Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases

Abstract

Obesity and its comorbidities, such as type 2 diabetes mellitus and cardiovascular disease, constitute growing challenges for public health and economies globally. The available treatment options for these metabolic disorders cannot reverse the disease in most individuals and have not substantially reduced disease prevalence, which underscores the unmet need for more efficacious interventions. Neurobiological resilience to energy homeostatic perturbations, combined with the heterogeneous pathophysiology of human metabolic disorders, has limited the sustainability and efficacy of current pharmacological options. Emerging insights into the molecular origins of eating behaviour, energy expenditure, dyslipidaemia and insulin resistance suggest that coordinated targeting of multiple signalling pathways is probably necessary for sizeable improvements to reverse the progression of these diseases. Accordingly, a broad set of combinatorial approaches targeting feeding circuits, energy expenditure and glucose metabolism in concert are currently being explored and developed. Notably, several classes of peptide-based multi-agonists and peptide–small molecule conjugates with superior preclinical efficacy have emerged and are currently undergoing clinical evaluation. Here, we summarize advances over the past decade in combination pharmacotherapy for the management of obesity and type 2 diabetes mellitus, exclusively focusing on large-molecule formats (notably enteroendocrine peptides and proteins) and discuss the associated therapeutic opportunities and challenges.

Key points

  • The need for safe and efficacious treatment options to combat metabolic diseases such as obesity and type 2 diabetes mellitus is currently unmet.

  • Coordinated pharmacological targeting of multiple signalling pathways is probably required to obtain sizeable improvements in body weight and glucose metabolism.

  • Several classes of peptide-based multi-agonists and peptide–small molecule conjugates with robust preclinical efficacy are currently emerging.

  • Parallel to advancing interventions that modulate neurocircuits to drive weight loss, attention towards therapies designed to prevent weight rebound should be intensified.

  • Novel hormonal-based combination pharmacotherapies for metabolic diseases must undergo careful cardiovascular safety assessment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-molecule peptide-based co-agonists.
Fig. 2: Peptide-governed tissue targeting.
Fig. 3: Potentiation of leptin pharmacology by GLP1–glucagon co-agonism.
Fig. 4: Pharmacological benefits of FGF19 and FGF21.
Fig. 5: Key targets for metabolic combination pharmacotherapy.

Similar content being viewed by others

References

  1. Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 254–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsai, A. G., Williamson, D. F. & Glick, H. A. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes. Rev. 12, 50–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yach, D., Stuckler, D. & Brownell, K. D. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat. Med. 12, 62–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Gautron, L., Elmquist, J. K. & Williams, K. W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clemmensen, C. et al. Gut-brain cross-talk in metabolic control. Cell 168, 758–774 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Mojsov, S., Weir, G. C. & Habener, J. F. Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79, 616–619 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holst, J. J., Orskov, C., Nielsen, O. V. & Schwartz, T. W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211, 169–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Kreymann, B., Williams, G., Ghatei, M. A. & Bloom, S. R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Turton, M. D. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Tang-Christensen, M. et al. Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am. J. Physiol. 271, R848–R856 (1996).

    CAS  PubMed  Google Scholar 

  16. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. le Roux, C. W. et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389, 1399–1409 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Neil, P. M. et al. Neuropsychiatric safety with liraglutide 3.0 mg for weight management: results from randomized controlled phase 2 and 3a trials. Diabetes Obes. Metab. 19, 1529–1536 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Mazidi, M., Rezaie, P., Gao, H. K. & Kengne, A. P. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J. Am. Heart Assoc. 6, e004007 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ludvik, B. et al. Dulaglutide as add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): a 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 370–381 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Frias, J. P. et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 4, 1004–1016 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Madsbad, S., Dirksen, C. & Holst, J. J. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2, 152–164 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Beamish, A. J., Olbers, T., Kelly, A. S. & Inge, T. H. Cardiovascular effects of bariatric surgery. Nat. Rev. Cardiol. 13, 730–743 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Seeley, R. J., Chambers, A. P. & Sandoval, D. A. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 21, 369–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yanovski, S. Z. & Yanovski, J. A. Toward precision approaches for the prevention and treatment of obesity. JAMA 319, 223–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van Gaal, L. & Scheen, A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care 38, 1161–1172 (2015).

    Article  PubMed  Google Scholar 

  30. Wilson-Perez, H. E. et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes 62, 2380–2385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zander, M., Madsbad, S., Madsen, J. L. & Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Vilsboll, T., Christensen, M., Junker, A. E., Knop, F. K. & Gluud, L. L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344, d7771 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bettge, K., Kahle, M., Abd El Aziz, M. S., Meier, J. J. & Nauck, M. A. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes Obes. Metab. 19, 336–347 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Gutzwiller, J. P., Degen, L., Matzinger, D., Prestin, S. & Beglinger, C. Interaction between GLP-1 and CCK-33 in inhibiting food intake and appetite in men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R562–R567 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Neary, N. M. et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 146, 5120–5127 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Tan, T. M. et al. Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62, 1131–1138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Madsen, K. B. et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul. Pept. 184, 30–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl Med. 5, 209ra151 (2013).

    Article  PubMed  CAS  Google Scholar 

  39. Suarez-Pinzon, W. L. et al. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57, 3281–3288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grunddal, K. V. et al. Neurotensin is coexpressed, coreleased, and acts together with GLP-1 and PYY in enteroendocrine control of metabolism. Endocrinology 157, 176–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. [No authors listed.] Abstracts of the 47th annual meeting of the European Association for the Study of Diabetes. September 16, 2011. Lisbon, Portugal. Diabetologia 54, S1–S543 (2011).

    Google Scholar 

  42. Clemmensen, C. et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. EMBO Mol. Med. 7, 288–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balena, R., Hensley, I. E., Miller, S. & Barnett, A. H. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature. Diabetes Obes. Metab. 15, 485–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Muller, T. D., Finan, B., Clemmensen, C., DiMarchi, R. D. & Tschop, M. H. The new biology and pharmacology of glucagon. Physiol. Rev. 97, 721–766 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Sharma, A. X. et al. Glucagon receptor antagonism improves glucose metabolism and cardiac function by promoting AMP-mediated protein kinase in diabetic mice. Cell Rep. 22, 1760–1773 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pettus, J. et al. Effect of a glucagon receptor antibody (REMD-477) in type 1 diabetes: a randomized controlled trial. Diabetes Obes. Metab. 20, 1302–1305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guzman, C. B. et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1521–1528 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Kazda, C. M. et al. Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1071–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Kazda, C. M. et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 39, 1241–1249 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Hjorth, S. A., Adelhorst, K., Pedersen, B. B., Kirk, O. & Schwartz, T. W. Glucagon and glucagon-like peptide 1: selective receptor recognition via distinct peptide epitopes. J. Biol. Chem. 269, 30121–30124 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Pocai, A. et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Evers, A. et al. Design of novel exendin-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists. J. Med. Chem. 60, 4293–4303 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Henderson, S. J. et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes. Metab. 18, 1176–1190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Evers, A. et al. Dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists specifically optimized for multidose formulations. J. Med. Chem. 61, 5580–5593 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Sanchez-Garrido, M. A. et al. GLP-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia 60, 1851–1861 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ambery, P. et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 391, 2607–2618 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Finan, B. et al. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol. Med. 22, 359–376 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Miyawaki, K. et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8, 738–742 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. McClean, P. L. et al. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am. J. Physiol. Endocrinol. Metab. 293, E1746–E1755 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Campbell, J. E. et al. TCF1 links GIPR signaling to the control of beta cell function and survival. Nat. Med. 22, 84–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Sparre-Ulrich, A. H. et al. Species-specific action of (Pro3)GIP — a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. Br. J. Pharmacol. 173, 27–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Asmar, M. et al. Insulin plays a permissive role for the vasoactive effect of GIP regulating adipose tissue metabolism in humans. J. Clin. Endocrinol. Metab. 101, 3155–3162 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Asmar, M. et al. The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor. Diabetes 66, 2363–2371 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Nauck, M. A. et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hojberg, P. V. et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52, 199–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Norregaard, P. K. et al. A novel GIP analogue, ZP4165, enhances glucagon-like peptide-1-induced body weight loss and improves glycaemic control in rodents. Diabetes Obes. Metab. 20, 60–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Frias, J. P. et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 26, 343–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Schmitt, C., Portron, A., Jadidi, S., Sarkar, N. & DiMarchi, R. Pharmacodynamics, pharmacokinetics and safety of multiple ascending doses of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 in people with type 2 diabetes mellitus. Diabetes Obes. Metab. 19, 1436–1445 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Coskun, T. et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol. Metab. https://doi.org/10.1016/j.molmet.2018.09.009 (2018).

  71. Frias, J. P. et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet https://doi.org/10.1016/S0140-6736(18)32260-8 (2018).

  72. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Jall, S. et al. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Mol. Metab. 6, 440–446 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tschop, M. H. et al. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab. 24, 51–62 (2016).

    Article  PubMed  CAS  Google Scholar 

  75. Kochar, B. et al. Safety and efficacy of teduglutide (Gattex) in patients with Crohn’s disease and need for parenteral support due to short bowel syndrome-associated intestinal failure. J. Clin. Gastroenterol. 51, 508–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Wismann, P. et al. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav. 192, 72–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Winer, D. A., Luck, H., Tsai, S. & Winer, S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 23, 413–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Cheng, C. Y., Chu, J. Y. & Chow, B. K. Central and peripheral administration of secretin inhibits food intake in mice through the activation of the melanocortin system. Neuropsychopharmacology 36, 459–471 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Hansen, C. F. et al. Hypertrophy dependent doubling of L-cells in Roux-en-Y gastric bypass operated rats. PLOS ONE 8, e65696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van Witteloostuijn, S. B. et al. GUB06-046, a novel secretin/glucagon-like peptide 1 co-agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice. J. Pept. Sci. 23, 845–854 (2017).

    Article  PubMed  CAS  Google Scholar 

  82. Chance, W. T., Balasubramaniam, A., Zhang, F. S., Wimalawansa, S. J. & Fischer, J. E. Anorexia following the intrahypothalamic administration of amylin. Brain Res. 539, 352–354 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Chesnut, C. H. 3rd et al. Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos. Int. 19, 479–491 (2008).

    Article  PubMed  Google Scholar 

  84. Andreassen, K. V. et al. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats. Am. J. Physiol. Endocrinol. Metab. 307, E24–E33 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Hjuler, S. T., Andreassen, K. V., Gydesen, S., Karsdal, M. A. & Henriksen, K. KBP-042 improves bodyweight and glucose homeostasis with indices of increased insulin sensitivity irrespective of route of administration. Eur. J. Pharmacol. 762, 229–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Gydesen, S. et al. KBP-088, a novel DACRA with prolonged receptor activation, is superior to davalintide in terms of efficacy on body weight. Am. J. Physiol. Endocrinol. Metab. 310, E821–E827 (2016).

    Article  PubMed  Google Scholar 

  87. Hjuler, S. T. et al. The dual amylin- and calcitonin-receptor agonist KBP-042 increases insulin sensitivity and induces weight loss in rats with obesity. Obesity 24, 1712–1722 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Gydesen, S. et al. A novel dual amylin and calcitonin receptor agonist, KBP-089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br. J. Pharmacol. 174, 591–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rooman, I., Lardon, J. & Bouwens, L. Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Morisset, J., Julien, S. & Laine, J. Localization of cholecystokinin receptor subtypes in the endocine pancreas. J. Histochem. Cytochem. 51, 1501–1513 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fosgerau, K. et al. The novel GLP-1-gastrin dual agonist, ZP3022, increases beta-cell mass and prevents diabetes in db/db mice. Diabetes Obes. Metab. 15, 62–71 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Dalboge, L. S. et al. The novel GLP-1-gastrin dual agonist ZP3022 improves glucose homeostasis and increases beta-cell mass without affecting islet number in db/db mice. J. Pharmacol. Exp. Ther. 350, 353–360 (2014).

    Article  PubMed  CAS  Google Scholar 

  93. Skarbaliene, J. et al. The anti-diabetic effects of GLP-1-gastrin dual agonist ZP3022 in ZDF rats. Peptides 69, 47–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Trevaskis, J. L. et al. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids. PLOS ONE 8, e78154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hjuler, S. T., Gydesen, S., Andreassen, K. V., Karsdal, M. A. & Henriksen, K. The dual amylin- and calcitonin-receptor agonist KBP-042 works as adjunct to metformin on fasting hyperglycemia and HbA1c in a rat model of type 2 diabetes. J. Pharmacol. Exp. Ther. 362, 24–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Gydesen, S. et al. Optimization of tolerability and efficacy of the novel dual amylin and calcitonin receptor agonist KBP-089 through dose escalation and combination with a GLP-1 analog. Am. J. Physiol. Endocrinol. Metab. 313, E598–E607 (2017).

    Article  PubMed  CAS  Google Scholar 

  97. Dugger, S. A., Platt, A. & Goldstein, D. B. Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 17, 183–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Gao, Q. et al. Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat. Med. 13, 89–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Martinez de Morentin, P. B. et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou, Z. et al. Estrogen receptor alpha protects pancreatic beta-cells from apoptosis by preserving mitochondrial function and suppressing endoplasmic reticulum stress. J. Biol. Chem. 293, 4735–4751 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ribas, V. et al. Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl Med. 8, 334ra54 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Finan, B. et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat. Med. 18, 1847–1856 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cao, X. et al. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice. J. Clin. Invest. 124, 4351–4362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vogel, H. et al. GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology 110, 396–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Tiano, J. P., Tate, C. R., Yang, B. S., DiMarchi, R. & Mauvais-Jarvis, F. Effect of targeted estrogen delivery using glucagon-like peptide-1 on insulin secretion, insulin sensitivity and glucose homeostasis. Sci. Rep. 5, 10211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schwenk, R. W. et al. GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Diabetologia 58, 604–614 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Donath, M. Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov. 13, 465–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Quarta, C. et al. Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab. 26, 620–632 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Martinez-Sanchez, N. et al. Hypothalamic AMPK-ER stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance. Cell Metab. 26, 212–229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin, J. Z. et al. Pharmacological activation of thyroid hormone receptors elicits a functional conversion of white to brown fat. Cell Rep. 13, 1528–1537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sinha, R. A., Singh, B. K. & Yen, P. M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14, 259–269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Kissileff, H. R. et al. Leptin reverses declines in satiation in weight-reduced obese humans. Am. J. Clin. Nutr. 95, 309–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rosenbaum, M., Murphy, E. M., Heymsfield, S. B., Matthews, D. E. & Leibel, R. L. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J. Clin. Endocrinol. Metab. 87, 2391–2394 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Quarta, C., Sanchez-Garrido, M. A., Tschop, M. H. & Clemmensen, C. Renaissance of leptin for obesity therapy. Diabetologia 59, 920–927 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Fruehwald-Schultes, B. et al. Short-term treatment with metformin decreases serum leptin concentration without affecting body weight and body fat content in normal-weight healthy men. Metabolism 51, 531–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Kim, Y. W. et al. Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes 55, 716–724 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Klein, J. et al. Metformin inhibits leptin secretion via a mitogen-activated protein kinase signalling pathway in brown adipocytes. J. Endocrinol. 183, 299–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Aubert, G., Mansuy, V., Voirol, M. J., Pellerin, L. & Pralong, F. P. The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metabolism 60, 327–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ravussin, E. et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17, 1736–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Mietlicki-Baase, E. G., Olivos, D. R., Jeffrey, B. A. & Hayes, M. R. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am. J. Physiol. Endocrinol. Metab. 308, E1116–E1122 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Turek, V. F. et al. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151, 143–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Trevaskis, J. L. et al. Amylin/leptin synergy is absent in extreme obesity and not restored by calorie restriction-induced weight loss in rats. Obes. Sci. Pract. 2, 385–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Muller, T. D. et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J. Pept. Sci. 18, 383–393 (2012).

    Article  PubMed  CAS  Google Scholar 

  128. Clemmensen, C. et al. GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63, 1422–1427 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Chinookoswong, N., Wang, J. L. & Shi, Z. Q. Leptin restores euglycemia and normalizes glucose turnover in insulin-deficient diabetes in the rat. Diabetes 48, 1487–1492 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Fujikawa, T., Chuang, J. C., Sakata, I., Ramadori, G. & Coppari, R. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc. Natl Acad. Sci. USA 107, 17391–17396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. German, J. P. et al. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 152, 394–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Hidaka, S. et al. Chronic central leptin infusion restores hyperglycemia independent of food intake and insulin level in streptozotocin-induced diabetic rats. FASEB J. 16, 509–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, M. Y. et al. Leptin therapy in insulin-deficient type I diabetes. Proc. Natl Acad. Sci. USA 107, 4813–4819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cummings, B. P. et al. Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. Proc. Natl Acad. Sci. USA 108, 14670–14675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moon, H. S. et al. Efficacy of metreleptin in obese patients with type 2 diabetes: cellular and molecular pathways underlying leptin tolerance. Diabetes 60, 1647–1656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. German, J. P. et al. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes 59, 1626–1634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moon, H. S. et al. Identification and saturable nature of signaling pathways induced by metreleptin in humans: comparative evaluation of in vivo, ex vivo, and in vitro administration. Diabetes 64, 828–839 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Vasandani, C., Clark, G. O., Adams-Huet, B., Quittner, C. & Garg, A. Efficacy and safety of metreleptin therapy in patients with type 1 diabetes: a pilot study. Diabetes Care 40, 694–697 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Yu, X., Park, B. H., Wang, M. Y., Wang, Z. V. & Unger, R. H. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc. Natl Acad. Sci. USA 105, 14070–14075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Perry, R. J. et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat. Med. 20, 759–763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Morton, G. J., Meek, T. H., Matsen, M. E. & Schwartz, M. W. Evidence against hypothalamic-pituitary-adrenal axis suppression in the antidiabetic action of leptin. J. Clin. Invest. 125, 4587–4591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ajluni, N. et al. Efficacy of metreleptin therapy in the treatment of fatty liver disease associated with partial lipodystrophy [abstract]. Endocr. Rev. 38, OR09-4 (2017).

    Google Scholar 

  143. Degirolamo, C., Sabba, C. & Moschetta, A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15, 51–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Kharitonenkov, A. & DiMarchi, R. FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol. Metab. 26, 608–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Talukdar, S. et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 23, 427–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Owen, B. M. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med. 19, 1153–1156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lan, T. et al. FGF19, FGF21, and an FGFR1/beta-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kwon, M. M., O’Dwyer, S. M., Baker, R. K., Covey, S. D. & Kieffer, T. J. FGF21-mediated improvements in glucose clearance require uncoupling protein 1. Cell Rep. 13, 1521–1527 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. von Holstein-Rathlou, S. et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23, 335–343 (2016).

    Article  CAS  Google Scholar 

  153. Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Desai, B. N. et al. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol. Metab. 6, 1395–1406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Soberg, S. et al. FGF21, a liver hormone that inhibits alcohol intake in mice, increases in human circulation after acute alcohol ingestion and sustained binge drinking at Oktoberfest. Mol. Metab. 11, 96–103 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Lundsgaard, A. M. et al. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates. Mol. Metab. 6, 22–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Soberg, S. et al. FGF21 is a sugar-induced hormone associated with sweet intake and preference in humans. Cell Metab. 25, 1045–1053 (2017).

    Article  PubMed  CAS  Google Scholar 

  158. Lee, S. et al. Structures of beta-klotho reveal a ‘zip code’-like mechanism for endocrine FGF signalling. Nature 553, 501–505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Adams, A. C. et al. Fundamentals of FGF19 and FGF21 action in vitro and in vivo. PLOS ONE 7, e38438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Harrison, S. A. et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391, 1174–1185 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Morton, G. J. et al. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Invest. 123, 4799–4808 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Benoit, B. et al. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat. Med. 23, 990–996 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Zhou, M. et al. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. J. Hepatol. 66, 1182–1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Zhou, M. et al. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol. Commun. 1, 1024–1042 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Suh, J. M. et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Scarlett, J. M. et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22, 800–806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lynch, L. et al. iNKT cells induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy. Cell Metab. 24, 510–519 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hong, H. N. et al. YH25724, a novel long-acting GLP-1/FGF21 dual agonist provides potent and sustained glycaemic control, body weight loss and lipid profile improvement in animal models [abstract 111]. Diabetologia 59, S58 (2016).

    Google Scholar 

  170. Ryan, K. K., Woods, S. C. & Seeley, R. J. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 15, 137–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rosenbaum, M., Sy, M., Pavlovich, K., Leibel, R. L. & Hirsch, J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J. Clin. Invest. 118, 2583–2591 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Sims, E. A. et al. Endocrine and metabolic effects of experimental obesity in man. Recent Prog. Horm. Res. 29, 457–496 (1973).

    CAS  PubMed  Google Scholar 

  173. Diaz, E. O., Prentice, A. M., Goldberg, G. R., Murgatroyd, P. R. & Coward, W. A. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am. J. Clin. Nutr. 56, 641–655 (1992).

    Article  CAS  PubMed  Google Scholar 

  174. Ravussin, Y., Leibel, R. L. & Ferrante, A. W. Jr. A missing link in body weight homeostasis: the catabolic signal of the overfed state. Cell Metab. 20, 565–572 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. O’Neil, P. M. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 392, 637–649 (2018).

    Article  PubMed  Google Scholar 

  176. Singh, S., Loke, Y. K. & Furberg, C. D. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 298, 1189–1195 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Kosiborod, M. et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 136, 249–259 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet https://doi.org/10.1016/S0140-6736(18)32261-X (2018).

  180. Buse, J. B. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 1798–1799 (2016).

    PubMed  Google Scholar 

  181. Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Holman, R. R. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 377, 1228–1239 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Lim, S., Kim, K. M. & Nauck, M. A. Glucagon-like peptide-1 receptor agonists and cardiovascular events: class effects versus individual patterns. Trends Endocrinol. Metab. 29, 238–248 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Moller, C. L. et al. Glucose-dependent insulinotropic polypeptide is associated with lower low-density lipoprotein but unhealthy fat distribution, independent of insulin: the ADDITION-PRO study. J. Clin. Endocrinol. Metab. 101, 485–493 (2016).

    Article  PubMed  CAS  Google Scholar 

  185. Ussher, J. R. et al. Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction. Cell Metab. 27, 450–460 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Kahles, F. et al. The incretin hormone GIP is upregulated in patients with atherosclerosis and stabilizes plaques in ApoE−/− mice by blocking monocyte/macrophage activation. Mol. Metab. 14, 150–157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03586830 (2018).

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03486392 (2018).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03235050 (2018).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03244800 (2018).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02492763 (2018).

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02973321 (2018).

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03437720 (2018).

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02119819 (2016).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03406377 (2018).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03308721 (2017).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02692781 (2018).

  198. ZealandPharma. Zealand and Boehringer Ingelheim to change development program on novel dual-acting glucagon/GLP-1 receptor agonists to treat Type 2 diabetes and/or obesity with a new lead compound that will replace ZP2929. Zealand Pharma Company Release https://cws.huginonline.com/Z/136974/PR/201401/2026559_5.html (2014).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03175211 (2018).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03591718 (2018).

  201. Eli Lilly and Company. Q2 2018 earnings. Lilly Investors https://investor.lilly.com/static-files/3556875d-ae48-4911-99ba-05647b225ed5 (2018).

  202. Kamal, S. Spitfire Pharma’s SP-1373 outscored semaglutide and elafibranor in a biopsy-proven translational mouse model of non-alcoholic steatohepatitis (NASH). Velocity Pharmaceutical Development http://www.vpd.net/press_releases/VPD_1.4.2018.html (2018).

  203. You, S. et al. Long-acting GLP-1 and glucagon receptor dual agonists for the treatment of type 2 diabetes. Diabetes 65, A274 (2016).

    Google Scholar 

  204. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03311724 (2018).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03131687 (2018).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02205528 (2018).

  207. Sanofi. Q2 2018 performance positions Sanofi for new growth phase. Hugin.info http://hugin.info/152918/R/2208107/858824.pdf (2018).

  208. Knudsen, C. B. et al. An optimized novel GLP-1-GIP receptor dual agonist with potent effects on body weight and glucose control in mice has the potential for once-weekly administration in humans. Diabetes 64, A528 (2015).

    Google Scholar 

  209. SCOHIA PHARMA, Inc. SCO-094. SCOHIA PHARMA, Inc. Pipeline https://www.scohia.com/eng/sys/pipeline/sco-094 (2017).

  210. Hansen, S. K. Carmot Therapeutics announces close of series B financing. Carmot Therapeutics http://carmot-therapeutics.us/2018/01/16/carmot-therapeutics-announces-close-of-series-b-financing (2018).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03374241 (2018).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03661879 (2018).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03095807 (2017).

  214. Sanofi. Sustaining innovation analyst day. Sanofi https://www.sanofi.com/media/Project/One-Sanofi-Web/sanofi-com/en/investors/docs/Sustaining_innovation_day_2017_presentation_appendices_Web.pdf (2017).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03230786 (2018).

  216. Eli Lilly and Company. Medicines in development — molecule and potential indication data as of July 17, 2018. Lilly Discovery https://www.lilly.com/discovery/pipeline (2018).

Download references

Acknowledgements

The authors thank L. Albertsen for helping with the figure design. The authors acknowledge the support of Helmholtz Alliance ICEMED, the Helmholtz Initiative on Personalized Medicine iMed, the Helmholtz crossprogram topic “Metabolic Dysfunction”, the Alexander von Humboldt Foundation, the German Research Foundation (DFG) (SFB1123) and the European Research Council (AdG HypoFlam no. 695054). C.C. is supported by the Lundbeck Foundation (Fellowship: R238-2016-2859) and the Novo Nordisk Foundation (grant: NNF17OC0026114). Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center, based at the University of Copenhagen, Denmark, and partially funded by an unconditional donation from the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.C. and B.F. researched data for the article and wrote the article. C.C., B.F., T.D.M., R.D.D., M.H.T. and S.M.H. made substantial contributions to the discussion of the content and contributed to the writing, review and/or editing of the article.

Corresponding authors

Correspondence to Christoffer Clemmensen, Richard D. DiMarchi or Susanna M. Hofmann.

Ethics declarations

Competing interests

C.C., T.D.M. and S.M.H. declare no competing interests. M.H.T has served as SAB member of ERX Pharmaceuticals. The Institute for Diabetes and Obesity cooperates with Novo Nordisk and Sanofi-Aventis. B.F. and R.D.D. are currently employees of Novo Nordisk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemmensen, C., Finan, B., Müller, T.D. et al. Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nat Rev Endocrinol 15, 90–104 (2019). https://doi.org/10.1038/s41574-018-0118-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0118-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing