Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Scars

Abstract

Wound healing occurs as a response to disruption of the epidermis and dermis. It is an intricate and well-orchestrated response with the goal to restore skin integrity and function. However, in hundreds of millions of patients, skin wound healing results in abnormal scarring, including keloid lesions or hypertrophic scarring. Although the underlying mechanisms of hypertrophic scars and keloid lesions are not well defined, evidence suggests that the changes in the extracellular matrix are perpetuated by ongoing inflammation in susceptible individuals, resulting in a fibrotic phenotype. The lesions then become established, with ongoing deposition of excess disordered collagen. Not only can abnormal scarring be debilitating and painful, it can also cause functional impairment and profound changes in appearance, thereby substantially affecting patients’ lives. Despite the vast demand on patient health and the medical society, very little progress has been made in the care of patients with abnormal scarring. To improve the outcome of pathological scarring, standardized and innovative approaches are required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Presentation of various scar types.
Fig. 2: Phases of wound healing.
Fig. 3: Proposed treatment algorithm for hypertrophic scars.
Fig. 4: Proposed treatment algorithm for small and large keloids.
Fig. 5: Keloid lesions on the chest of a patient during treatment course.
Fig. 6: Clinical image demonstrating major keloid lesions formed in a patient with a positive family history for keloids, indicating genetic predisposition.

Similar content being viewed by others

References

  1. Gauglitz, G. G., Korting, H. C., Pavicic, T., Ruzicka, T. & Jeschke, M. G. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol. Med. 17, 113–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Ud-Din, S. & Bayat, A. new insights on keloids, hypertrophic scars, and striae. Dermatol. Clin. 32, 193–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Tan, S., Khumalo, N. & Bayat, A. Understanding keloid pathobiology from a quasi-neoplastic perspective: less of a scar and more of a chronic inflammatory disease with cancer-like tendencies. Front. Immunol. 10, 1810 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shih, B. & Bayat, A. Genetics of keloid scarring. Arch. Dermatol. Res. 302, 319–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, J. et al. Recent advances in hypertrophic scar. Histol. Histopathol. 33, 27–39 (2018).

    PubMed  Google Scholar 

  6. Lee, S.-S., Yosipovitch, G., Chan, Y.-H. & Goh, C.-L. Pruritus, pain, and small nerve fiber function in keloids: a controlled study. J. Am. Acad. Dermatol. 51, 1002–1006 (2004).

    Article  PubMed  Google Scholar 

  7. Guest, J. F., Fuller, G. W. & Vowden, P. Cohort study evaluating the burden of wounds to the UK’s National Health Service in 2017/2018: update from 2012/2013. BMJ Open 10, e045253 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. International Surgical Outcomes Study Group. Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries. Br. J. Anaesth. 117, 601–609 (2016).

    Article  Google Scholar 

  9. Rose, J. et al. Estimated need for surgery worldwide based on prevalence of diseases: implications for public health planning of surgical services. Lancet Glob. Health 3, S13–S20 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Amici, J. M. et al. Prevalence of scars: an international epidemiological survey in adults. J. Eur. Acad. Dermatol. Venereol. 36, e799–e800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Wal, M. B. A. et al. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring. Wound Repair Regen. 20, 676–687 (2012).

    Article  PubMed  Google Scholar 

  12. Zhou, C. et al. Beyond the surface: a deeper look at the psychosocial impacts of acne scarring. Clin. Cosmet. Investig. Dermatol. 16, 731–738 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, S. et al. Keloid: genetic susceptibility and contributions of genetics and epigenetics to its pathogenesis. Exp. Dermatol. 31, 1665–1675 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, R. et al. Risk factors associated with the progression from keloids to severe keloids. Chin. Med. J. 135, 828–836 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ogawa, R. The most current algorithms for the treatment and prevention of hypertrophic scars and keloids: a 2020 update of the algorithms published 10 years ago. Plast. Reconstr. Surg. 149, 79e–94e (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Ingrasci, G., El-Kashlan, N., Alexis, A. & Yosipovitch, G. Chronic itch in African Americans: an unmet need. Arch. Dermatol. Res. 314, 405–415 (2021).

    Article  PubMed  Google Scholar 

  17. Chung, S., Nakashima, M., Zembutsu, H. & Nakamura, Y. Possible involvement of NEDD4 in keloid formation; its critical role in fibroblast proliferation and collagen production. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 87, 563–573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, Y. et al. NEDD4 single nucleotide polymorphism rs2271289 is associated with keloids in Chinese Han population. Am. J. Transl. Res. 8, 544–555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, H. et al. Identification and validation of HOXD3 and UNC5C as molecular signatures in keloid based on weighted gene co-expression network analysis. Genomics 114, 110403 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, X. et al. Identification and characterization of four immune-related signatures in keloid. Front. Immunol. 13, 942446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu, Y.-Y. et al. Risk of cancer development in patients with keloids. Sci. Rep. 11, 9390–9390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Madu, P. & Kundu, R. V. Follicular and scarring disorders in skin of color: presentation and management. Am. J. Clin. Dermatol. 15, 307–321 (2014).

    Article  PubMed  Google Scholar 

  23. Huang, C. & Ogawa, R. Systemic factors that shape cutaneous pathological scarring. FASEB J. 34, 13171–13184 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Ibrahim, N. E., Shaharan, S. & Dheansa, B. Adverse effects of pregnancy on keloids and hypertrophic scars. Cureus 12, e12154 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. Noishiki, C., Hayasaka, Y. & Ogawa, R. Sex differences in keloidogenesis: an analysis of 1659 keloid patients in Japan. Dermatol. Ther. 9, 747–754 (2019).

    Article  Google Scholar 

  26. Ogawa, R. et al. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair Regen. 20, 149–157 (2012).

    Article  PubMed  Google Scholar 

  27. Wang, J. C., Fort, C. L. & Hom, D. B. Location propensity for keloids in the head and neck. Facial Plast. Surg. Aesthet. Med. 23, 59–64 (2021).

    Article  PubMed  Google Scholar 

  28. Arno, A. I., Gauglitz, G. G., Barret, J. P. & Jeschke, M. G. Up-to-date approach to manage keloids and hypertrophic scars: a useful guide. Burns 40, 1255–1266 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kwon, H.-E., Ahn, H.-J., Jeong, S. J. & Shin, M. K. The increased prevalence of keloids in atopic dermatitis patients with allergic comorbidities: a nationwide retrospective cohort study. Sci. Rep. 11, 23669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ung, C. Y. et al. Comorbidities of keloid and hypertrophic scars among participants in UK Biobank. JAMA Dermatol. 159, 172–181 (2023).

    Article  PubMed  Google Scholar 

  31. Limandjaja, G. C., Niessen, F. B., Scheper, R. J. & Gibbs, S. Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars. Exp. Dermatol. 30, 146–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Butzelaar, L., Ulrich, M. M. W., Mink van der Molen, A. B., Niessen, F. B. & Beelen, R. H. J. Currently known risk factors for hypertrophic skin scarring: a review. J. Plast. Reconstr. Aesthet. Surg. 69, 163–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Davies, P., Cuttle, L. & Young, A. A scoping review of the methodology used in studies of genetic influences on the development of keloid or hypertrophic scarring in adults and children after acute wounding. Adv. Wound Care 10, 557–570 (2021).

    Article  Google Scholar 

  34. Lawrence, J. W., Mason, S. T., Schomer, K. & Klein, M. B. Epidemiology and impact of scarring after burn injury. J. Burn Care Res. 33, 136–146 (2012).

    Article  PubMed  Google Scholar 

  35. Korkmaz, H. I. et al. Scar formation from the perspective of complexity science: a new look at the biological system as a whole. J. Wound Care 31, 178–184 (2022).

    Article  PubMed  Google Scholar 

  36. Cb, N., Nc, D., Jm, H., M, M. & Jg, W. Burns: pathophysiology of systemic complications and current management. J. Burn Care Res. 38, e469–e481 (2017).

    Article  Google Scholar 

  37. WHO. Fact Sheet: Burns. WHO https://www.who.int/en/news-room/fact-sheets/detail/burns (2023).

  38. Spronk, I. et al. Health related quality of life in adults after burn injuries: a systematic review. PLoS ONE 13, e0197507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. van Baar, M. E. in Textbook on Scar Management (eds Téot, L., Mustoe, T. A., Middelkoop, E. & Gauglitz, G. G.) 37–43 (Springer, 2020).

  40. van de Kar, A. L., van Riessen, F., Koolbergen, D. R. & van der Horst, C. M. A. M. Influence of age on scar tissue: a retrospective study on the differences in scar tissue development between children and adults. J. Plast. Reconstr. Aesthet. Surg. 73, 1357–1404 (2020).

    PubMed  Google Scholar 

  41. van der Veer, W. M. et al. Potential cellular and molecular causes of hypertrophic scar formation. Burns 35, 15–29 (2009).

    Article  PubMed  Google Scholar 

  42. Fitzpatrick, T. B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Sasor, S. E. & Chung, K. C. Upper extremity burns in the developing world: a neglected epidemic. Hand Clin. 35, 457–466 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mackenbach, J. P. et al. Socioeconomic inequalities in health in 22 European countries. N. Engl. J. Med. 358, 2468–2481 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. MacKinnon, N. J. et al. Mapping health disparities in 11 high-income nations. JAMA Netw. Open 6, e2322310 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hendriks, T. C. C. et al. The development of burn scar contractures and impact on joint function, disability and quality of life in low- and middle-income countries: a prospective cohort study with one-year follow-up. Burns 48, 215–227 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Oosterwijk, A. M. et al. Prevalence of scar contractures after burn: a systematic review. Burns 43, 41–49 (2017).

    Article  PubMed  Google Scholar 

  48. Meng, F. et al. Pediatric burn contractures in low- and lower middle-income countries: a systematic review of causes and factors affecting outcome. Burns 46, 993–1004 (2020).

    Article  PubMed  Google Scholar 

  49. Wong, V. W. et al. A mechanomodulatory device to minimize incisional scar formation. Adv. Wound Care 2, 185–194 (2013).

    Article  Google Scholar 

  50. Bayat, A., McGrouther, D. A. & Ferguson, M. W. J. Skin scarring. BMJ 326, 88–92 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ud-Din, S., Volk, S. W. & Bayat, A. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives. Exp. Dermatol. 23, 615–619 (2014).

    Article  PubMed  Google Scholar 

  52. Shih, B., Garside, E., McGrouther, D. A. & Bayat, A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen. 18, 139–153 (2010).

    Article  PubMed  Google Scholar 

  53. Sinha, S. et al. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 185, 4717–4736.e25 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Bagabir, R. et al. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br. J. Dermatol. 167, 1053–1066 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Brown, J. J. & Bayat, A. Genetic susceptibility to raised dermal scarring. Br. J. Dermatol. 161, 8–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Hosseini, M., Brown, J., Khosrotehrani, K., Bayat, A. & Shafiee, A. Skin biomechanics: a potential therapeutic intervention target to reduce scarring. Burns Trauma 10, tkac036 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Greaves, N. S., Ashcroft, K. J., Baguneid, M. & Bayat, A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J. Dermatol. Sci. 72, 206–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Hodgkinson, T. & Bayat, A. Dermal substitute-assisted healing: enhancing stem cell therapy with novel biomaterial design. Arch. Dermatol. Res. 303, 301–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Z. et al. Epidermal Notch1 recruits RORγ+ group 3 innate lymphoid cells to orchestrate normal skin repair. Nat. Commun. 7, 11394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rak, G. D. et al. IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J. Invest. Dermatol. 136, 487–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kidzeru, E. B. et al. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp. Dermatol. 32, 570–587 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Rees, P. A., Greaves, N. S., Baguneid, M. & Bayat, A. Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv. Wound Care 4, 687–703 (2015).

    Article  Google Scholar 

  63. Tanno, H. et al. Invariant NKT cells promote skin wound healing by preventing a prolonged neutrophilic inflammatory response. Wound Repair Regen. 25, 805–815 (2017).

    Article  PubMed  Google Scholar 

  64. Iqbal, S. A., Sidgwick, G. P. & Bayat, A. Identification of fibrocytes from mesenchymal stem cells in keloid tissue: a potential source of abnormal fibroblasts in keloid scarring. Arch. Dermatol. Res. 304, 665–671 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Ud-Din, S., Wilgus, T. A. & Bayat, A. Mast cells in skin scarring: a review of animal and human research. Front. Immunol. 11, 552205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Govindaraju, P., Todd, L., Shetye, S., Monslow, J. & Puré, E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol. 75–76, 314–330 (2019).

    Article  PubMed  Google Scholar 

  67. Kidzeru, E. B. et al. Immune and associated molecular markers – their role in fibrotic dermal scarring. Exp. Dermatol. 32, 570–587 (2022).

    Article  Google Scholar 

  68. Xiao, T., Yan, Z., Xiao, S. & Xia, Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res. Ther. 11, 232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lau, K., Paus, R., Tiede, S., Day, P. & Bayat, A. Exploring the role of stem cells in cutaneous wound healing. Exp. Dermatol. 18, 921–933 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Moses, H. L., Roberts, A. B. & Derynck, R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb. Perspect. Biol. 8, a021865 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jagadeesan, J. & Bayat, A. Transforming growth factor beta (TGFβ) and keloid disease. Int. J. Surg. 5, 278–285 (2007).

    Article  PubMed  Google Scholar 

  72. Pakshir, P. et al. The myofibroblast at a glance. J. Cell Sci. 133, jcs227900 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Taylor, A. et al. Transforming growth factor beta gene signatures are spatially enriched in keloid tissue biopsies and ex vivo-cultured keloid fibroblasts. Acta Derm. Venereol. 97, 10–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Willenborg, S., Injarabian, L. & Eming, S. A. Role of macrophages in wound healing. Cold Spring Harb. Perspect. Biol. 14, a041216 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, M. & Zhang, S. T cells in fibrosis and fibrotic diseases. Front. Immunol. 11, 1142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nguyen, J. K., Austin, E., Huang, A., Mamalis, A. & Jagdeo, J. The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets. Arch. Dermatol. Res. 312, 81–92 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Ashrafi, M., Baguneid, M. & Bayat, A. The role of neuromediators and innervation in cutaneous wound healing. Acta Derm. Venereol. 96, 587–594 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Volk, S. W., Iqbal, S. A. & Bayat, A. Interactions of the extracellular matrix and progenitor cells in cutaneous wound healing. Adv. Wound Care 2, 261–272 (2013).

    Article  Google Scholar 

  80. Syed, F. et al. Fibroblasts from the growing margin of keloid scars produce higher levels of collagen I and III compared with intralesional and extralesional sites: clinical implications for lesional site-directed therapy. Br. J. Dermatol. 164, 83–96 (2010).

    Article  Google Scholar 

  81. Khan, U. & Bayat, A. Microarchitectural analysis of decellularised unscarred and scarred dermis provides insight into the organisation and ultrastructure of the human skin with implications for future dermal substitute scaffold design. J. Tissue Eng. 10, 2041731419843710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sidgwick, G. P. & Bayat, A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J. Eur. Acad. Dermatol. Venereol. 26, 141–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Folkman, J. Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Chaudhari, N. et al. Topical application of an irreversible small molecule inhibitor of lysyl oxidases ameliorates skin scarring and fibrosis. Nat. Commun. 13, 5555 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ud-Din, S. & Bayat, A. Classification of distinct endotypes in human skin scarring: S.C.A.R.-a novel perspective on dermal fibrosis. Adv. Wound Care 11, 109–120 (2022).

    Article  Google Scholar 

  86. Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J. & Mirastschijski, U. Skin wound healing: an update on the current knowledge and concepts. Eur. Surg. Res. 58, 81–94 (2016).

    Article  PubMed  Google Scholar 

  87. Elrefaie, A. M., Salem, R. M. & Faheem, M. H. High-resolution ultrasound for keloids and hypertrophic scar assessment. Lasers Med. Sci. 35, 379–385 (2020).

    Article  PubMed  Google Scholar 

  88. Jacobs, J. E., Birnbaum, B. A. & Siegelman, E. S. Heterotopic ossification of midline abdominal incisions: CT and MR imaging findings. Am. J. Roentgenol. 166, 579–584 (1996).

    Article  CAS  Google Scholar 

  89. Roques, C., Téot, L., Frasson, N. & Meaume, S. PRIMOS: an optical system that produces three-dimensional measurements of skin surfaces. J. Wound Care 12, 362–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Deng, H. & Li-Tsang, C. W. P. Measurement of vascularity in the scar: a systematic review. Burns 45, 1253–1265 (2019).

    Article  PubMed  Google Scholar 

  91. Leszczynski, R., da Silva, C. A., Pinto, A. C. P. N., Kuczynski, U. & da Silva, E. M. Laser therapy for treating hypertrophic and keloid scars. Cochrane Database Syst. Rev. 9, CD011642 (2022).

    PubMed  Google Scholar 

  92. Baryza, M. J. & Baryza, G. A. The vancouver scar scale: an administration tool and its interrater reliability. J. Burn Care Rehabil. 16, 535–538 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. van de Kar, A. L. et al. Reliable and feasible evaluation of linear scars by the patient and observer scar assessment scale. Plast. Reconstr. Surg. 116, 514–522 (2005).

    Article  PubMed  Google Scholar 

  94. Duncan, J. A. L. et al. Visual analogue scale scoring and ranking: a suitable and sensitive method for assessing scar quality? Plast. Reconstr. Surg. 118, 909–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Ogawa, R. et al. Diagnosis and treatment of keloids and hypertrophic scars-japan scar workshop consensus document 2018. Burns Trauma 7, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Scar-Keloid. Japan Scar Workshop Scar Scale 2011. Japan Scar Workshop http://www.scar-keloid.com/pdf/JSW_scar_scale_2011_EN.pdf (2011).

  97. Scar-Keloid. Japan Scar Workshop Scar Scale 2015. Japan Scar Workshop http://www.scar-keloid.com/pdf/JSW_scar_scale_2015_EN.pdf (2015).

  98. van Zuijlen, P. P. et al. Dermal substitution in acute burns and reconstructive surgery: a subjective and objective long-term follow-up. Plast. Reconstr. Surg. 108, 1938–1946 (2001).

    Article  PubMed  Google Scholar 

  99. Nixon, M., Outlaw, F. & Leung, T. S. Accurate device-independent colorimetric measurements using smartphones. PLoS ONE 15, e0230561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sanderson, R. W. et al. Smartphone-based optical palpation: towards elastography of skin for telehealth applications. Biomed. Opt. Express 12, 3117–3132 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Carmichael, S. W. The tangled web of Langer’s lines. Clin. Anat. 27, 162–168 (2014).

    Article  PubMed  Google Scholar 

  102. Harn, H. I.-C. et al. The tension biology of wound healing. Exp. Dermatol. 28, 464–471 (2019).

    Article  PubMed  Google Scholar 

  103. Ogawa, R. et al. Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring: the importance of fascial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction. J. Nippon Med. Sch. 78, 68–76 (2011).

    Article  PubMed  Google Scholar 

  104. Smith, D. J., Thomson, P. D., Garner, W. L. & Rodriguez, J. L. Burn wounds: infection and healing. Am. J. Surg. 167, S46–S48 (1994).

    Article  Google Scholar 

  105. Amici, J.-M. et al. Expert recommendations on supportive skin care for non-surgical and surgical procedures. J. Eur. Acad. Dermatol. Venereol. 37, 16–33 (2023).

    Article  PubMed  Google Scholar 

  106. Goutos, I., Dziewulski, P. & Richardson, P. M. Pruritus in burns: review article. J. Burn. Care Res. 30, 221–228 (2009).

    Article  PubMed  Google Scholar 

  107. Andrews, J. P., Marttala, J., Macarak, E., Rosenbloom, J. & Uitto, J. Keloids: the paradigm of skin fibrosis - pathomechanisms and treatment. Matrix Biol. 51, 37–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Finnerty, C. C. et al. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet 388, 1427–1436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. O’Reilly, S., Crofton, E., Brown, J., Strong, J. & Ziviani, J. Use of tape for the management of hypertrophic scar development: a comprehensive review. Scars Burn. Heal. 7, 205951312110292 (2021).

    Article  Google Scholar 

  110. Deflorin, C. et al. Physical management of scar tissue: a systematic review and meta-analysis. J. Altern. Complement. Med. 26, 854–865 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ai, J.-W. et al. The effectiveness of pressure therapy (15–25 mmHg) for hypertrophic burn scars: a systematic review and meta-analysis. Sci. Rep. 7, 40185 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Finnerty, C. C. et al. Hypertrophic scarring: the greatest unmet challenge following burn injury. Lancet 388, 1427–1436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jeschke, M. G. et al. Burn injury. Nat. Rev. Dis. Primers 6, 11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Thomson, W. G. Treatment of hypertrophic scarring by compression and occlusion. Proc. R. Soc. Med. 67, 256–257 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin, T. R., Chou, F.-H., Wang, H.-H. & Wang, R.-H. Effects of scar massage on burn scars: a systematic review and meta-analysis. J. Clin. Nurs. 32, 3144–3154 (2023).

    Article  PubMed  Google Scholar 

  116. Anzarut, A., Olson, J., Singh, P., Rowe, B. H. & Tredget, E. E. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis. J. Plast. Reconstr. Aesthet. Surg. 62, 77–84 (2009).

    Article  PubMed  Google Scholar 

  117. Wiseman, J. et al. Effectiveness of topical silicone gel and pressure garment therapy for burn scar prevention and management in children 12-months postburn: a parallel group randomised controlled trial. Clin. Rehabil. 35, 1126–1141 (2021).

    Article  PubMed  Google Scholar 

  118. Zhuang, Z., Li, Y. & Wei, X. The safety and efficacy of intralesional triamcinolone acetonide for keloids and hypertrophic scars: a systematic review and meta-analysis. Burns 47, 987–998 (2021).

    Article  PubMed  Google Scholar 

  119. Gold, M. H. et al. Updated international clinical recommendations on scar management: part 1–evaluating the evidence. Dermatol. Surg. 40, 817–824 (2014).

    CAS  PubMed  Google Scholar 

  120. Ogawa, R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci. 18, 606 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ceilley, R. I. & Babin, R. W. The combined use of cryosurgery and intralesional injections of suspensions of fluorinated adrenocorticosteroids for reducing keloids and hypertrophic scars. J. Dermatol. Surg. Oncol. 5, 54–56 (1979).

    Article  CAS  PubMed  Google Scholar 

  122. Schwaiger, H., Reinholz, M., Poetschke, J., Ruzicka, T. & Gauglitz, G. Evaluating the therapeutic success of keloids treated with cryotherapy and intralesional corticosteroids using noninvasive objective measures. Dermatol. Surg. 44, 635–644 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Goutos, I. & Ogawa, R. Steroid tape: a promising adjunct to scar management. Scars Burn. Heal. 3, 2059513117690937 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Ogawa, R. in Textbook on Scar Management (eds Téot, L., Mustoe, T. A., Middelkoop, E. & Gauglitz, G. G.) 491–496 (Springer, 2020).

  125. Nast, A. et al. German S2k guidelines for the therapy of pathological scars (hypertrophic scars and keloids). J. Dtsch Dermatol. Ges. 10, 747–760 (2012).

    PubMed  Google Scholar 

  126. Gauglitz, G. Management of keloids and hypertrophic scars: current and emerging options. Clin. Cosmet. Investig. Dermatol. 6, 103–114 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. O’Boyle, C. P., Shayan-Arani, H. & Hamada, M. W. Intralesional cryotherapy for hypertrophic scars and keloids: a review. Scars Burn. Heal. 3, 205951311770216 (2017).

    Article  Google Scholar 

  128. Fitzpatrick, R. E. Treatment of inflamed hypertrophic scars using intralesional 5-FU. Dermatol. Surg. 25, 224–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Nanda, S. & Reddy, B. S. N. Intralesional 5-fluorouracil as a treatment modality of keloids. Dermatol. Surg. 30, 54–57 (2004).

    PubMed  Google Scholar 

  130. Liu, W., Wu, X., Gao, Z. & Song, N. Remodelling of keloid tissue into normal-looking skin. J. Plast. Reconstr. Aesthet. Surg. 61, 1553–1554 (2008).

    Article  PubMed  Google Scholar 

  131. Darougheh, A., Asilian, A. & Shariati, F. Intralesional triamcinolone alone or in combination with 5-fluorouracil for the treatment of keloid and hypertrophic scars. Clin. Exp. Dermatol. 34, 219–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Davison, S. P. et al. Efficacy of intralesional 5-fluorouracil and triamcinolone in the treatment of keloids. Aesthet. Surg. J. 29, 40–46 (2009).

    Article  PubMed  Google Scholar 

  133. Reinholz, M., Guertler, A., Schwaiger, H., Poetschke, J. & Gauglitz, G. G. Treatment of keloids using 5‐fluorouracil in combination with crystalline triamcinolone acetonide suspension: evaluating therapeutic effects by using non‐invasive objective measures. J. Eur. Acad. Dermatol. Venereol. 34, 2436–2444 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, W., Li, X. & Li, X. Efficacy and safety of verapamil versus triamcinolone acetonide in treating keloids and hypertrophic scars: a systematic review and meta-analysis. Aesthetic Plast. Surg. 47, 473–482 (2023).

    Article  PubMed  Google Scholar 

  135. Danielsen, P. L. et al. Verapamil is less effective than triamcinolone for prevention of keloid scar recurrence after excision in a randomized controlled trial. Acta Derm. Venereol. 96, 774–778 (2016).

    CAS  PubMed  Google Scholar 

  136. Paasch, U. et al. S2k guideline: laser therapy of the skin. J. Dtsch Dermatol. Ges. 20, 1248–1267 (2022).

    PubMed  Google Scholar 

  137. Nast, A. et al. S2k guidelines for the therapy of pathological scars (hypertrophic scars and keloids) – Update 2020. J. Dtsch Dermatol. Ges. 19, 312–327 (2020).

    PubMed  Google Scholar 

  138. Seago, M. et al. Laser treatment of traumatic scars and contractures: 2020 international consensus recommendations. Lasers Surg. Med. 52, 96–116 (2019).

    Article  PubMed  Google Scholar 

  139. Salameh, F. et al. Energy-based devices for the treatment of acne scars: 2022 International consensus recommendations. Lasers Surg. Med. 54, 10–26 (2022).

    Article  PubMed  Google Scholar 

  140. Guertler, A. et al. Objective evaluation of the efficacy of a non-ablative fractional 1565 nm laser for the treatment of deliberate self-harm scars. Lasers Med. Sci. 33, 241–250 (2018).

    Article  PubMed  Google Scholar 

  141. Alegre-Sánchez, A., Jiménez-Gómez, N. & Boixeda, P. Laser-assisted drug delivery. Actas Dermosifiliogr. 109, 858–867 (2018).

    Article  PubMed  Google Scholar 

  142. Muskat, A., Kost, Y., Balazic, E., Cohen, J. L. & Kobets, K. Laser-assisted drug delivery in the treatment of scars, rhytids, and melasma: a comprehensive review of the literature. Aesthet. Surg. J. 43, NP181–NP198 (2023).

    Article  PubMed  Google Scholar 

  143. You, H. et al. The outcome of early ablative fractional laser treatment for thyroidectomy scars. Lasers Surg. Med. 52, 721–729 (2020).

    Article  PubMed  Google Scholar 

  144. Zainib, M. & Amin, N. P. Radiation therapy in the treatment of keloids. StatPearls [online] https://www.ncbi.nlm.nih.gov/books/NBK499973/ (updated 31 July 2023).

  145. Shin, H. W., Suk, S., Chae, S. W., Yoon, K. C. & Kim, J. Early postoperative treatment of mastectomy scars using a fractional carbon dioxide laser: a randomized, controlled, split-scar, blinded study. Arch. Plast. Surg. 48, 347–352 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Juhasz, M. L. W. & Cohen, J. L. Microneedling for the treatment of scars: an update for clinicians. Clin. Cosmet. Investig. Dermatol. 13, 997–1003 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chopra, V. K. & Claytor, B. B. Microneedling of immature scars Is safe and improves scar esthetics. Plast. Reconstr. Surg. Glob. Open 7, 13 (2019).

    Article  PubMed Central  Google Scholar 

  148. Ogawa, R., Yoshitatsu, S., Yoshida, K. & Miyashita, T. Is radiation therapy for keloids acceptable? The risk of radiation-induced carcinogenesis. Plast. Reconstr. Surg. 124, 1196–1201 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Ogawa, R. Surgery for scar revision and reduction: from primary closure to flap surgery. Burns Trauma 7, 7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Arima, J., Dohi, T., Kuribayashi, S., Akaishi, S. & Ogawa, R. Z-plasty and postoperative radiotherapy for anterior chest wall keloids: an analysis of 141 patients. Plast. Reconstr. Surg. Glob. Open 7, e2177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ogawa, R., Dohi, T., Tosa, M., Aoki, M. & Akaishi, S. The latest strategy for keloid and hypertrophic scar prevention and treatment: the Nippon Medical School (NMS) protocol. J. Nippon Med. Sch. 88, 2–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Simman, R. Wound closure and the reconstructive ladder in plastic surgery. J. Am. Coll. Certif. Wound Spec. 1, 6–11 (2009).

    Google Scholar 

  153. Willows, B. M., Ilyas, M. & Sharma, A. Laser in the management of burn scars. Burns 43, 1379–1389 (2017).

    Article  PubMed  Google Scholar 

  154. Wood, F. M. in Textbook on Scar Management (eds Téot, L., Mustoe, T. A., Middelkoop, E. & Gauglitz, G. G.) 311–316, 10.1007/978-3-030-44766-3_36 (Springer, 2020).

  155. Lo, C. H. et al. Wound healing and dermal regeneration in severe burn patients treated with NovoSorb® Biodegradable Temporising Matrix: a prospective clinical study. Burns 48, 529–538 (2022).

    Article  PubMed  Google Scholar 

  156. Finlay, V. et al. Increased burn healing time is associated with higher Vancouver Scar Scale score. Scars Burn. Heal. 3, 2059513117696324 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Stone Ii, R. et al. Advancements in regenerative strategies through the continuum of burn care. Front. Pharmacol. 9, 672 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Zuo, K. J., Medina, A. & Tredget, E. E. Important developments in burn care. Plast. Reconstr. Surg. 139, 120e–138e (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Finnerty, C. C., Mabvuure, N. T., Ali, A., Kozar, R. A. & Herndon, D. N. The surgically induced stress response. JPEN J. Parenter. Enter. Nutr. 37, 21S–29S (2013).

    Article  Google Scholar 

  160. Asuku, M. et al. Split-thickness skin graft donor-site morbidity: a systematic literature review. Burns 47, 1525–1546 (2021).

    Article  PubMed  Google Scholar 

  161. Chogan, F., Chen, Y., Wood, F. & Jeschke, M. G. Skin tissue engineering advances in burns: a brief introduction to the past, the present, and the future potential. J. Burn Care Res. 44, S1–S4 (2022).

    Article  PubMed Central  Google Scholar 

  162. Wood, F. M. Skin regeneration: the complexities of translation into clinical practise. Int. J. Biochem. Cell Biol. 56, 133–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Ramakrishnan, R. et al. Human-derived scaffold components and stem cells creating immunocompatible dermal tissue ensuing regulated nonfibrotic cellular phenotypes. ACS Biomater. Sci. Eng. 6, 2740–2756 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Varkey, M., Ding, J. & Tredget, E. E. Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J. Funct. Biomater. 6, 547–563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Monstrey, S. et al. Updated scar management practical guidelines: non-invasive and invasive measures. J. Plast. Reconstr. Aesthet. Surg. 67, 1017–1025 (2014).

    Article  PubMed  Google Scholar 

  166. Teot, L., Cherenfant, E., Otman, S. & Giovannini, U. M. Prefabricated vascularised supraclavicular flaps for face resurfacing after postburns scarring. Lancet 355, 1695–1696 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Rüegg, E. M. et al. Face transplantation program in france. Transplantation 93, 1166–1172 (2012).

    Article  PubMed  Google Scholar 

  168. Kildal, M., Andersson, G., Fugl-Meyer, A. R., Lannerstam, K. & Gerdin, B. Development of a brief version of the Burn Specific Health Scale (BSHS-B). J. Trauma 51, 740–746 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Meirte, J. et al. Classification of quality of life subscales within the ICF framework in burn research: identifying overlaps and gaps. Burns 40, 1353–1359 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Spronk, I. et al. Health related quality of life 5–7 years after minor and severe burn injuries: a multicentre cross-sectional study. Burns 45, 1291–1299 (2019).

    Article  PubMed  Google Scholar 

  171. Gojowy, D., Kauke, M., Ohmann, T., Homann, H.-H. & Mannil, L. Early and late-recorded predictors of health-related quality of life of burn patients on long-term follow-up. Burns 45, 1300–1310 (2019).

    Article  PubMed  Google Scholar 

  172. Bijlard, E. A systematic review on the prevalence, etiology, and pathophysiology of intrinsic pain in dermal scar tissue. Pain Physician 1, 1–13 (2017).

    Article  Google Scholar 

  173. Balci, D. D., Inandi, T., Dogramaci, C. A. & Celik, E. DLQI scores in patients with keloids and hypertrophic scars: a prospective case control study. J. Dtsch Dermatol. Ges. 7, 688–691 (2009).

    PubMed  Google Scholar 

  174. Bock, O., Schmid-Ott, G., Malewski, P. & Mrowietz, U. Quality of life of patients with keloid and hypertrophic scarring. Arch. Dermatol. Res. 297, 433–438 (2006).

    Article  PubMed  Google Scholar 

  175. Reinholz, M. et al. The dermatology life quality index as a means to assess life quality in patients with different scar types. J. Eur. Acad. Dermatol. Venereol. 29, 2112–2119 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Gieler, U., Gieler, T. & Kupfer, J. P. Acne and quality of life - impact and management. J. Eur. Acad. Dermatol. Venereol. 29, 12–14 (2015).

    Article  PubMed  Google Scholar 

  177. HAHM, B. J. et al. Changes of psychiatric parameters and their relationships by oral isotretinoin in acne patients. J. Dermatol. 36, 255–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Van Loey, N. E. E. & Van Son, M. J. M. Psychopathology and psychological problems in patients with burn scars. Am. J. Clin. Dermatol. 4, 245–272 (2003).

    Article  PubMed  Google Scholar 

  179. Spronk, I., Legemate, C. M., Polinder, S. & van Baar, M. E. Health-related quality of life in children after burn injuries. J. Trauma Acute Care Surg. 85, 1110–1118 (2018).

    Article  PubMed  Google Scholar 

  180. Poetschke, J. et al. Ultrapulsed fractional ablative carbon dioxide laser treatment of hypertrophic burn scars: evaluation of an in-patient controlled, standardized treatment approach. Lasers Med. Sci. 32, 1031–1040 (2017).

    Article  PubMed  Google Scholar 

  181. Boersma-van Dam, E., van de Schoot, R., Hofland, H. W. C., Engelhard, I. M. & Van Loey, N. E. E. Individual recovery of health-related quality of life during 18 months post-burn using a retrospective pre-burn measurement: an exploratory study. Qual. Life Res. 30, 737–749 (2021).

    Article  PubMed  Google Scholar 

  182. Meuli, M. et al. A cultured autologous dermo-epidermal skin substitute for full-thickness skin defects. Plast. Reconstr. Surg. 144, 188–198 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Dagher, J., Arcand, C., Auger, F. A., Germain, L. & Moulin, V. J. The self-assembled skin substitute history: successes, challenges, and current treatment indications. J. Burn Care Res. 44, S57–S64 (2023).

    Article  PubMed  Google Scholar 

  184. Cervelli, V. et al. Treatment of stable vitiligo by ReCell system. Acta Dermatovenerol. Croat. 17, 273–278 (2009).

    PubMed  Google Scholar 

  185. Cervelli, V. et al. Use of a novel autologous cell-harvesting device to promote epithelialization and enhance appropriate pigmentation in scar reconstruction. Clin. Exp. Dermatol. 35, 776–780 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Armendariz-Borunda, J. et al. A controlled clinical trial with pirfenidone in the treatment of pathological skin scarring caused by burns in pediatric patients. Ann. Plast. Surg. 68, 22–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Knuth, C. M. et al. Single-nuclei RNA profiling reveals disruption of adipokine and inflammatory signaling in adipose tissue of burn patients. Ann. Surg. https://doi.org/10.1097/SLA.0000000000005880 (2023).

  188. Lee, C.-C. et al. An updated review of the immunological mechanisms of keloid scars. Front. Immunol. 14, 1117630 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Poetschke, J. & Gauglitz, G. G. Current options for the treatment of pathological scarring. J. Dtsch Dermatol. Ges. 14, 467–477 (2016).

    PubMed  Google Scholar 

  190. Mustoe, T. A. et al. International clinical recommendations on scar management. Plast. Reconstr. Surg. 110, 560–571 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.G.J., F.M.W. and G.G.G.); Epidemiology (M.G.J., E.M., F.M.W. and G.G.G.); Mechanisms/pathophysiology (M.G.J., A.B. and G.G.G.); Diagnosis, screening and prevention (M.G.J., E.M., L.T., R.O. and G.G.G.); Management (M.G.J., E.M., L.T., R.O. and G.G.G.); Quality of life (M.G.J., E.M. and G.G.G.); Outlook (M.G.J., F.M.W. and G.G.G.); Overview of the Primer (M.G.J. and G.G.G.).

Corresponding author

Correspondence to Marc G. Jeschke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks D. M. Supp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 6.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeschke, M.G., Wood, F.M., Middelkoop, E. et al. Scars. Nat Rev Dis Primers 9, 64 (2023). https://doi.org/10.1038/s41572-023-00474-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00474-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing