Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the incretin system in obesity and type 2 diabetes mellitus

Abstract

Obesity and type 2 diabetes mellitus (T2DM) are widespread, non-communicable diseases that are responsible for considerable levels of morbidity and mortality globally, primarily in the form of cardiovascular disease (CVD). Changes to lifestyle and behaviour have insufficient long-term efficacy in most patients with these diseases; metabolic surgery, although effective, is not practically deliverable on the scale that is required. Over the past two decades, therapies based on incretin hormones, spearheaded by glucagon-like peptide 1 (GLP1) receptor agonists (GLP1RAs), have become the treatment of choice for obesity and T2DM, and clinical evidence now suggests that these agents have benefits for CVD. We review the latest advances in incretin-based pharmacotherapy. These include ‘GLP1 plus’ agents, which combine the known advantages of GLP1RAs with the activity of additional hormones, such as glucose-dependent insulinotropic peptide, glucagon and amylin, to achieve desired therapeutic goals. Second-generation non-peptidic oral GLP1RAs promise to extend the benefits of GLP1 therapy to those who do not want, or cannot have, subcutaneous injection therapy. We conclude with a discussion of the knowledge gaps that must be addressed before incretin-based therapies can be properly deployed for maximum benefit in the treatment of obesity and T2DM.

Key points

  • The incretins glucagon-like peptide 1 (GLP1) and glucose-dependent insulinotropic peptide (GIP) and related hormones such as glucagon and amylin regulate metabolism, gastrointestinal motility, appetite and body weight.

  • GLP1 receptor agonists (GLP1RAs) are established treatments for type 2 diabetes mellitus (T2DM) and obesity, with data that support positive effects on hard clinical end points such as cardiovascular events and renal outcomes.

  • ‘GLP1 plus’ treatments go beyond GLP1RAs by combining GLP1 activity with complementary activities such as those of GIP, glucagon and amylin; these treatments are beginning to reach clinical practice.

  • People with T2DM and obesity have varying presentations with differing metabolic and organ involvement, so ‘GLP1 plus’ treatments might offer differential advantages, depending on the clinical picture.

  • Oral GLP1RAs are also beginning to reach clinical practice, and will open up access for those who do not want, or cannot have, injections; oral GLP1RAs can also be made at lower cost.

  • Evidence on the duration of treatment for obesity, on the treatment of children <12 years of age and women of reproductive age, on rare adverse effects and on how we can target treatment to subgroups needs to be developed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Therapies based on incretin hormones.

Similar content being viewed by others

References

  1. Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    Article  PubMed  Google Scholar 

  2. Taheri, S. et al. Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): an open-label, parallel-group, randomised controlled trial. Lancet 6, 477–489 (2020).

    Google Scholar 

  3. Look AHEAD Research Group. Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity 22, 5–13 (2014).

    Article  Google Scholar 

  4. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374, 1677–1686 (2009).

    Article  PubMed Central  Google Scholar 

  5. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy for diabetes – 5-year outcomes. N. Engl. J. Med. 376, 641–651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perdomo, C. M., Cohen, R. V., Sumithran, P., Clément, K. & Frühbeck, G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 401, 1116–1130 (2023).

    Article  PubMed  Google Scholar 

  7. Ikramuddin, S. et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the Diabetes Surgery study. JAMA 319, 266–278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mingrone, G. et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 386, 964–973 (2015).

    Article  PubMed  Google Scholar 

  9. World Health Organization. WHO European regional obesity report. (WHO, 2022).

  10. Cohen, R. V. et al. Gastric bypass versus best medical treatment for diabetic kidney disease: 5 years follow up of a single-centre open label randomised controlled trial. EClinicalMedicine 53, e200420 (2022).

    Article  Google Scholar 

  11. Tan, T. M. M. Co-agonist therapeutics come of age for obesity. Nat. Rev. Endocrinol. 19, 66–67 (2022).

    Article  Google Scholar 

  12. Hinke, S. A. et al. Identification of a bioactive domain in the amino-terminus of glucose-dependent insulinotropic polypeptide (GIP). Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1547, 143–155 (2001).

    Article  CAS  Google Scholar 

  13. Mojsov, S., Weir, G. C. & Habener, J. F. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79, 616–619 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Nauck, M. A., Homberger, E., Eberghard, S. G., Allen, R. C. & Eaton, P. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 63, 492–498 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Gasbjerg, L. S. et al. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 125, 170183 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Nauck, M., Stöckmann, F., Ebert, R. & Creutzfeldt, W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29, 46–52 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Højberg, P. V. et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52, 199–207 (2009).

    Article  PubMed  Google Scholar 

  19. Vilsbøll, T., Agersø, H., Krarup, T. & Holst, J. J. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J. Clin. Endocrinol. Metab. 88, 220–224 (2003).

    Article  PubMed  Google Scholar 

  20. Kjems, L. L., Holst, J. J., Vølund, A. & Madsbad, S. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on β-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52, 380–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Mentis, N. et al. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 60, 1270–1276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kimball, C. & Murlin, J. R. Aqueous extracts of pancreas: III. Some precipitation reactions of insulin. J. Biol. Chem. 58, 337–346 (1923).

    Article  CAS  Google Scholar 

  23. Wewer Albrechtsen, N. J. et al. 100 years of glucagon and 100 more. Diabetologia 66, 1378–1394 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Svendsen, B. et al. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep. 25, 1127–1134.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, T. et al. Hepatic glucagon receptor signaling enhances insulin-stimulated glucose disposal in rodents. Diabetes 67, 2157–2166 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cegla, J. et al. Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63, 3711–3720 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turton, M. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1991).

    Article  Google Scholar 

  29. Verdich, C. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–4389 (2001).

    CAS  PubMed  Google Scholar 

  30. Drucker, D. J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 57, 101351 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Varin, E. M. et al. Distinct neural sites of GLP-1R expression mediate physiological versus pharmacological control of incretin action. Cell Rep. 27, 3371–3384.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Sisley, S. et al. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J. Clin. Invest. 124, 2456–2463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meyer-Gerspach, A. C. et al. Endogenous GLP-1 alters postprandial functional connectivity between homeostatic and reward-related brain regions involved in regulation of appetite in healthy lean males: a pilot study. Diabetes Obes. Metab. 20, 2330–2338 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Ten Kulve, J. S. et al. Elevated postoperative endogenous GLP-1 levels mediate effects of Roux-en-Y gastric bypass on neural responsivity to food cues. Diabetes Care 40, 1522–1529 (2017).

    Article  PubMed  Google Scholar 

  35. De Silva, A. et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 14, 700–706 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Steinert, R. E. et al. Effect of glucagon-like peptide-1 receptor antagonism on appetite and food intake in healthy men. Am. J. Clin. Nutr. 100, 514–523 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Borgmann, D. et al. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab. 33, 1466–1482.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Asmar, M. et al. On the role of glucose-dependent insulintropic polypeptide in postprandial metabolism in humans. Am. J. Physiol. Endocrinol. Metab. 298, 614–621 (2010).

    Article  Google Scholar 

  39. Bergmann, N. C. et al. Effects of combined GIP and GLP-1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study. Diabetologia 62, 665–675 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Bergmann, N. C. et al. No acute effects of exogenous glucose-dependent insulinotropic polypeptide on energy intake, appetite, or energy expenditure when added to treatment with a long-acting glucagon-like peptide 1 receptor agonist in men with type 2 diabetes. Diabetes Care 43, 588–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Mroz, P. A. et al. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. Mol. Metab. 20, 51–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Andriaenssens, A.E. et al. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab. 30, 987–996.e6 (2019).

    Article  Google Scholar 

  43. Knop, F. K. et al. A long-acting glucose-dependent insulinotropic polypeptide receptor agonist shows weight loss without nausea or vomiting [abstract]. Diabetes 72 (Suppl. 1), 56-OR (2023).

    Article  Google Scholar 

  44. Davies, I. & Tan, T. M. M. Design of novel therapeutics targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) to aid weight loss. Expert. Opin. Drug. Discov. 18, 659–669 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Müller, T. D., Finan, B., Clemmensen, C., Dimarchi, R. D. & Tschöp, M. H. The new biology and pharmacology of glucagon. Physiol. Rev. 97, 721–766 (2017).

    Article  PubMed  Google Scholar 

  46. Kissileff, H. R., Xavier Pi-sunyer, F., Hinton, V. & Xavier Pi-Sunyer, F. Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am. J. Physiol. 262, R975–R980 (1992).

    PubMed  Google Scholar 

  47. Schulman, J. L., Carleton, J. L., Whitney, G. & Whitehorn, J. C. Effect of glucagon on food intake and body weight in man. J. Appl. Physiol. 11, 419–421 (1957).

    Article  CAS  PubMed  Google Scholar 

  48. Geary, N. & Smith, G. P. Selective hepatic vagotomy blocks pancreatic glucagon’s satiety effect. Physiol. Behav. 31, 391–394 (1983).

    Article  CAS  PubMed  Google Scholar 

  49. Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Salem, V. et al. Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes. Metab. 18, 72–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Tan, T. M. et al. Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62, 1131–1138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hope, D. C. D. et al. Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss. Cell Rep. Med. 3, 100810 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Godoy-Matos, A. F., Silva Júnior, W. S. & Valerio, C. M. NAFLD as a continuum: from obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 12, 60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reda, T. K., Geliebter, A. & Pi-Sunyer, F. X. Amylin, food intake, and obesity. Obes. Res. 10, 1087–1091 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Boccia, L. et al. Amylin brain circuitry. Peptides 132, 170366 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Asmar, M., Bache, M., Knop, F. K., Madsbad, S. & Holst, J. J. Do the actions of glucagon-like peptide-1 on gastric emptying, appetite, and food intake involve release of amylin in humans? J. Clin. Endocrinol. Metab. 95, 2367–2375 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY 3-36. N. Engl. J. Med. 349, 941–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Sloth, B., Holst, J. J., Flint, A., Gregersen, N. T. & Astrup, A. Effects of PYY 1-36 and PYY 3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am. J. Physiol. Endocrinol. Metab. 292, 1062–1068 (2007).

    Article  Google Scholar 

  60. Behary, P. et al. Combined GLP-1, oxyntomodulin and peptide YY improves body weight and glycaemia in obesity and prediabetes/type 2 diabetes: a randomized single-blinded placebo-controlled study. Diabetes Care 42, 1446–1453 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Nauck, M. A., Kemmeries, G., Holst, J. J. & Meier, J. J. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60, 1561–1565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pironi, L. et al. Fat-induced ileal brake in humans: a dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology 105, 733–739 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Macconell, L., Pencek, R., Li, Y., Maggs, D. & Porter, L. Exenatide once weekly: sustained improvement in glycemic control and cardiometabolic measures through 3 years. Diabetes Metab. Syndr. Obes. 6, 31–41 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Nauck, M. et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes. Diabetes Care 32, 84–90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buse, J. B. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 28, 1083–1091 (2004).

    Google Scholar 

  66. Jelsing, J. et al. Liraglutide: short-lived effect on gastric emptying – long lasting effects on body weight. Diabetes Obes. Metab. 14, 531–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Gutzwiller, J.-P. et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. 276, R151–R154 (1999).

    Google Scholar 

  68. Mentlein, R., Gallwitz, B. & Schmidt, W. E. Dipeptidyl‐peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon‐like peptide‐1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214, 829–835 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Deacon, C. F., Johnsen, A. H. & Holst, J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80, 952–957 (1995).

    CAS  PubMed  Google Scholar 

  70. Glaesner, W. et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab. Res. Rev. 26, 287–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Lau, J. et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 58, 7370–7380 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Umpierrez, G., Povedano, S. T., Manghi, F. P., Shurzinske, L. & Pechtner, V. Efficacy and safety of dulaglutide monotherapy versus metformin in type 2 diabetes in a randomized controlled trial (AWARD-3). Diabetes Care 37, 2168–2176 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Dungan, K. M. et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial. Lancet 384, 1349–1357 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, Y. H. et al. Efficacy and safety of dulaglutide monotherapy compared with glimepiride in East-Asian patients with type 2 diabetes in a multicentre, double-blind, randomized, parallel-arm, active comparator, phase III trial. Diabetes Obes. Metab. 20, 2121–2130 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wysham, C. et al. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1). Diabetes Care 37, 2159–2167 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Giorgino, F., Benroubi, M., Sun, J. H., Zimmermann, A. G. & Pechtner, V. Efficacy and safety of once-weekly dulaglutide versus insulin glargine in patients with type 2 diabetes on metformin and glimepiride (AWARD-2). Diabetes Care 38, 2241–2249 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Blonde, L. et al. Once-weekly dulaglutide versus bedtime insulin glargine, both in combination with prandial insulin lispro, in patients with type 2 diabetes (AWARD-4): a randomised, open-label, phase 3, non-inferiority study. Lancet 385, 2057–2066 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Frias, J. P. et al. Efficacy and safety of dulaglutide 3.0 mg and 4.5 mg vs dulaglutide 1.5 mg in metformin-treated patients with type 2 diabetes in a randomised controlled trial. Diabetes Care 44, 765–773 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Frías, J. P. et al. Efficacy and safety of once-weekly semaglutide 2·0 mg versus 1·0 mg in patients with type 2 diabetes (SUSTAIN FORTE): a double-blind, randomised, phase 3B trial. Lancet Diabetes Endocrinol. 9, 563–574 (2021).

    Article  PubMed  Google Scholar 

  80. Pratley, R. E. et al. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): a randomised, open-label, phase 3b trial. Lancet Diabetes Endocrinol. 6, 275–286 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Capehorn, M. S. et al. Efficacy and safety of once-weekly semaglutide 1.0 mg vs once-daily liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 46, 100–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Kapitza, C., Dahl, K., Jacobsen, J. B., Axelsen, M. B. & Flint, A. Effects of semaglutide on beta cell function and glycaemic control in participants with type 2 diabetes: a randomised, double-blind, placebo-controlled trial. Diabetologia 60, 1390–1399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Rubino, D. M. et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA 327, 138–150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wadden, T. A. et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA 325, 1403–1413 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Rubino, D. et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 325, 1414–1425 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Kadowaki, T. et al. Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6): a randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol. 10, 193–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Garvey, W. T. et al. Two-year effects of semaglutide in adults with overweight or obesity: the STEP 5 trial. Nat. Med. 28, 2083–2091 (2022). The first phase III trial demonstrating that once-weekly subcutaneous semaglutide can maintain moderate weight loss with a favourable tolerability and safety profile.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wilding, J. P. H. et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes Obes. Metab. 24, 1553–1564 (2022). In this trial, participants had regained two-thirds of their prior weight loss 1 year after withdrawal of semaglutide, confirming the chronicity of obesity and the need for ongoing treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weghuber, D. et al. Once-weekly semaglutide in adolescents with obesity. N. Engl. J. Med. 387, 2245–2257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davies, M. et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 397, 971–984 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Russell-Jones, D. & Khan, R. Insulin-associated weight gain in diabetes – causes, effects and coping strategies. Diabetes Obes. Metab. 9, 799–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023). The SELECT trial demonstrated a reduced incidence of cardiovascular outcomes in people with obesity and pre-existing CVD but without T2DM treated once weekly with semaglutide compared with those treated with placebo.

    Article  CAS  PubMed  Google Scholar 

  96. Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 5, 209ra151 (2013).

    Article  PubMed  Google Scholar 

  97. Rosenstock, J. et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 398, 143–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Frías, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 385, 503–515 (2021).

    Article  PubMed  Google Scholar 

  99. Dahl, D. et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA 327, 534–545 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Inagaki, N., Takeuchi, M., Oura, T., Imaoka, T. & Seino, Y. Efficacy and safety of tirzepatide monotherapy compared with dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono): a double-blind, multicentre, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 10, 623–633 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Kadowaki, T., Chin, R., Ozeki, A., Imaoka, T. & Ogawa, Y. Safety and efficacy of tirzepatide as an add-on to single oral antihyperglycaemic medication in patients with type 2 diabetes in Japan (SURPASS J-combo): a multicentre, randomised, open-label, parallel-group, phase 3 trial. Lancet Diabetes Endocrinol. 10, 634–644 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Del Prato, S. et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 398, 1811–1824 (2021).

    Article  PubMed  Google Scholar 

  103. Ludvik, B. et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet 398, 583–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Sorli, C. et al. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in subjects with type 2 diabetes (SUSTAIN 1): a randomised, placebo-controlled phase 3a trial. Diabetes Obes. Metab. 23, 404–414 (2021).

    Article  Google Scholar 

  105. Aroda, V. R. et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care 42, 1724–1732 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022). This trial demonstrated that an incretin co-agonist (GLP1RA–GIPRA) represents an advance over the ‘monoagonist’ GLP1RA semaglutide in terms of weight loss benefit without an increase in gastrointestinal adverse events.

    Article  CAS  PubMed  Google Scholar 

  107. Mesinovic, J., Zengin, A., De Courten, B., Ebeling, P. R. & Scott, D. Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes Metab. Syndr. Obes. 12, 1057 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sattar, N. et al. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat. Med. 28, 591–598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Holst, J. J. & Rosenkilde, M. M. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J. Clin. Endocrinol. Metab. 105, e2710–e2716 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jones, B. The therapeutic potential of GLP-1 receptor biased agonism. Br. J. Pharmacol. 179, 492–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Samms, R. J., Coghlan, M. P. & Sloop, K. W. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol. Metab. 31, 410–421 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Strande, J. L. et al. A phase 1, randomized, double-blind, placebo-controlled single and multiple ascending dose study of AMG 133 in subjects with obesity: late breaking: a phase 1 study of AMG 133 in subjects with obesity. Metabolism 142, 155433 (2023).

    Article  Google Scholar 

  114. Hare, K. J. et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59, 1765–1770 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hope, D. C. D., Vincent, M. L. & Tan, T. M. M. Striking the balance: GLP-1/glucagon co-agonism as a treatment strategy for obesity. Front. Endocrinol. 12, 735019 (2021).

    Article  Google Scholar 

  116. Galsgaard, K. D., Pedersen, J., Knop, F. K., Holst, J. J. & Albrechtsen, N. J. W. Glucagon receptor signaling and lipid metabolism. Front. Physiol. 10, 413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Nahra, R. et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. Diabetes Care 44, 1433–1442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Le Roux, C. W. et al. A phase 2, randomized, double-blind, placebo-controlled, dose-finding study of survodutide (BI 456906) in people with overweight/obesity [abstract]. Diabetes 72 (Suppl. 1), 51-OR (2023).

    Article  Google Scholar 

  120. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity – a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023). This trial demonstrated that once-weekly administration of the highest dose of a unimolecular triple-agonist (GLP1RA–GIPRA–GCGRA) by subcutaneous injection in people with obesity and T2DM induces weight loss that appears comparable to that achieved with bariatric surgery, with a favourable safety and tolerability profile.

    Article  CAS  PubMed  Google Scholar 

  122. American Diabetes Assocation. American Diabetes Association highlights novel agent retatrutide which results in substantial weight reduction in people with obesity or type 2 diabetes during late breaking symposium. American Diabetes Association https://www2.diabetes.org/newsroom/press-releases/2023/american-diabetes-association-highlights-novel-agent-retatrutide-results-substantial-weight-reduction-people-with-obesity-type-2-diabetes-during-late-breaking-symposium (2023).

  123. Quek, J. et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 8, 20–30 (2023).

    Article  PubMed  Google Scholar 

  124. Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol. 71, 793–801 (2019).

    Article  PubMed  Google Scholar 

  125. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fletcher, M. M. et al. AM833 is a novel agonist of calcitonin family G protein-coupled receptors: pharmacological comparison with six selective and nonselective agonists. J. Pharmacol. Exp. Ther. 377, 417–440 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Lau, D. C. W. et al. Once-weekly cagrilintide for weight management in people with overweight and obesity: a multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet 398, 2160–2172 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Frias, J. P. et al. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet 402, 720–730 (2023). In this trial, a fixed dose combination of once-weekly subcutaneous cagrilintide and semaglutide (a different approach to the unimolecular co-agonists tirzepatide, cotadutide and retatrutide) elicited impressive reductions in HbA1c and body weight over a short period in people with obesity and T2DM.

    Article  CAS  PubMed  Google Scholar 

  129. Field, B. C. T. et al. PYY3-36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans. Diabetes 59, 1635–1639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Neary, N. M. et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 146, 5120–5127 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Gantz, I. et al. Efficacy and safety of intranasal peptide YY3-36 for weight reduction in obese adults. J. Clin. Endocrinol. Metab. 92, 1754–1757 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Tan, T. M. M. et al. Safety and efficacy of an extended-release peptide YY analogue for obesity: a randomized, placebo-controlled, phase 1 trial. Diabetes Obes. Metab. 23, 1471–1483 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Overgaard, R. V., Navarria, A., Ingwersen, S. H., Bækdal, T. A. & Kildemoes, R. J. Clinical pharmacokinetics of oral semaglutide: analyses of data from clinical pharmacology trials. Clin. Pharmacokinet. 60, 1335–1348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Buckley, S. T. et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10, eaar7047 (2018).

    Article  PubMed  Google Scholar 

  135. Overgaard, R. V., Hertz, C. L., Ingwersen, S. H., Navarria, A. & Drucker, D. J. Levels of circulating semaglutide determine reductions in HbA1c and body weight in people with type 2 diabetes. Cell Rep. Med. 2, 100387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aroda, V. R. et al. Efficacy and safety of once-daily oral semaglutide 25 mg and 50 mg compared with 14 mg in adults with type 2 diabetes (PIONEER PLUS): a multicentre, randomised, phase 3b trial. Lancet 402, 693–704 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Thethi, T. K., Pratley, R. & Meier, J. J. Efficacy, safety and cardiovascular outcomes of once-daily oral semaglutide in patients with type 2 diabetes: the PIONEER programme. Diabetes Obes. Metab. 22, 1263–1277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Knop, F. K. et al. Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 402, 705–719 (2023). This trial demonstrated that an oral formulation of semaglutide can result in double-digit weight loss with a favourable safety and tolerability profile in people with obesity.

    Article  CAS  PubMed  Google Scholar 

  139. Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023). Orforglipron is a novel, oral, once-daily G protein-biased non-peptidic GLP1RA that resulted in impressive weight loss over a short-period in a phase II trial in people with obesity.

    Article  CAS  PubMed  Google Scholar 

  140. Frias, J. P. et al. Efficacy and safety of oral orforglipron in patients with type 2 diabetes: a multicentre, randomised, dose-response, phase 2 study. Lancet 402, 472–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Kelly, A. S. et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 382, 2117–2128 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Tamborlane, W. V. et al. Liraglutide in children and adolescents with type 2 diabetes. N. Engl. J. Med. 381, 637–646 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Simmonds, M., Llewellyn, A., Owen, C. G. & Woolacott, N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes. Rev. 17, 95–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Alorfi, N. M. & Alshehri, F. S. Usage of glucagon-like peptide-1 for obesity in children; updated review of Clinicaltrials.gov. J. Multidiscip. Healthc. 16, 2179–2187 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Mastrandrea, L. D. et al. Liraglutide effects in a paediatric (7-11 y) population with obesity: a randomized, double-blind, placebo-controlled, short-term trial to assess safety, tolerability, pharmacokinetics, and pharmacodynamics. Pediatr. Obes. 14, e12495 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kelly, A. S. et al. Exenatide as a weight-loss therapy in extreme pediatric obesity: a randomized, controlled pilot study. Obesity 20, 364–370 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Food and Drug Administration. Highlights of prescribing information: Wegovy (semaglutide) injection for subcutaneous use. FDA http://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215256s000lbl.pdf (2021).

  148. Aubry, E. M., Oelhafen, S., Fankhauser, N., Raio, L. & Cignacco, E. L. Adverse perinatal outcomes for obese women are influenced by the presence of comorbid diabetes and hypertensive disorders. Sci. Rep. 9, 9793 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bone, J. N., Joseph, K. S., Mayer, C., Platt, R. & Lisonkova, S. The association between pre-pregnancy body mass index and perinatal death and the role of gestational age at delivery. PLoS One 17, e0264565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vernini, J. M. et al. Maternal and fetal outcomes in pregnancies complicated by overweight and obesity. Reprod. Health 13, 100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Godfrey, K. M. et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 5, 53–64 (2017).

    Article  PubMed  Google Scholar 

  152. Patro Golab, B. et al. Influence of maternal obesity on the association between common pregnancy complications and risk of childhood obesity: an individual participant data meta-analysis. Lancet Child. Adolesc. Health 2, 812–821 (2018).

    Article  PubMed  Google Scholar 

  153. Cesta, C. E. et al. Safety of GLP-1 receptor agonists and other second-line antidiabetics in early pregnancy. JAMA Intern Med. 184, 144–152 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Parker, V. E. R. et al. Efficacy, safety, and mechanistic insights of cotadutide, a dual receptor glucagon-like peptide-1 and glucagon agonist. J. Clin. Endocrinol. Metab. 105, 803–820 (2020).

    Article  Google Scholar 

  155. Simonsen, L. et al. Preclinical evaluation of a protracted GLP-1/glucagon receptor co-agonist: translational difficulties and pitfalls. PLoS ONE 17, e0264974 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hope, D. C. D. & Tan, T. M. M. Glucagon and energy expenditure; revisiting amino acid metabolism and implications for weight loss therapy. Peptides 162, 170962 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Wang, W. et al. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat. Med. 30, 168–176 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Tricia Tan.

Ethics declarations

Competing interests

T.T. is a shareholder and consultant for Zihipp Ltd., an Imperial College spinout company developing gut hormone-based analogues for obesity. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Jonathan Campbell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, S., Khoo, B. & Tan, T. Targeting the incretin system in obesity and type 2 diabetes mellitus. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00979-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00979-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing