.

    Article  CAS  PubMed  Google Scholar 

  129. Guder, C. et al. The Wnt code: cnidarians signal the way. Oncogene 25, 7450–7460 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Broun, M., Gee, L., Reinhardt, B. & Bode, H. R. Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132, 2907–2916 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Lee, P. N., Pang, K., Matus, D. Q. & Martindale, M. Q. A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin. Cell Dev. Biol. 17, 157–167 (2006).

    Article  PubMed  Google Scholar 

  132. Darras, S. et al. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PloS Biol. 16, e2003698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kozmikova, I. & Kozmik, Z. Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. eLife 9, e56817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Martindale, M. Q. The evolution of metazoan axial properties. Nat. Rev. Genet. 6, 917–927 (2005). This influential paper provides a review about the evolution of morphological diversity in Metazoa.

    Article  CAS  PubMed  Google Scholar 

  135. Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  136. Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45, 371–395 (2014).

    Article  Google Scholar 

  137. Heger, P., Zheng, W., Rottmann, A., Panfilio, K. A. & Wiehe, T. The genetic factors of bilaterian evolution. eLife 9, e45530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hejnol, A. et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. R. Soc. B 276, 4261–4270 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Genikhovich, G. & Technau, U. On the evolution of bilaterality. Development 144, 3392–3404 (2017). This paper provides an important review on Wnt proteins and bilaterian axis evolution.

    Article  CAS  PubMed  Google Scholar 

  140. Gracia-Latorre, E., Pérez, L., Muzzopappa, M. & Milán, M. A single WNT enhancer drives specification and regeneration of the Drosophila wing. Nat. Commun. 13, 4794 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  141. Koshikawa, S. et al. Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila. Proc. Natl Acad. Sci. USA 112, 7524–7529 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  142. Jiang, L., Li, J., Zhang, C., Shang, Y. & Lin, J. YAP-mediated crosstalk between the Wnt and Hippo signaling pathways. Mol. Med. Rep. 22, 4101–4106 (2020).

    PubMed  Google Scholar 

  143. Kim, M. & Jho, E. Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Rep. 47, 540–545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Varelas, X. et al. The Hippo pathway regulates Wnt/β-catenin signaling. Dev. Cell 18, 579–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Pelullo, M. et al. Wnt, notch, and TGF-β pathways impinge on Hedgehog signaling complexity: an open window on cancer. Front. Genet. 10, 711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Attisano, L. & Labbe, E. TGFb and Wnt pathway cross-talk. Cancer Metastasis Rev. 23, 53–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Blauwkamp, T. A., Chang, M. V. & Cadigan, K. M. Novel TCF-binding sites specify transcriptional repression by Wnt signalling. EMBO J. 27, 1436–1446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Guo, X. & Wang, X.-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 19, 71–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Suga, H. et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat. Commun. 4, 2325 (2013).

    Article  PubMed  ADS  Google Scholar 

  150. Fairclough, S. R. et al. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 14, R15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lapebie, P., Borchiellini, C. & Houliston, E. Dissecting the PCP pathway: one or more pathways?: does a separate Wnt-Fz-Rho pathway drive morphogenesis? Bioessays 33, 759–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31, 1102–1120 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  154. Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 6, e26036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  156. Ruiz-Trillo, I., Roger, A. J., Burger, G., Gray, M. W. & Lang, B. F. A phylogenomic investigation into the origin of metazoa. Mol. Biol. Evol. 25, 664–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Ryan, J. F. & Baxevanis, A. D. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol. Direct 2, 37 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19, 706–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Li, Y., Shen, X.-X., Evans, B., Dunn, C. W. & Rokas, A. Rooting the animal tree of life. Mol. Biol. Evol. 38, 4322–4333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nielsen, C. Early animal evolution: a morphologist’s view. R. Soc. Open Sci. 6, 190638 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  161. Schönberg, C. H. L. No taxonomy needed: sponge functional morphologies inform about environmental conditions. Ecol. Indic. 129, 107806 (2021).

    Article  Google Scholar 

  162. Schierwater, B. et al. The enigmatic placozoa part 1: exploring evolutionary controversies and poor ecological knowledge. BioEssays 43, e2100080 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the groups of M.B. and T.W.H. is supported by the Deutsche Forschungsgemeinschaft Collaborative Research Center CRC/SFB1324 Projects A01 and A05 (project number 331351713) on Mechanisms and Functions of Wnt signalling. The authors thank the Wnt CRC Consortium for the numerous stimulating discussions and exchanges.

Author information

Authors and Affiliations

Authors

Contributions

M.H. researched the literature and wrote the article. All authors provided substantial contributions to the discussions of the content and reviewed and/or edited the manuscript.

Corresponding authors

Correspondence to Michaela Holzem or Thomas W. Holstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Kenneth Cadigan and Ralf Janssen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzem, M., Boutros, M. & Holstein, T.W. The origin and evolution of Wnt signalling. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00699-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00699-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing