Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Immunotherapy discontinuation — how, and when? Data from melanoma as a paradigm

Abstract

The optimal duration of therapy in patients receiving immune-checkpoint inhibitors (ICIs) is a new but crucial question that has arisen owing to the observation of durable remissions in >85% of patients with metastatic melanoma who stop receiving an anti-PD-1 antibody after a complete response (CR). Long-term treatment-free remissions have also been seen, albeit much less frequently, in patients receiving ICIs for other forms of cancer who have a CR. Despite these promising observations, the optimal duration of treatment with ICIs remains unknown and requires further investigation in randomized controlled trials. In the absence of prospective data, some general criteria to guide the safe cessation of ICIs can be proposed, at least for patients with melanoma, in whom ICI cessation after a confirmed CR and at least 6 months of treatment is generally deemed safe. In this Perspective, we describe the available data on ICI interruption in patients with melanoma and in those with various other cancers. We also address the patient management implications of stopping ICI therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Suggested algorithm to guide ICI cessation in patients with melanoma.

Similar content being viewed by others

References

  1. Nishino, M., Ramaiya, N. H., Hatabu, H. & Hodi, F. S. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 14, 655–668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nishino, M., Hatabu, H. & Hodi, F. S. Imaging of cancer immunotherapy: current approaches and future directions. Radiology 290, 9–22 (2019).

    Article  PubMed  Google Scholar 

  3. Nishino, M. et al. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin. Cancer Res. 19, 3936–3943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haanen, J. et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines. Ann. Oncol. 28, iv119–iv142 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Robert, C. et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J. Clin. Oncol. 36, 1668–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Hoos, A. et al. Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy. Semin. Oncol. 37, 533–546 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robert, C., Schadendorf, D., Messina, M., Hodi, F. S. & O’Day, S. Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin. Cancer Res. 19, 2232–2239 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. US Food and Drug Administration. Ipilimumab. http://wayback.archive-it.org/7993/20170113081138/http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm248478.htm (2015).

  12. European Medicines Agency. Yervoy (ipilimumab). An overview of Yervoy and why it is authorised in the EU. https://www.ema.europa.eu/en/documents/overview/yervoy-epar-medicine-overview_en.pdf (2011).

  13. Cabel, L. et al. Long-term complete remission with ipilimumab in metastatic castrate-resistant prostate cancer: case report of two patients. J. Immunother. Cancer 5, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Graff, J. N., Puri, S., Bifulco, C. B., Fox, B. A. & Beer, T. M. Sustained complete response to CTLA-4 blockade in a patient with metastatic, castration-resistant prostate cancer. Cancer Immunol. Res. 2, 399–403 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. US Food and Drug Administration. Pembrolizumab. http://wayback.archive-it.org/7993/20170111231652/http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm412861.htm (2015).

  16. Hamid, O. et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 30, 582–588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jansen, Y. J. L. et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: clinical outcomes in advanced melanoma. Ann. Oncol. 30, 1154–1161 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Betof Warner, A. et al. Long-term outcomes and responses to retreatment in patients with melanoma treated with PD-1 blockade. J. Clin. Oncol. 38, 1655–1663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gauci, M.-L. et al. Long-term survival in patients responding to anti-PD-1/PD-L1 therapy and disease outcome upon treatment discontinuation. Clin. Cancer Res. 25, 946–956 (2019).

    Article  PubMed  Google Scholar 

  20. McCoach, C. E. et al. Exploratory analysis of the association of depth of response and survival in patients with metastatic non-small-cell lung cancer treated with a targeted therapy or immunotherapy. Ann. Oncol. 30, 492 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Robert, C. et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20, 1239–1251 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Nishino, M. et al. Tumor response dynamics of advanced non-small cell lung cancer patients treated with PD-1 inhibitors: imaging markers for treatment outcome. Clin. Cancer Res. 23, 5737–5744 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spigel, D. R. et al. Randomized results of fixed-duration (1-yr) vs continuous nivolumab in patients (PTS) with advanced non-small cell lung cancer (NSCLC) [abstract 1297O]. Ann. Oncol. 28 (Suppl. 5), v461 (2017).

    Article  Google Scholar 

  25. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 1990 45, 228–247 (2009).

    CAS  Google Scholar 

  28. Provencio, M. et al. Neoadjuvant chemo-immunotherapy for the treatment of stage IIIA non-small-cell lung cancer (NSCLC): a phase II multicenter exploratory study — final data of patients who underwent surgical assessment [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 8509 (2019).

    Article  Google Scholar 

  29. Tan, A. C. et al. FDG-PET response and outcome from anti-PD-1 therapy in metastatic melanoma. Ann. Oncol. 29, 2115–2120 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Seremet, T. et al. Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy. J. Transl Med. 17, 303 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tan, L. et al. Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA. Ann. Oncol. 30, 804–814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheth, S., Gao, C., Mueller, N., Martinez, P. & Soria, J.-C. Durvalumab activity in previously treated patients who stopped durvalumab without disease progression [abstract 1175O]. Ann. Oncol. 30 (Suppl. 5), v475–v476 (2019).

    Article  Google Scholar 

  33. Herbst, R. S. et al. Long-term outcomes and retreatment among patients with previously treated, programmed death-ligand 1-positive, advanced non-small-cell lung cancer in the KEYNOTE-010 study. J. Clin. Oncol. 38, 1580–1590 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. US Food and Drug Administration. FDA approves new dosing regimen for pembrolizumab. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-new-dosing-regimen-pembrolizumab (2020).

  36. The ASCO post. KEYNOTE-555 supports 6-week pembrolizumab dosing schedule in melanoma. https://www.ascopost.com/issues/june-10-2020/keynote-555-supports-6-week-pembrolizumab-dosing-schedule-in-melanoma/ (2020).

  37. Ascierto, P. A. et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 18, 611–622 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, P. et al. Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: CheckMate 032 nivolumab 1 mg/kg plus ipilimumab 3 mg/kg expansion cohort results. J. Clin. Oncol. 37, 1608–1616 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lebbé, C. et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV CheckMate 511 trial. J. Clin. Oncol. 37, 867–875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eggermont, A. M. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. US Food & Drug Administration. FDA approves pembrolizumab for adjuvant treatment of melanoma.https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adjuvant-treatment-melanoma (2019).

  44. US Food & Drug Administration. FDA grants regular approval to nivolumab for adjuvant treatment of melanoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-nivolumab-adjuvant-treatment-melanoma (2017).

  45. Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Robert, C. Is earlier better for melanoma checkpoint blockade? Nat. Med. 24, 1645–1648 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Miller, K., Abraham, J. H., Rhodes, L. & Roberts, R. Use of the word “cure” in oncology. J. Oncol. Pract. 9, e136–e140 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mathews, J. D. et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346, f2360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Westeel, V. et al. Results of the phase III IFCT-0302 trial assessing minimal versus CT-scan-based follow-up for completely resected non-small cell lung cancer (NSCLC) [abstract 1273O]. Ann. Oncol. 28 (Suppl. 5), v452 (2017).

    Article  Google Scholar 

  51. Dellestable, P. et al. Impact of whole body magnetic resonance imaging (MRI) in the management of melanoma patients, in comparison with positron emission tomography/computed tomography (TEP/CT) and CT [French]. Ann. Dermatol. Venereol. 138, 377–383 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Pfluger, T. et al. PET/CT in malignant melanoma: contrast-enhanced CT versus plain low-dose CT. Eur. J. Nucl. Med. Mol. Imaging 38, 822–831 (2011).

    Article  PubMed  Google Scholar 

  53. Sznol, M. et al. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat. Rev. 58, 70–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Brunet-Possenti, F., Opsomer, M. A., Gomez, L., Ouzaid, I. & Descamps, V. Immune checkpoint inhibitors-related orchitis. Ann. Oncol. 28, 906–907 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Quach, H. T. et al. Severe epididymo-orchitis and encephalitis complicating anti-PD-1 therapy. Oncologist 24, 872–876 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Laidsaar-Powell, R. et al. A meta-review of qualitative research on adult cancer survivors: current strengths and evidence gaps. J. Cancer Surviv. 13, 852–889 (2019).

    Article  PubMed  Google Scholar 

  57. Butow, P., Laidsaar-Powell, R., Konings, S., Lim, C. Y. S. & Koczwara, B. Return to work after a cancer diagnosis: a meta-review of reviews and a meta-synthesis of recent qualitative studies. J. Cancer Surviv. 14, 114–134 (2020).

    Article  PubMed  Google Scholar 

  58. Holland, J. C. et al. Distress management. J. Natl. Compr. Canc. Netw. 11, 190–209 (2013).

    Article  PubMed  Google Scholar 

  59. Yi, J. C. & Syrjala, K. L. Anxiety and depression in cancer survivors. Med. Clin. North. Am. 101, 1099–1113 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Snyder, C. R. et al. The will and the ways: development and validation of an individual-differences measure of hope. J. Pers. Soc. Psychol. 60, 570–585 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Libert, Y. et al. Communication about uncertainty and hope: a randomized controlled trial assessing the efficacy of a communication skills training program for physicians caring for cancer patients. BMC Cancer 17, 476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berendes, D. et al. Hope in the context of lung cancer: relationships of hope to symptoms and psychological distress. J. Pain. Symptom Manage. 40, 174–182 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rajandram, R. K. et al. Interaction of hope and optimism with anxiety and depression in a specific group of cancer survivors: a preliminary study. BMC Res. Notes 4, 519 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Stiefel, F. et al. Training in communication of oncology clinicians: a position paper based on the third consensus meeting among European experts in 2018. Ann. Oncol. 29, 2033–2036 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 20, 1370–1385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Caroline Robert.

Ethics declarations

Competing interests

C.R. has acted as a consultant of Amgen, Biothera, BMS, MSD, Novartis, Pierre Fabre, Roche, Sanofi and Ultimovacs. A.M. has acted as a consultant of Bayer, BPI, Daichii Sankyo, EISAI, Faron, Genticel, Imaxio, Molecular partners, Onxeo, Pierre Fabre, Pilar partners, Rigontec, Roche and Sanofi/BioNTech. K.F. has served on the advisory boards of AAA, Amgen, Astellas, AstraZeneca, Bayer, Clovis, Curevac, ESSA, Genentech, Janssen, MSD, Orion and Sanofi. C.C. has acted as a consultant of AstraZeneca, BMS, MSD, and Roche. B.B. has conducted research funded by Abbvie, Amgen, AstraZeneca, Biogen, Blueprint Medicines, BMS, Celgene, Eli Lilly, GSK, Ignyta, Ipsen, Merck, MSD, Nektar, Onxeo, Pfizer, Pharma Mar, Sanofi, Spectrum Pharmaceuticals, Takeda and Tiziana Pharm. H.H. and P.R. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert, C., Marabelle, A., Herrscher, H. et al. Immunotherapy discontinuation — how, and when? Data from melanoma as a paradigm. Nat Rev Clin Oncol 17, 707–715 (2020). https://doi.org/10.1038/s41571-020-0399-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0399-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer