Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action

Abstract

Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders characterized by excess cardiovascular risk. Glucagon-like peptide 1 (GLP1) receptor (GLP1R) agonists reduce body weight, glycaemia, blood pressure, postprandial lipaemia and inflammation — actions that could contribute to the reduction of cardiovascular events. Cardiovascular outcome trials (CVOTs) have demonstrated that GLP1R agonists reduce the rates of major adverse cardiovascular events in patients with T2DM. Separate phase III CVOTs of GLP1R agonists are currently being conducted in people living with heart failure with preserved ejection fraction and in those with obesity. Mechanistically, GLP1R is expressed at low levels in the heart and vasculature, raising the possibility that GLP1 might have both direct and indirect actions on the cardiovascular system. In this Review, we summarize the data from CVOTs of GLP1R agonists in patients with T2DM and describe the actions of GLP1R agonists on the heart and blood vessels. We also assess the potential mechanisms that contribute to the reduction in major adverse cardiovascular events in individuals treated with GLP1R agonists and highlight the emerging cardiovascular biology of novel GLP1-based multi-agonists currently in development. Understanding how GLP1R signalling protects the heart and blood vessels will optimize the therapeutic use and development of next-generation GLP1-based therapies with improved cardiovascular safety.

Key points

  • Cardiovascular outcome trials in individuals with type 2 diabetes mellitus demonstrate that glucagon-like peptide 1 (GLP1) receptor (GLP1R) agonists reduce the rates of non-fatal myocardial infarction, non-fatal stroke and cardiovascular death.

  • A single, canonical GLP1R, expressed at low levels in the heart and blood vessels, mediates the major cardiovascular actions of GLP1R agonists.

  • GLP1R activation might reduce cardiovascular morbidity indirectly through reductions in glycaemia, blood pressure, inflammation, postprandial lipaemia and body weight.

  • GLP1R agonists increase heart rate and might not be beneficial in individuals with severe left ventricular dysfunction, reduced ejection fraction and/or a history of repeated hospitalization for heart failure.

  • New GLP1-based multi-agonist therapies seem to be substantially more effective than older GLP1R agonists in reducing body weight but their safety requires ongoing scrutiny in trials assessing outcomes in individuals with obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major cardiometabolic actions of GLP1.
Fig. 2: GLP1R agonists reduce MACE.
Fig. 3: Direct and indirect actions of GLP1R agonist-mediated cardioprotection.
Fig. 4: Distribution of mouse Glp1r and human GLP1R mRNA expression.
Fig. 5: Actions and potential mechanisms of GLP1R agonists in HF.

Similar content being viewed by others

References

  1. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Campbell, J. E. & Drucker, D. J. Pharmacology physiology and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. McLean, B. A. et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr. Rev. 42, 101–132 (2021).

    Article  PubMed  Google Scholar 

  4. Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Mulvihill, E. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev. 35, 992–1019 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Shah, A. D. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 3, 105–113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Drucker, D. J. & Goldfine, A. B. Cardiovascular safety and diabetes drug development. Lancet 377, 977–979 (2011).

    Article  PubMed  Google Scholar 

  10. Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Gerstein, H. C. et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N. Engl. J. Med. 385, 896–907 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Braunwald, E. Gliflozins in the management of cardiovascular disease. N. Engl. J. Med. 386, 2024–2034 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruff, C. T. et al. Subcutaneous infusion of exenatide and cardiovascular outcomes in type 2 diabetes: a non-inferiority randomized controlled trial. Nat. Med. 28, 89–95 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Viljoen, A. & Bain, S. C. Glucagon-like peptide 1 therapy: from discovery to type 2 diabetes and beyond. Endocrinol. Metab. 38, 25–33 (2023).

    Article  CAS  Google Scholar 

  21. Trujillo, J. M., Nuffer, W. & Smith, B. A. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther. Adv. Endocrinol. Metab. 12, 2042018821997320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nathan, D. M. et al. Glycemia reduction in type 2 diabetes — microvascular and cardiovascular outcomes. N. Engl. J. Med. 387, 1075–1088 (2022).

    Article  PubMed  Google Scholar 

  23. Drucker, D. J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab. 57, 101351 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Davies, M. J. et al. Liraglutide and cardiovascular outcomes in adults with overweight or obesity: a post hoc analysis from SCALE randomized controlled trials. Diabetes Obes. Metab. 20, 734–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kosiborod, M. N. et al. Semaglutide improves cardiometabolic risk factors in adults with overweight or obesity: STEP 1 and 4 exploratory analyses. Diabetes Obes. Metab. 25, 468–478 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Lingvay, I. et al. Semaglutide for cardiovascular event reduction in people with overweight or obesity: SELECT study baseline characteristics. Obesity 31, 111–122 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Sattar, N., Deanfield, J. & Delles, C. Impact of intentional weight loss in cardiometabolic disease: what we know about timing of benefits on differing outcomes. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvac186 (2023).

    Article  PubMed  Google Scholar 

  28. Drucker, D. J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ussher, J. R. & Drucker, D. J. Cardiovascular actions of incretin-based therapies. Circ. Res. 114, 1788–1803 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Wallner, M. et al. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium. J. Mol. Cell Cardiol. 89, 365–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Baggio, L. L. et al. GLP-1 receptor expression within the human heart. Endocrinology 159, 1570–1584 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. McLean, B. A., Wong, C. K., Kabir, M. G. & Drucker, D. J. Glucagon-like peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol. Metab. 66, 101641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panjwani, N. et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE-/- mice. Endocrinology 154, 127–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, M. et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat. Med. 19, 567–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Richards, P. et al. Identification and characterisation of glucagon-like peptide-1 receptor expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Pyke, C. & Knudsen, L. B. The glucagon-like peptide-1 receptor — or not? Endocrinology 154, 4–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Moore-Morris, T. et al. Identification of potential pharmacological targets by analysis of the comprehensive G protein-coupled receptor repertoire in the four cardiac chambers. Mol. Pharmacol. 75, 1108–1116 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, H., Lui, K. O. & Zhou, B. Endocardial cell plasticity in cardiac development, diseases and regeneration. Circ. Res. 122, 774–789 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Yusta, B. et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes 64, 2537–2549 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Ussher, J. R. & Drucker, D. J. Cardiovascular biology of the incretin system. Endocr. Rev. 33, 187–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Alkhouri, N. et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: a randomised, open-label phase II trial. J. Hepatol. 77, 607–618 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Overgaard, R. V., Hertz, C. L., Ingwersen, S. H., Navarria, A. & Drucker, D. J. Levels of circulating semaglutide determine reductions in HbA1c and body weight in people with type 2 diabetes. Cell Rep. Med. 2, 100387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hasegawa, Y., Hori, M., Nakagami, T., Harada-Shiba, M. & Uchigata, Y. Glucagon-like peptide-1 receptor agonists reduced the low-density lipoprotein cholesterol in Japanese patients with type 2 diabetes mellitus treated with statins. J. Clin. Lipidol. 12, 62–69.e1 (2018).

    Article  PubMed  Google Scholar 

  45. McLean, B. A., Wong, C. K., Kaur, K. D., Seeley, R. J. & Drucker, D. J. Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight 6, e153732 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yabut, J. M. & Drucker, D. J. Glucagon-like peptide-1 receptor-based therapeutics for metabolic liver disease. Endocr. Rev. 44, 14–32 (2022).

    Article  Google Scholar 

  47. Lovshin, J. A. et al. Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic peptide in hypertensive subjects with type 2 diabetes. Diabetes Care 38, 132–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Buse, J. B. et al. Cardiovascular risk reduction with liraglutide: an exploratory mediation analysis of the LEADER trial. Diabetes Care 43, 1546–1552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fonseca, V. A. et al. Reductions in systolic blood pressure with liraglutide in patients with type 2 diabetes: insights from a patient-level pooled analysis of six randomized clinical trials. J. Diabetes Complicat. 28, 399–405 (2014).

    Article  Google Scholar 

  50. Buse, J. B. et al. DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care 33, 1255–1261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Astrup, A. et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int. J. Obes. 36, 843–854 (2012).

    Article  CAS  Google Scholar 

  52. Sjoberg, K. A., Holst, J. J., Rattigan, S., Richter, E. A. & Kiens, B. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 306, E355–E362 (2014).

    Article  PubMed  Google Scholar 

  53. Basu, A. et al. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am. J. Physiol. Endocrinol. Metab. 293, E1289–E1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Hirata, K. et al. Exendin-4 has an anti-hypertensive effect in salt-sensitive mice model. Biochem. Biophys. Res. Commun. 380, 44–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Helmstadter, J. et al. Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler. Thromb. Vasc. Biol. 40, 145–158 (2020).

    Article  PubMed  Google Scholar 

  56. Simonds, S. E. et al. Determining the effects of combined liraglutide and phentermine on metabolic parameters, blood pressure, and heart rate in lean and obese male mice. Diabetes 68, 683–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Li, C. J. et al. Changes in liraglutide-induced body composition are related to modifications in plasma cardiac natriuretic peptides levels in obese type 2 diabetic patients. Cardiovasc. Diabetol. 13, 36 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chai, W. et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes 61, 888–896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nandy, D. et al. The effect of liraglutide on endothelial function in patients with type 2 diabetes. Diabetes Vasc. Dis. Res. 11, 419–430 (2014).

    Article  CAS  Google Scholar 

  60. Kelly, A. S., Bergenstal, R. M., Gonzalez-Campoy, J. M., Katz, H. & Bank, A. J. Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc. Diabetol. 11, 64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Cherney, D. Z. I., Udell, J. A. & Drucker, D. J. Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Med 2, 1203–1230 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Marso, S. P., Holst, A. G. & Vilsboll, T. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 376, 891–892 (2017).

    PubMed  Google Scholar 

  64. Verma, S. et al. Effects of liraglutide on cardiovascular outcomes in patients with type 2 diabetes mellitus with or without history of myocardial infarction or stroke. Circulation 138, 2884–2894 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Koska, J., Migrino, R. Q., Chan, K. C., Cooper-Cox, K. & Reaven, P. D. The effect of exenatide once weekly on carotid atherosclerosis in individuals with type 2 diabetes: an 18-month randomized placebo-controlled study. Diabetes Care 44, 1385–1392 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rizzo, M. et al. Liraglutide improves metabolic parameters and carotid intima-media thickness in diabetic patients with the metabolic syndrome: an 18-month prospective study. Cardiovasc. Diabetol. 15, 162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chaudhuri, A. et al. Exenatide exerts a potent antiinflammatory effect. J. Clin. Endocrinol. Metab. 97, 198–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Lebrun, L. J. et al. Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 21, 1160–1168 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Rodbard, H. W. et al. Oral semaglutide versus empagliflozin in patients with type 2 diabetes uncontrolled on metformin: the PIONEER 2 trial. Diabetes Care 42, 2272–2281 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Vinue, A. et al. The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype. Diabetologia 60, 1801–1812 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Sanada, J. et al. Dulaglutide exerts beneficial anti atherosclerotic effects in ApoE knockout mice with diabetes: the earlier, the better. Sci. Rep. 11, 1425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rakipovski, G. et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE-/- and LDLr-/- mice by a mechanism that includes inflammatory pathways. JACC Basic Transl. Sci. 3, 844–857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Arakawa, M. et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59, 1030–1037 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wong, C. K. et al. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. Cell Metab. 34, 1514–1531.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Woo, J. S. et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler. Thromb. Vasc. Biol. 33, 2252–2260 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Lønborg, J. et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ. Cardiovasc. Interv. 5, 288–295 (2012).

    Article  PubMed  Google Scholar 

  77. Lønborg, J. et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur. Heart J. 33, 1491–1499 (2012).

    Article  PubMed  Google Scholar 

  78. Lønborg, J. et al. Impact of acute hyperglycemia on myocardial infarct size, area at risk and salvage in patients with ST elevation myocardial infarction and the association with exenatide treatment — results from a randomized study. Diabetes 63, 2474–2485 (2014).

    Article  PubMed  Google Scholar 

  79. Roos, S. T. et al. No benefit of additional treatment with exenatide in patients with an acute myocardial infarction. Int. J. Cardiol. 220, 809–814 (2016).

    Article  PubMed  Google Scholar 

  80. Besch, G. et al. Impact of intravenous exenatide infusion for perioperative blood glucose control on myocardial ischemia-reperfusion injuries after coronary artery bypass graft surgery: sub study of the phase II/III ExSTRESS randomized trial. Cardiovasc. Diabetol. 17, 140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, W. R. et al. Effects of liraglutide on left ventricular function in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am. Heart J. 170, 845–854 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, W. R. et al. Effects of liraglutide on left ventricular function in patients with non-ST-segment elevation myocardial infarction. Endocrine 52, 516–526 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Aravindhan, K. et al. Cardioprotection resulting from glucagon-like peptide-1 administration involves shifting metabolic substrate utilization to increase energy efficiency in the rat heart. PLoS ONE 10, e0130894 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bao, W. et al. Albiglutide, a long lasting glucagon-like peptide-1 analog, protects the rat heart against ischemia/reperfusion injury: evidence for improving cardiac metabolic efficiency. PLoS ONE 6, e23570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bose, A. K., Mocanu, M. M., Carr, R. D., Brand, C. L. & Yellon, D. M. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54, 146–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Timmers, L. et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol. 53, 501–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Tsutsumi, Y. M. et al. Exendin-4 ameliorates cardiac ischemia/reperfusion injury via caveolae and caveolins-3. Cardiovasc. Diabetol. 13, 132 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Noyan-Ashraf, M. H. et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58, 975–983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schilling, J. M., Roth, D. M. & Patel, H. H. Caveolins in cardioprotection — translatability and mechanisms. Br. J. Pharmacol. 172, 2114–2125 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hamaguchi, E. et al. Exendin-4, glucagon-like peptide-1 receptor agonist, enhances isoflurane-induced preconditioning against myocardial infarction via caveolin-3 expression. Eur. Rev. Med. Pharmacol. Sci. 19, 1285–1290 (2015).

    CAS  PubMed  Google Scholar 

  91. Dong, Z. et al. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment. Am. J. Physiol. Endocrinol. Metab. 304, E222–E228 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Clarke, S. J. et al. GLP-1 is a coronary artery vasodilator in humans. J. Am. Heart Assoc. 7, e010321 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Suhrs, H. E. et al. Effect of liraglutide on body weight and microvascular function in non-diabetic overweight women with coronary microvascular dysfunction. Int. J. Cardiol. 283, 28–34 (2019).

    Article  PubMed  Google Scholar 

  94. Nielsen, R. et al. Effect of liraglutide on myocardial glucose uptake and blood flow in stable chronic heart failure patients: a double-blind, randomized, placebo-controlled LIVE sub-study. J. Nucl. Cardiol. 26, 585–597 (2019).

    Article  PubMed  Google Scholar 

  95. Kavianipour, M. et al. Glucagon-like peptide-1 (7-36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides 24, 569–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Kristensen, J. et al. Lack of cardioprotection from subcutaneously and preischemic administered liraglutide in a closed chest porcine ischemia reperfusion model. BMC Cardiovasc. Disord. 9, 31 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Olmestig, J. et al. A single dose of exenatide had no effect on blood flow velocity in the middle cerebral artery in elderly healthy volunteers: randomized, placebo-controlled, double-blind clinical trial. Front. Aging Neurosci. 14, 899389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ripa, R. S. et al. Effect of liraglutide on arterial inflammation assessed as [18F]FDG uptake in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Circ. Cardiovasc. Imaging 14, e012174 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wei, J. et al. Risk of stroke and retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: an eight RCTs meta-analysis. Front. Endocrinol. 13, 1007980 (2022).

    Article  Google Scholar 

  100. During, M. J. et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9, 1173–1179 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Cahill, K. N. et al. Glucagon-like peptide-1 receptor regulates thromboxane-induced human platelet activation. JACC Basic. Transl. Sci. 7, 713–715 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lepore, J. J. et al. Effects of the novel long-acting GLP-1 agonist, albiglutide, on cardiac function, cardiac metabolism, and exercise capacity in patients with chronic heart failure and reduced ejection fraction. JACC Heart Fail. 4, 559–566 (2016).

    Article  PubMed  Google Scholar 

  103. Marso, S. P. et al. Effects of liraglutide on cardiovascular outcomes in patients with diabetes with or without heart failure. J. Am. Coll. Cardiol. 75, 1128–1141 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Margulies, K. B. et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316, 500–508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jorsal, A. et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur. J. Heart Fail. 19, 69–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Bhashyam, S. et al. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ. Heart Fail. 3, 512–521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nikolaidis, L. A. et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110, 955–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Noyan-Ashraf, M. H. et al. A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 127, 74–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Poornima, I. et al. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ. Heart Fail. 1, 153–160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sassoon, D. J. et al. Glucagon-like peptide 1 receptor activation augments cardiac output and improves cardiac efficiency in obese swine after myocardial infarction. Diabetes 66, 2230–2240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Almutairi, M. et al. The GLP-1R agonist liraglutide increases myocardial glucose oxidation rates via indirect mechanisms and mitigates experimental diabetic cardiomyopathy. Can. J. Cardiol. 37, 140–150 (2020).

    Article  PubMed  Google Scholar 

  112. Mulvihill, E. E. et al. Inhibition of dipeptidyl peptidase-4 impairs ventricular function and promotes cardiac fibrosis in high fat-fed diabetic mice. Diabetes 65, 742–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Withaar, C. et al. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc. Res. 117, 2108–2124 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Podbregar, M. & Voga, G. Effect of selective and nonselective beta-blockers on resting energy production rate and total body substrate utilization in chronic heart failure. J. Card. Fail. 8, 369–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04255433 (2023).

  117. Sattar, N. et al. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat. Med. 28, 591–598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05556512 (2023).

  119. Heimburger, S. M. et al. Glucose-dependent insulinotropic polypeptide (GIP) and cardiovascular disease. Peptides 125, 170174 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Nogi, Y. et al. Glucose-dependent insulinotropic polypeptide prevents the progression of macrophage-driven atherosclerosis in diabetic apolipoprotein E-null mice. PLoS ONE 7, e35683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pujadas, G. et al. Genetic disruption of the Gipr in Apoe–/– mice promotes atherosclerosis. Mol. Metab. 65, 101586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ussher, J. R. et al. Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction. Cell Metab. 27, 450–460 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Hiromura, M. et al. Suppressive effects of glucose-dependent insulinotropic polypeptide on cardiac hypertrophy and fibrosis in angiotensin II-infused mouse models. Circ. J. 80, 1988–1997 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Baggio, L. L. & Drucker, D. J. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol. Metab. 46, 101090 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Enebo, L. B. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2.4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 397, 1736–1748 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Saxena, A. R. et al. Danuglipron (PF-06882961) in type 2 diabetes: a randomized, placebo-controlled, multiple ascending-dose phase 1 trial. Nat. Med. 27, 1079–1087 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Wright, A. K. et al. Primary prevention of cardiovascular and heart failure events with SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diabetes Care 45, 909–918 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04560998 (2023).

  129. Dawed, A. Y. et al. Pharmacogenomics of GLP-1 receptor agonists: a genome-wide analysis of observational data and large randomised controlled trials. Lancet Diabetes Endocrinol. 11, 33–41 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.R.U. is supported by a Project Grant from the Canadian Institutes for Health Research (CIHR), an End Diabetes Award from Diabetes Canada and a Tier 2 Canada Research Chair (Pharmacotherapy of Energy Metabolism in Obesity). D.J.D. is supported by operating grants from the CIHR, a Banting and Best Diabetes Centre–Novo Nordisk Chair in Incretin Biology and a Sinai Health–Novo Nordisk Foundation Fund in Regulatory Peptides.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the Review.

Corresponding author

Correspondence to Daniel J. Drucker.

Ethics declarations

Competing interests

D.J.D. is a consultant to Altimmune, Amgen, Kallyope, Merck, Novo Nordisk and Pfizer. Mount Sinai Hospital has received funding for investigator-initiated preclinical studies from Novo Nordisk and Pfizer. J.R.U. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Stephen Bain and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ussher, J.R., Drucker, D.J. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 20, 463–474 (2023). https://doi.org/10.1038/s41569-023-00849-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00849-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing