Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting cuproplasia and cuproptosis in cancer

Abstract

Copper, an essential trace element that exists in oxidized and reduced forms, has pivotal roles in a variety of biological processes, including redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy and immune modulation; maintaining copper homeostasis is crucial as both its deficiency and its excess are deleterious. Dysregulated copper metabolism has a dual role in tumorigenesis and cancer therapy. Specifically, cuproplasia describes copper-dependent cell growth and proliferation, including hyperplasia, metaplasia and neoplasia, whereas cuproptosis refers to a mitochondrial pathway of cell death triggered by excessive copper exposure and subsequent proteotoxic stress (although complex interactions between cuproptosis and other cell death mechanisms, such as ferroptosis, are likely and remain enigmatic). In this Review, we summarize advances in our understanding of copper metabolism, the molecular machineries underlying cuproplasia and cuproptosis, and their potential targeting for cancer therapy. These new findings advance the rapidly expanding field of translational cancer research focused on metal compounds.

Key points

  • Copper is an essential trace element that has crucial roles in both normal physiological processes and pathological processes, including cancer.

  • Cuproplasia is a term used to describe the role of copper in promoting cell proliferation and growth.

  • Cuproptosis is a type of mitochondrial cell death driven by proteotoxic stress associated with protein lipoylation and degradation of Fe–S cluster proteins.

  • Ferredoxin 1 has a key role in cuproptosis by reducing Cu(II) to Cu(I) in mitochondria, facilitating excessive protein lipoylation and subsequent aggregation related to mitochondrial respiration.

  • Cuproplasia-related and/or cuproptosis-related genes have potential prognostic relevance in cancer owing to their influence on tumour growth, therapeutic responses and, ultimately, patient outcomes.

  • Both copper chelators and copper ionophores can suppress tumour growth and enhance chemotherapy, immunotherapy or radiation therapy by suppressing cuproplasia and inducing cuproptosis, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of pathways mediating copper metabolism.
Fig. 2: Mechanisms of cuproplasia.
Fig. 3: Mechanisms of cuproptosis.
Fig. 4: Influence of copper on iron metabolism and ferroptosis.

Similar content being viewed by others

References

  1. Steensholt, G. On the effect of copper on cytochrome oxidase. Acta Physiol. Scand. 14, 335–339 (1947).

    Article  CAS  PubMed  Google Scholar 

  2. Xue, Q. et al. Copper metabolism in cell death and autophagy. Autophagy 19, 2175–21951 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Danks, D. M., Cartwright, E., Stevens, B. J. & Townley, R. R. Menkes’ kinky hair disease: further definition of the defect in copper transport. Science 179, 1140–1142 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Cumings, J. N. The metabolism of copper and Wilson’s disease. Proc. Nutr. Soc. 21, 29–34 (1962).

    Article  CAS  PubMed  Google Scholar 

  5. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Rose, F., Hodak, M. & Bernholc, J. Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. Sci. Rep. 1, 11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heffern, M. C. et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 14219–14224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Atari-Hajipirloo, S., Valizadeh, N., Khadem-Ansari, M. H., Rasmi, Y. & Kheradmand, F. Altered concentrations of copper, zinc, and iron are associated with increased levels of glycated hemoglobin in patients with type 2 diabetes mellitus and their first-degree relatives. Int. J. Endocrinol. Metab. 14, e33273 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang, H. et al. Obesity is associated with copper elevation in serum and tissues. Metallomics 11, 1363–1371 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Leone, N., Courbon, D., Ducimetiere, P. & Zureik, M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17, 308–314 (2006).

    Article  PubMed  Google Scholar 

  11. Shanbhag, V. C. et al. Copper metabolism as a unique vulnerability in cancer. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118893 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J. & Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl Acad. Sci. USA 110, 19507–19512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ge, E. J. et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat. Rev. Cancer 22, 102–113 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Tang, D., Chen, X. & Kroemer, G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 32, 417–418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guan, D., Zhao, L., Shi, X., Ma, X. & Chen, Z. Copper in cancer: from pathogenesis to therapy. Biomed. Pharmacother. 163, 114791 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Yamaguchi-Iwai, Y. et al. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J. Biol. Chem. 272, 17711–17718 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Rees, E. M., Lee, J. & Thiele, D. J. Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J. Biol. Chem. 279, 54221–54229 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Arredondo, M., Muñoz, P., Mura, C. V. & Nùñez, M. T. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am. J. Physiol. Cell Physiol. 284, 1525–1530 (2003).

    Article  Google Scholar 

  20. Lin, C., Zhang, Z., Wang, T., Chen, C. & James Kang, Y. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics 7, 1285–1289 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Qi, Y. et al. Cuproptosis-related gene SLC31A1: prognosis values and potential biological functions in cancer. Sci. Rep. 13, 17790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Porcu, C. et al. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma. Oncotarget 9, 9325–9343 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roberts, E. A. & Sarkar, B. Liver as a key organ in the supply, storage, and excretion of copper. Am. J. Clin. Nutr. 88, 851S–854S (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Hellman, N. E. & Gitlin, J. D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Pan, Q. et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 62, 4854–4859 (2002).

    CAS  PubMed  Google Scholar 

  26. Chidambaram, M. V., Barnes, G. & Frieden, E. Inhibition of ceruloplasmin and other copper oxidases by thiomolybdate. J. Inorg. Biochem. 22, 231–240 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, B. et al. Cuproplasia characterization in colon cancer assists to predict prognosis and immunotherapeutic response. Front. Oncol. 13, 1061084 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ryan, A., Nevitt, S. J., Tuohy, O. & Cook, P. Biomarkers for diagnosis of Wilson’s disease. Cochrane Database Syst. Rev. 2019, CD012267 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 97, 2886–2891 (1999).

    Article  Google Scholar 

  30. Wang, X. et al. SOD1 regulates ribosome biogenesis in KRAS mutant non-small cell lung cancer. Nat. Commun. 12, 2259 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez, M. L., Shah, N., Kenny, T. C., Jenkins, E. C. Jr & Germain, D. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 38, 5751–5765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P. & Chandel, N. S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Grasso, M. et al. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J. Biol. Chem. 297, 101314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Stiburek, L., Vesela, K., Hansikova, H., Hulkova, H. & Zeman, J. Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am. J. Physiol. Cell Physiol. 296, C1218–1226 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Aich, A. et al. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife 7, e32572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pacheu-Grau, D. et al. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab. 21, 823–833 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hiser, L., Di Valentin, M., Hamer, A. G. & Hosler, J. P. Cox11p is required for stable formation of the Cu(B) and magnesium centers of cytochrome c oxidase. J. Biol. Chem. 275, 619–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, M., Liao, X., Ji, G., Fan, X. & Wu, Q. High expression of COA6 is related to unfavorable prognosis and enhanced oxidative phosphorylation in lung adenocarcinoma. Int. J. Mol. Sci. 24, 5705 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamza, I., Faisst, A., Prohaska, J., Chen, Gruss, J. & Gitlin, J. D. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc. Natl Acad. Sci. USA 98, 6848–6852 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, X. et al. Memo1 binds reduced copper ions, interacts with copper chaperone Atox1, and protects against copper-mediated redox activity in vitro. Proc. Natl Acad. Sci. USA 119, e2006905119 (2022).

    Google Scholar 

  42. Polishchuk, E. V. et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell 29, 686–700 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Setty, S. R. et al. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454, 1142–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Blockhuys, S., Zhang, X. & Wittung-Stafshede, P. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc. Natl Acad. Sci. USA 117, 2014–2019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jin, J. et al. Copper enhances genotoxic drug resistance via ATOX1 activated DNA damage repair. Cancer Lett. 536, 215651 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, Y. J. et al. Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma. Metallomics 11, 1430–1440 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Y. et al. Copper chaperone for superoxide dismutase promotes breast cancer cell proliferation and migration via ROS-mediated MAPK/ERK signaling. Front. Pharmacol. 10, 356 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Feng, W., Ye, F., Xue, W., Zhou, Z. & Kang, Y. J. Copper regulation of hypoxia-inducible factor-1 activity. Mol. Pharmacol. 75, 174–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Itoh, S. et al. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J. Biol. Chem. 283, 9157–9167 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Inkol, J. M., Poon, A. C. & Mutsaers, A. J. Inhibition of copper chaperones sensitizes human and canine osteosarcoma cells to carboplatin chemotherapy. Vet. Comp. Oncol. 18, 559–569 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Gudekar, N. et al. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess. Sci. Rep. 10, 7856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujie, T. et al. Induction of metallothionein isoforms by copper diethyldithiocarbamate in cultured vascular endothelial cells. J. Toxicol. Sci. 41, 225–232 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, H. et al. Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc. Natl Acad. Sci. USA 112, E4600–4609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harvey, C. J. et al. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic. Biol. Med. 46, 443–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Singh, A. et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun, X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, X. J. et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235–1243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. La Fontaine, S. & Mercer, J. F. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167 (2007).

    Article  PubMed  Google Scholar 

  59. Lutsenko, S., Barnes, N. L., Bartee, M. Y. & Dmitriev, O. Y. Function and regulation of human copper-transporting ATPases. Physiol. Rev. 87, 1011–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Dierick, H. A., Ambrosini, L., Spencer, J., Glover, T. W. & Mercer, J. F. Molecular structure of the Menkes disease gene (ATP7A). Genomics 28, 462–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. DiDonato, M., Narindrasorasak, S., Forbes, J. R., Cox, D. W. & Sarkar, B. Expression, purification, and metal binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B). J. Biol. Chem. 272, 33279–33282 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Petris, M. J. & Mercer, J. F. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum. Mol. Genet. 8, 2107–2115 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, G. M. et al. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep. 42, 112417 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Lutsenko, S. Dynamic and cell-specific transport networks for intracellular copper ions. J. Cell Sci. 134, jcs240523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aubert, L. et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun. 11, 3701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Petruzzelli, R. et al. TFEB regulates ATP7B expression to promote platinum chemoresistance in human ovarian cancer cells. Cells 11, 219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lukanovic, D., Herzog, M., Kobal, B. & Cerne, K. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer. Biomed. Pharmacother. 129, 110401 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Janardhanan, P., Somasundaran, A. K., Balakrishnan, A. J. & Pilankatta, R. Sensitization of cancer cells towards cisplatin and carboplatin by protein kinase D inhibitors through modulation of ATP7A/B (copper transport ATPases). Cancer Treat. Res. Commun. 32, 100613 (2022).

    Article  PubMed  Google Scholar 

  69. Kong, F. S. et al. Systematic pan-cancer analysis identifies SLC31A1 as a biomarker in multiple tumor types. BMC Med. Genomics 16, 61 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Skrajnowska, D. et al. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis. Biol. Trace Elem. Res. 156, 271–278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, R. et al. Hepatocellular carcinoma associated with an atypical presentation of Wilson’s disease. Semin. Liver Dis. 27, 122–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Reyes, C. V. Hepatocellular carcinoma in Wilson disease-related liver cirrhosis. Gastroenterol. Hepatol. 4, 435–437 (2008).

    Google Scholar 

  73. Masaki, T. et al. Hepatocellular carcinoma cell cycle: study of Long-Evans cinnamon rats. Hepatology 32, 711–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Terada, K. & Sugiyama, T. The Long-Evans cinnamon rat: an animal model for Wilson’s disease. Pediatr. Int. 41, 414–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Jong-Hon, K., Togashi, Y., Kasai, H., Hosokawa, M. & Takeichi, N. Prevention of spontaneous hepatocellular carcinoma in Long-Evans cinnamon rats with hereditary hepatitis by the administration of D-penicillamine. Hepatology 18, 614–620 (1993).

    CAS  PubMed  Google Scholar 

  76. Formigari, A., Gregianin, E. & Irato, P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J. Appl. Toxicol. 33, 527–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Hussain, S. P. et al. Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc. Natl Acad. Sci. USA 97, 12770–12775 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arnesano, F. et al. Copper-triggered aggregation of ubiquitin. PLoS ONE 4, e7052 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Opazo, C. M. et al. Copper signaling promotes proteostasis and animal development via allosteric activation of ubiquitin E2D conjugases. Preprint at bioRxiv https://doi.org/10.1101/2021.02.15.431211 (2021).

  80. Santoro, A. M. et al. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study. Sci. Rep. 6, 33444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xiao, Y. et al. Molecular study on copper-mediated tumor proteasome inhibition and cell death. Int. J. Oncol. 37, 81–87 (2010).

    CAS  PubMed  Google Scholar 

  82. Zhang, H., Wu, J. S. & Peng, F. Potent anticancer activity of pyrrolidine dithiocarbamate-copper complex against cisplatin-resistant neuroblastoma cells. Anticancer. Drugs 19, 125–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, X., Dou, Q. P., Liu, J. & Tang, D. Targeting ubiquitin-proteasome system with copper complexes for cancer therapy. Front. Mol. Biosci. 8, 649151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Turski, M. L. et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol. Cell Biol. 32, 1284–1295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guo, J. et al. Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner. Adv. Sci. 8, e2004303 (2021).

    Article  Google Scholar 

  86. Tsang, T. et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol. 22, 412–424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, L. et al. APEX2-based proximity labeling of Atox1 identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew. Chem. Int. Ed. Engl. 60, 25346–25355 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Polishchuk, E. V. et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology 156, 1173–1189.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Persichini, T. et al. Copper activates the NF-κB pathway in vivo. Antioxid. Redox Signal. 8, 1897–1904 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. McElwee, M. K., Song, M. O. & Freedman, J. H. Copper activation of NF-κB signaling in HepG2 cells. J. Mol. Biol. 393, 1013–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rigiracciolo, D. C. et al. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget 6, 34158–34177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Liao, Y. et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat. Commun. 11, 900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barker, H. E. et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 71, 1561–1572 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Shanbhag, V. et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc. Natl Acad. Sci. USA 116, 6836–6841 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, X. et al. LOX upregulates FAK phosphorylation to promote metastasis in osteosarcoma. Genes Dis. 10, 254–266 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Solier, S. et al. A druggable copper-signalling pathway that drives inflammation. Nature 617, 386–394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Voli, F. et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 80, 4129–4144 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Tan, H. Y. et al. Lysyl oxidase-like 4 fosters an immunosuppressive microenvironment during hepatocarcinogenesis. Hepatology 73, 2326–2341 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Tsvetkov, P. et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 15, 681–689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dreishpoon, M. B. et al. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J. Biol. Chem. 299, 105046 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schulz, V. et al. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat. Chem. Biol. 19, 206–217 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Ran, X. M. et al. The effect of cuproptosis-relevant genes on the immune infiltration and metabolism of gynecological oncology by multiply analysis and experiments validation. Sci. Rep. 13, 19474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ni, M. et al. Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell Rep. 27, 1376–1386.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gale, J. R., Hartnett-Scott, K., Ross, M. M., Rosenberg, P. A. & Aizenman, E. Copper induces neuron-sparing, ferredoxin 1-independent astrocyte toxicity mediated by oxidative stress. J. Neurochem. 167, 277–295 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Zulkifli, M. et al. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc. Natl Acad. Sci. USA 120, e2216722120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang, W. et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed. Pharmacother. 159, 114301 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Li, Z. et al. MELK promotes HCC carcinogenesis through modulating cuproptosis-related gene DLAT-mediated mitochondrial function. Cell Death Dis. 14, 733 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, J., Liu, Y., Wang, Y., Kang, R. & Tang, D. HMGB1 is a mediator of cuproptosis-related sterile inflammation. Front. Cell Dev. Biol. 10, 996307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhong, X. Y. et al. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep. 24, 3207–3223 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, Y. et al. Metabolic regulation of misfolded protein import into mitochondria. Preprint at bioRxiv https://doi.org/10.1101/2023.03.29.534670 (2023).

  112. Zhang, T. et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 380, 1372–1380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun, L. et al. Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat. Commun. 14, 6523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mi, J. et al. Elucidating cuproptosis-related gene SLC31A1 diagnostic and prognostic values in cancer. Am. J. Transl. Res. 15, 6026–6041 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, J. et al. Cuproptosis-related gene SLC31A1 expression correlates with the prognosis and tumor immune microenvironment in glioma. Funct. Integr. Genomics 23, 279 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wu, J. H. et al. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci. Rep. 13, 18390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Quan, Y. et al. Tumor cuproptosis and immune infiltration improve survival of patients with hepatocellular carcinoma with a high expression of ferredoxin 1. Front. Oncol. 13, 1168769 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, P. et al. DLAT is a promising prognostic marker and therapeutic target for hepatocellular carcinoma: a comprehensive study based on public databases. Sci. Rep. 13, 17295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang, S. et al. Cuproptosis-related gene DLAT serves as a prognostic biomarker for immunotherapy in clear cell renal cell carcinoma: multi-database and experimental verification. Aging 15, 12314–12329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jiang, H., Chen, H., Wang, Y. & Qian, Y. Novel molecular subtyping scheme based on in silico analysis of cuproptosis regulator gene patterns optimizes survival prediction and treatment of hepatocellular carcinoma. J. Clin. Med. 12, 5767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, K. et al. Multi-omics analysis defines a cuproptosis-related prognostic model for ovarian cancer: implication of WASF2 in cuproptosis resistance. Life Sci. 332, 122081 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Yoshida, D., Ikeda, Y. & Nakazawa, S. Suppression of tumor growth in experimental 9L gliosarcoma model by copper depletion. Neurol. Med. Chir. 35, 133–135 (1995).

    Article  CAS  Google Scholar 

  124. Crowe, A., Jackaman, C., Beddoes, K. M., Ricciardo, B. & Nelson, D. J. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS ONE 8, e73684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sciegienka, S. J. et al. D-penicillamine combined with inhibitors of hydroperoxide metabolism enhances lung and breast cancer cell responses to radiation and carboplatin via H2O2-mediated oxidative stress. Free Radic. Biol. Med. 108, 354–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brem, S. et al. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro Oncol. 7, 246–253 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brady, D. C. et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509, 492–496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Castoldi, F. et al. Chemical activation of SAT1 corrects diet-induced metabolic syndrome. Cell Death Differ. 27, 2904–2920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fu, S., Naing, A., Fu, C., Kuo, M. T. & Kurzrock, R. Overcoming platinum resistance through the use of a copper-lowering agent. Mol. Cancer Ther. 11, 1221–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang, Y. F. et al. A dose escalation study of trientine plus carboplatin and pegylated liposomal doxorubicin in women with a first relapse of epithelial ovarian, tubal, and peritoneal cancer within 12 months after platinum-based chemotherapy. Front. Oncol. 9, 437 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lin, J. et al. A non-comparative randomized phase II study of 2 doses of ATN-224, a copper/zinc superoxide dismutase inhibitor, in patients with biochemically recurrent hormone-naive prostate cancer. Urol. Oncol. 31, 581–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Lowndes, S. A. et al. Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors. Clin. Cancer Res. 14, 7526–7534 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Brewer, G. J. et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: phase I study. Clin. Cancer Res. 6, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  134. Henry, N. L. et al. Phase II trial of copper depletion with tetrathiomolybdate as an antiangiogenesis strategy in patients with hormone-refractory prostate cancer. Oncology 71, 168–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Redman, B. G. et al. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin. Cancer Res. 9, 1666–1672 (2003).

    CAS  PubMed  Google Scholar 

  136. Chan, N. et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin. Cancer Res. 23, 666–676 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Blum Murphy, M. et al. Pathological complete response in patients with esophageal cancer after the trimodality approach: the association with baseline variables and survival — The University of Texas MD Anderson Cancer Center experience. Cancer 123, 4106–4113 (2017).

    Article  PubMed  Google Scholar 

  138. Ramchandani, D. et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat. Commun. 12, 7311 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kim, K. K., Lange, T. S., Singh, R. K., Brard, L. & Moore, R. G. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C. BMC Cancer 12, 147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gartner, E. M. et al. A pilot trial of the anti-angiogenic copper lowering agent tetrathiomolybdate in combination with irinotecan, 5-flurouracil, and leucovorin for metastatic colorectal cancer. Invest. New Drugs 27, 159–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Ishida, S., McCormick, F., Smith-McCune, K. & Hanahan, D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17, 574–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cui, H. et al. Copper transporter 1 in human colorectal cancer cell lines: effects of endogenous and modified expression on oxaliplatin cytotoxicity. J. Inorg. Biochem. 177, 249–258 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Finney, L., Vogt, S., Fukai, T. & Glesne, D. Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 36, 88–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, Y. L. et al. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer 7, 108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Skrott, Z. et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Budman, D. R. & Calabro, A. In vitro search for synergy and antagonism: evaluation of docetaxel combinations in breast cancer cell lines. Breast Cancer Res. Treat. 74, 41–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. O’Brien, A., Barber, J. E., Reid, S., Niknejad, N. & Dimitroulakos, J. Enhancement of cisplatin cytotoxicity by disulfiram involves activating transcription factor 3. Anticancer. Res. 32, 2679–2688 (2012).

    PubMed  Google Scholar 

  148. Nechushtan, H. et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist 20, 366–367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mego, M. et al. Phase II study of disulfiram and cisplatin in refractory germ cell tumors. The GCT-SK-006 phase II trial. Invest. New Drugs 40, 1080–1086 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Kelley, K. C. et al. A Phase 1 dose-escalation study of disulfiram and copper gluconate in patients with advanced solid tumors involving the liver using S-glutathionylation as a biomarker. BMC Cancer 21, 510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ni, X. et al. Overcoming the compensatory increase in NRF2 induced by NPL4 inhibition enhances disulfiram/copper-induced oxidative stress and ferroptosis in renal cell carcinoma. Eur. J. Pharmacol. 960, 176110 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Chu, M. et al. Disulfiram/copper induce ferroptosis in triple-negative breast cancer cell line MDA-MB-231. Front. Biosci. 28, 186 (2023).

    Article  CAS  Google Scholar 

  153. Yang, Y. et al. Disulfiram chelated with copper promotes apoptosis in human breast cancer cells by impairing the mitochondria functions. Scanning 38, 825–836 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Gan, Y. et al. Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways. Oncol. Res. 31, 333–343 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zheng, X. et al. Disulfiram improves the anti-PD-1 therapy efficacy by regulating PD-L1 expression via epigenetically reactivation of IRF7 in triple negative breast cancer. Front. Oncol. 11, 734853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rae, C. et al. The role of copper in disulfiram-induced toxicity and radiosensitization of cancer cells. J. Nucl. Med. 54, 953–960 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Wang, Y. et al. Stressed target cancer cells drive nongenetic reprogramming of CAR T cells and solid tumor microenvironment. Nat. Commun. 14, 5727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wu, L. et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci. Rep. 9, 236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liu, P. et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br. J. Cancer 109, 1876–1885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Huang, J. et al. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J. Neurooncol. 142, 537–544 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Werlenius, K. et al. Effect of disulfiram and copper plus chemotherapy vs chemotherapy alone on survival in patients with recurrent glioblastoma: a randomized clinical trial. JAMA Netw. Open 6, e234149 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Gao, W. et al. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol. Oncol. 15, 3527–3544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kirshner, J. R. et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 7, 2319–2327 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. O’Day, S. et al. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol. 27, 5452–5458 (2009).

    Article  PubMed  Google Scholar 

  165. O’Day, S. J. et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J. Clin. Oncol. 31, 1211–1218 (2013).

    Article  PubMed  Google Scholar 

  166. Monk, B. J. et al. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: an NRG oncology/gynecologic oncology group study. Gynecol. Oncol. 151, 422–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nakae, K., Yamamoto, S., Shigematsu, I. & Kono, R. Relation between subacute myelo-optic neuropathy (S.M.O.N.) and clioquinol: nationwide survey. Lancet 1, 171–173 (1973).

    Article  CAS  PubMed  Google Scholar 

  168. Shen, Z. et al. Exploration of a screening model for intrahepatic cholangiocarcinoma patients prone to cuproptosis and mechanisms of the susceptibility of CD274-knockdown intrahepatic cholangiocarcinoma cells to cuproptosis. Cancer Gene. Ther. 30, 1663–1678 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Ruan, Y. et al. Engineered microbial nanohybrids for tumor-mediated NIR II photothermal enhanced ferroptosis/cuproptosis and immunotherapy. Adv. Healthc. Mater. 13, e2302537 (2023).

    Article  PubMed  Google Scholar 

  170. Dong, Y. et al. Mitochondria-targeting Cu3VS4 nanostructure with high copper ionic mobility for photothermoelectric therapy. Sci. Adv. 9, eadi9980 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, X. et al. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J. 37, e23143 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Wen, H. et al. Cuproptosis enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT/mTOR pathway in prostate cancer. FASEB J. 37, e23145 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Liu, G. et al. Prognosis, immune microenvironment infiltration and immunotherapy response in clear cell renal cell carcinoma based on cuproptosis-related immune checkpoint gene signature. J. Cancer 14, 3335–3350 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Xing, T. et al. Targeting the TCA cycle through cuproptosis confers synthetic lethality on ARID1A-deficient hepatocellular carcinoma. Cell Rep. Med. 4, 101264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen, S. J. et al. Mechanistic basis of a combination D-penicillamine and platinum drugs synergistically inhibits tumor growth in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Biochem. Pharmacol. 95, 28–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Alli, E. & Ford, J. M. Breast cancers with compromised DNA repair exhibit selective sensitivity to elesclomol. DNA Repair 11, 522–524 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Li, Y. et al. Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene 41, 3539–3553 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Nagai, M. et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med. 52, 2142–2150 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Pham, V. N. & Chang, C. J. Metalloallostery and transition metal signaling: bioinorganic copper chemistry beyond active sites. Angew. Chem. Int. Ed. Engl. 62, e202213644 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zischka, H. et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J. Clin. Invest. 121, 1508–1518 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Joshi, P. R., Sadre, S., Guo, X. A., McCoy, J. G. & Mootha, V. K. Lipoylation is dependent on the ferredoxin FDX1 and dispensable under hypoxia in human cells. J. Biol. Chem. 299, 105075 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xie, Y., Kang, R., Klionsky, D. J. & Tang, D. GPX4 in cell death, autophagy, and disease. Autophagy 19, 2621–2638 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dai, E. A guideline on the molecular ecosystem regulating ferroptosis. Nat. Cell Biol., https://doi.org/10.1038/s41556-024-01360-8 (2024).

  185. Chen, X., Kang, R., Kroemer, G. & Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280–296 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Williams, D. M., Loukopoulos, D., Lee, G. R. & Cartwright, G. E. Role of copper in mitochondrial iron metabolism. Blood 48, 77–85 (1976).

    Article  CAS  PubMed  Google Scholar 

  187. Tselepis, C. et al. Characterization of the transition-metal-binding properties of hepcidin. Biochem J. 427, 289–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Li, Y. et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers 12, 138 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Garza, N. M., Zulkifli, M. & Gohil, V. M. Elesclomol elevates cellular and mitochondrial iron levels by delivering copper to the iron import machinery. J. Biol. Chem. 298, 102139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Qian, X. et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 19, 1982–1996 (2022).

    Google Scholar 

  191. Ren, X. et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biol. 46, 102122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research by D.T. and R.K. is supported by grants from the US National Institutes of Health (R01CA160417, R01CA229275, R01CA211070 and R01GM127791). The work of G.K. is supported by the Agence National de la Recherche (ANR)–Projets blancs; ANR under the framework of the ERA-Net for Research on Rare Diseases (E-Rare-2); Association pour la recherche sur le cancer; Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix); a donation by Elior; European Research Area Network on Cardiovascular Diseases (ERA-CVD, MINOTAUR); Fondation Carrefour; Fondation pour la Recherche Médicale; Gustave Roussy Odyssea; European Union Horizon 2020 Project Oncobiome; National High-end Foreign Expert Recruitment Plan of China (GDW20171100085 and GDW20181100051); Institut National du Cancer; Institut Universitaire de France; LabEx Immuno-Oncology; LeDucq Foundation; Ligue contre le Cancer (équipe labellisée); RHU Torino Lumière; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Daolin Tang, Guido Kroemer or Rui Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks Y. Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://www.clinicaltrials.gov

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Kroemer, G. & Kang, R. Targeting cuproplasia and cuproptosis in cancer. Nat Rev Clin Oncol 21, 370–388 (2024). https://doi.org/10.1038/s41571-024-00876-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00876-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer