Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the extent and scope of epigenetic inheritance

Abstract

Environmental factors, particularly during early life, are important for the later metabolic health of the individual. In our obesogenic environment, it is of major socio-economic importance to investigate the mechanisms that contribute to the risk of metabolic ill health. Increasing evidence from a variety of model organisms suggests that non-genetically determined phenotypes, including metabolic effects such as glucose intolerance and obesity, can be passed between generations, which encourages us to revisit heredity. Inheritance of altered epigenetic information through the germ line has been proposed as one plausible mechanism. Whether the germline epigenome can be altered by environmental conditions such as diet and the extent to which this occurs in humans are the subject of intense current interest and debate, especially given that extensive germline epigenetic reprogramming is known to occur. As epigenetic mechanisms are often highly conserved between organisms, studying epigenetic inheritance in plants and lower metazoans has the potential to inform our investigation in mammals. This Review explores the extent to which epigenetic inheritance contributes to heredity in these different organisms, whether the environment can affect epigenetic inheritance and whether there is any evidence for the inheritance of acquired phenotypes.

Key points

  • Epigenetic marks control cellular identity and gene expression and are inherited when a cell divides by mitosis.

  • In mammals, we previously believed that all epigenetic marks are erased and reapplied (also termed reprogrammed) twice in a life cycle: once in the developing germ line and again in the early embryo.

  • Regions that are resistant to this epigenetic reprogramming might facilitate the inheritance of environmentally conferred epigenetic information between generations.

  • Epigenetic inheritance occurs in plants and animals such as the worm Caenorhabditis elegans, where less reprogramming of the marks occurs between generations.

  • There is some evidence for epigenetic inheritance in small mammals such as mice, but the precise mechanisms involved are not yet well understood.

  • At present, evidence for epigenetic inheritance in human populations is sparse, and it remains unclear to what extent epigenetic inheritance is important in human health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Murine models of epigenetic inheritance.
Fig. 2: The mammalian epigenetic reprogramming cycle, exemplified by the mouse.

Similar content being viewed by others

References

  1. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Almouzni, G. & Cedar, H. Maintenance of epigenetic information. Cold Spring Harb. Perspect. Biol. 8, a019372 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Feldmann, A. et al. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet. 9, e1003994 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Domcke, S. et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Grossniklaus, U., Kelly, B., Ferguson-Smith, A. C., Pembrey, M. & Lindquist, S. Transgenerational epigenetic inheritance: how important is it? Nat. Rev. Genet. 14, 228–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morgan, H. D., Santos, F., Green, K., Dean, W. & Reik, W. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, F. et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161, 1437–1452 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Tang, W. W. et al. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gkountela, S. et al. DNA demethylation dynamics in the human prenatal germline. Cell 161, 1425–1436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Okae, H. et al. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 10, e1004868 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kobayashi, H. et al. High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res. 23, 616–627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smallwood, S. A. et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitz, R. J. et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23, 1663–1674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cortijo, S., Wardenaar, R., Colome-Tatche, M., Johannes, F. & Colot, V. Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. Methods Mol. Biol. 1112, 125–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Colome-Tatche, M. et al. Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc. Natl Acad. Sci. USA 109, 16240–16245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandler, V. L. Paramutation: from maize to mice. Cell 128, 641–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gu, W. et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol. Cell 36, 231–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ashe, A. et al. PiRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Rechavi, O., Minevich, G. & Hobert, O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147, 1248–1256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bohacek, J. & Mansuy, I. M. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat. Rev. Genet. 16, 641–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Sales, V. M., Ferguson-Smith, A. C. & Patti, M. E. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 25, 559–571 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slotkin, R. K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Calarco, J. P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seong, K. H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Remy, J. J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Jullien, P. E., Susaki, D., Yelagandula, R., Higashiyama, T. & Berger, F. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr. Biol. 22, 1825–1830 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Ibarra, C. A. et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360–1364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brink, R. A. Paramutation at the R locus in maize. Cold Spring Harb. Symp. Quant. Biol. 23, 379–391 (1958).

    Article  CAS  PubMed  Google Scholar 

  34. Brink, A., Styles, E. D. & Axtell, J. D. Paramutation: directed genetic change. Science 159, 161–170 (1968).

    Article  CAS  PubMed  Google Scholar 

  35. Brzeska, K., Brzeski, J., Smith, J. & Chandler, V. L. Transgenic expression of CBBP, a CXC domain protein, establishes paramutation in maize. Proc. Natl Acad. Sci. USA 107, 5516–5521 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barbour, J. E. et al. Required to maintain repression2 is a novel protein that facilitates locus-specific paramutation in maize. Plant Cell 24, 1761–1775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hollick, J. B. Paramutation: a trans-homolog interaction affecting heritable gene regulation. Curr. Opin. Plant Biol. 15, 536–543 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Belele, C. L. et al. Specific tandem repeats are sufficient for paramutation-induced trans-generational silencing. PLoS Genet. 9, e1003773 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Arteaga-Vazquez, M. A. & Chandler, V. L. Paramutation in maize: RNA mediated trans-generational gene silencing. Curr. Opin. Genet. Dev. 20, 156–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Molinier, J., Ries, G., Zipfel, C. & Hohn, B. Transgeneration memory of stress in plants. Nature 442, 1046–1049 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Pecinka, A. et al. Transgenerational stress memory is not a general response in Arabidopsis. PLoS ONE 4, e5202 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Boyko, A. et al. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS ONE 5, e9514 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kerr, S. C., Ruppersburg, C. C., Francis, J. W. & Katz, D. J. SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proc. Natl Acad. Sci. USA 111, 9509–9514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fong, Y., Bender, L., Wang, W. & Strome, S. Regulation of the different chromatin states of autosomes and X chromosomes in the germ line of C. elegans. Science 296, 2235–2238 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rechtsteiner, A. et al. The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genet. 6, e1001091 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Furuhashi, H. et al. Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics Chromatin 3, 15 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sijen, T., Steiner, F. A., Thijssen, K. L. & Plasterk, R. H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Gu, S. G. et al. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat. Genet. 44, 157–164 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, H. C. et al. C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell 150, 78–87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Sasaki, H. & Matsui, Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat. Rev. Genet. 9, 129–140 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B. & Trasler, J. M. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev. Biol. 307, 368–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Lane, N. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Akiyama, T., Suzuki, O., Matsuda, J. & Aoki, F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet. 7, e1002279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jachowicz, J. W., Santenard, A., Bender, A., Muller, J. & Torres-Padilla, M. E. Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev. 27, 2427–2432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Santenard, A. et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12, 853–862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, X. et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakamura, T. et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 64–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Messerschmidt, D. M. et al. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499–1502 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Smith, Z. D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kobayashi, H. et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet. 8, e1002440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, W. M. et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc. Natl Acad. Sci. USA 109, 490–494 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

    CAS  PubMed  Google Scholar 

  72. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Kuramochi-Miyagawa, S. et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duhl, D. M., Vrieling, H., Miller, K. A., Wolff, G. L. & Barsh, G. S. Neomorphic agouti mutations in obese yellow mice. Nat. Genet. 8, 59–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Rakyan, V. K. et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc. Natl Acad. Sci. USA 100, 2538–2543 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Blewitt, M. E., Vickaryous, N. K., Paldi, A., Koseki, H. & Whitelaw, E. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet. 2, 399–405 (2006).

    Article  CAS  Google Scholar 

  80. Chong, S. et al. Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat. Genet. 39, 614–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Padmanabhan, N. et al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81–93 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Yamada, K., Gravel, R. A., Toraya, T. & Matthews, R. G. Human methionine synthase reductase is a molecular chaperone for human methionine synthase. Proc. Natl Acad. Sci. USA 103, 9476–9481 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bibbins-Domingo, K. et al. Folic acid supplementation for the prevention of neural tube defects. JAMA 317, 183 (2017).

    Article  PubMed  Google Scholar 

  84. Christensen, B. et al. Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am. J. Med. Genet. 84, 151–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. van der Put, N. M. et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346, 1070–1071 (1995).

    Article  PubMed  Google Scholar 

  86. Whitehead, A. S. et al. A genetic defect in 5,10 methylenetetrahydrofolate reductase in neural tube defects. QJM 88, 763–766 (1995).

    CAS  PubMed  Google Scholar 

  87. Ou, C. Y. et al. 5,10 Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects. Am. J. Med. Genet. 63, 610–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Wilson, A. et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol. Genet. Metab. 67, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Doolin, M. T. et al. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am. J. Hum. Genet. 71, 1222–1226 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. O’Leary, V. B. et al. Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol. Genet. Metab. 85, 220–227 (2005).

    Article  PubMed  CAS  Google Scholar 

  91. Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Drake, A. J. & Walker, B. R. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J. Endocrinol. 180, 1–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Jimenez-Chillaron, J. C. et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460–468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ng, S. F. et al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cropley, J. E., Suter, C. M., Beckman, K. B. & Martin, D. I. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc. Natl Acad. Sci. USA 103, 17308–17312 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Waterland, R. A., Travisano, M. & Tahiliani, K. G. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J. 21, 3380–3385 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Anway, M. D. et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Guerrero-Bosagna, C., Settles, M., Lucker, B. & Skinner, M. K. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 5, e13100 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Iqbal, K. et al. Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming. Genome Biol. 16, 59 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Schuster, A., Skinner, M. K. & Yan, W. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ. Epigenet. 2, dvw001 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Brieño-Enríquez, M. A. et al. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS ONE 10, e0124296 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Johansson, H. K. L., Svingen, T., Fowler, P. A., Vinggaard, A. M. & Boberg, J. Environmental influences on ovarian dysgenesis — developmental windows sensitive to chemical exposures. Nat. Rev. Endocrinol. 13, 400–414 (2017).

    Article  PubMed  Google Scholar 

  105. Di Donato, M. et al. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol. Cell. Endocrinol. 457, 35–42 (2017).

    Article  PubMed  CAS  Google Scholar 

  106. Skakkebaek, N. E., Rajpert-De Meyts, E. & Main, K. M. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum. Reprod. 16, 972–978 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Radford, E. J. et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hammoud, S. S. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Brykczynska, U. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17, 679–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Siklenka, K. et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350, aab2006 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Kaati, G., Bygren, L. O. & Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur. J. Hum. Genet. 10, 682–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Kaati, G., Bygren, L. O., Pembrey, M. & Sjostrom, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15, 784–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Heijmans, B. T. & Mill, J. Commentary: the seven plagues of epigenetic epidemiology. Int. J. Epidemiol. 41, 74–78 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Senn, S. Epigenetics or ephemeral genetics? Eur. J. Hum. Genet. 14, 1149 author reply 1149–1150 (2006).

    Article  PubMed  Google Scholar 

  116. Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Roseboom, T. J. et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol. Cell. Endocrinol. 185, 93–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Tobi, E. W. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18, 4046–4053 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tobi, E. W. et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 4, eaao4364 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Caramaschi, D. et al. Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study. Hum. Mol. Genet. 26, 3001–3013 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Waterland, R. A. et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6, e1001252 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Silver, M. J. et al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol. 16, 118 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Kuhnen, P. et al. Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab. 24, 502–509 (2016).

    Article  PubMed  CAS  Google Scholar 

  129. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Miska, E. A. & Ferguson-Smith, A. C. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance. Science 354, 59–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, H. & Zhang, Y. Mechanisms and functions of Tet protein- mediated 5-methylcytosine oxidation. Genes Dev. 25, 2436–2452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I. & Whitelaw, E. Metastable epialleles in mammals. Trends Genet. 18, 348–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Smallwood, S. A. & Kelsey, G. De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks A. Ferguson-Smith for invaluable discussions and comments on the manuscript. The author apologizes to the authors of important original research papers whose work could not be cited owing to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Radford.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radford, E.J. Exploring the extent and scope of epigenetic inheritance. Nat Rev Endocrinol 14, 345–355 (2018). https://doi.org/10.1038/s41574-018-0005-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0005-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing