Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Personalizing neoadjuvant immune-checkpoint inhibition in patients with melanoma

Abstract

Neoadjuvant immune-checkpoint inhibition is a promising emerging treatment approach for patients with surgically resectable macroscopic stage III melanoma. The neoadjuvant setting provides an ideal platform for personalized therapy owing to the very homogeneous nature of the patient population and the opportunity for pathological response assessments within several weeks of starting treatment, thereby facilitating the efficient identification of novel biomarkers. A pathological response to immune-checkpoint inhibitors has been shown to be a strong surrogate marker of both recurrence-free survival and overall survival, enabling timely analyses of the efficacy of novel therapies in patients with early stage disease. Patients with a major pathological response (defined as the presence of ≤10% viable tumour cells) have a very low risk of recurrence, which offers an opportunity to adjust the extent of surgery and any subsequent adjuvant therapy and follow-up monitoring. Conversely, patients who have only a partial pathological response or who do not respond to neoadjuvant therapy still might benefit from therapy escalation and/or class switch during adjuvant therapy. In this Review, we outline the concept of a fully personalized neoadjuvant treatment approach exemplified by the current developments in neoadjuvant therapy for patients with resectable melanoma, which could provide a template for the development of similar approaches for patients with other immune-responsive cancers in the near future.

Key points

  • The neoadjuvant setting provides an ideal platform for the personalized treatment of patients with resectable macroscopic stage III melanoma, with pathological response functioning as a surrogate outcome for recurrence-free survival.

  • Patients having a major pathological response to immune-checkpoint inhibitors have a low risk of recurrence, which offers an opportunity to omit completion lymph node dissection (CLND) and subsequent adjuvant therapy and avoid the associated adverse events.

  • Patients with a pathological partial or non-response could benefit from CLND and adjuvant systemic therapy. Further research is needed to support selection of the optimal adjuvant treatment.

  • Biomarkers predictive of a pathological response might enable the identification of subgroups that are most likely to respond to neoadjuvant anti-PD-1 antibodies as monotherapy and/or in combination regimens. Candidate biomarkers include tumour mutational burden, PD-L1 expression and immune-related gene expression profiles such as the IFNγ signature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathological response categories.
Fig. 2: Proposed personalized approach for neoadjuvant immunotherapy in melanoma and the corresponding biological mechanism.

Similar content being viewed by others

References

  1. Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Curigliano, G. et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann. Oncol. 28, 1700–1712 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kim, E. S. & Pandya, K. J. Advances in personalized therapy for lung cancer. Expert. Opin. Med. Diagn. 7, 475–485 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Duan, L., Mukherjee, E. M. & Narayan, D. Tailoring the treatment of melanoma: implications for personalized medicine. Yale J. Biol. Med. 88, 389–395 (2015).

    PubMed Central  PubMed  Google Scholar 

  5. Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(15)70122-1 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  6. Eggermont, A. M. et al. Longer follow-up confirms recurrence-free survival benefit of adjuvant pembrolizumab in high-risk stage III melanoma: updated results from the EORTC 1325-MG/KEYNOTE-054 trial. J. Clin. Oncol. 38, 3925–3936 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hauschild, A. et al. Longer follow-up confirms relapse-free survival benefit with adjuvant dabrafenib plus trametinib in patients with resected BRAF V600-mutant stage III melanoma. J. Clin. Oncol. 36, 3441–3449 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Derks, S. et al. The meaning of screening: detection of brain metastasis in the adjuvant setting for stage III melanoma. ESMO Open 7, 100600 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Patel, S. P. et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Ascierto, P. A. et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB-C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 21, 1465–1477 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Amaria, R. N. et al. Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncol. 20, e378–e389 (2019).

    Article  PubMed  Google Scholar 

  12. Testori, A. A. E., Blankenstein, S. A. & van Akkooi, A. C. J. Surgery for metastatic melanoma: an evolving concept. Curr. Oncol. Rep. 21, 98 (2019).

    Article  PubMed  Google Scholar 

  13. van Akkooi, A. C. et al. Morbidity and prognosis after therapeutic lymph node dissections for malignant melanoma. Eur. J. Surg. Oncol. 33, 102–108 (2007).

    Article  PubMed  Google Scholar 

  14. Long, G. V. et al. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med. 377, 1813–1823 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Weber, J. S. et al. Adjuvant therapy with nivolumab (NIVO) versus ipilimumab (IPI) after complete resection of stage III/IV melanoma: updated results from a phase III trial (CheckMate 238) [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 9502 (2018).

    Article  Google Scholar 

  16. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Bloemendal, M. et al. Early recurrence in completely resected IIIB and IIIC melanoma warrants restaging prior to adjuvant therapy. Ann. Surg. Oncol. 26, 3945–3952 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  18. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Versluis, J. M., Long, G. V. & Blank, C. U. Learning from clinical trials of neoadjuvant checkpoint blockade. Nat. Med. 26, 475–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Rozeman, E. A. et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 20, 948–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Rozeman, E. A. et al. Survival and biomarker analyses from the OpACIN-neo and OpACIN neoadjuvant immunotherapy trials in stage III melanoma. Nat. Med. 27, 256–263 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 25, 454–461 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tarhini, A. A. et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE 9, e87705 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tarhini, A. et al. Neoadjuvant ipilimumab (3 mg/kg or 10 mg/kg) and high dose IFN-α2b in locally/regionally advanced melanoma: safety, efficacy and impact on T-cell repertoire. J. Immunother. Cancer 6, 112 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Long, G. V. et al. NeoPeLe: A phase II trial of neoadjuvant (NAT) pembrolizumab (Pembro) combined with lenvatinib (Lenva) in resectable stage III melanoma [abstract 793P]. Ann. Oncol. 33 (Suppl. 7), S906–S907 (2022).

    Article  Google Scholar 

  30. Long, G. V. et al. NeoTrio: Randomized trial of neoadjuvant (NAT) pembrolizumab (Pembro) alone, in sequence (SEQ) with, or concurrent (CON) with dabrafenib plus trametinib (D+T) in resectable BRAF-mutant stage III melanoma to determine optimal combination of therapy [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 9503 (2022).

    Article  Google Scholar 

  31. Tarhini, A. et al. Neoadjuvant intratumoral TAVO-EP (plasmid IL- 12 electro gene transfer) in combination with nivolumab; preliminary clinical and biomarker data in patients with operable locoregionally advanced melanoma [abstract 617]. J. Immunother. Cancer 10 (Suppl. 2), A649 (2022).

    Google Scholar 

  32. Amaria, R. N. et al. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncol. 19, 181–193 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Long, G. V. et al. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAFV600 mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial. Lancet Oncol. 20, 961–971 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Dummer, R. et al. Neoadjuvant talimogene laherparepvec plus surgery versus surgery alone for resectable stage IIIB-IVM1a melanoma: a randomized, open-label, phase 2 trial. Nat. Med. 27, 1789–1796 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Menzies, A. M. et al. Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). Nat. Med. 27, 301–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Lucas, M. W. et al. The NADINA trial: a multicenter, randomised, phase 3 trial comparing the efficacy of neoadjuvant ipilimumab plus nivolumab with standard adjuvant nivolumab in macroscopic resectable stage III melanoma [abstract]. J. Clin. Oncol. 40 (Suppl. 16), TPS9605 (2022).

    Article  Google Scholar 

  37. Topalian, S. L., Taube, J M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tetzlaff, M. T. et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann. Oncol. 29, 1861–1868 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Amaria, R. N. et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 611, 155–160 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Reijers, I. L. M. et al. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. Nat. Med. https://doi.org/10.1038/s41591-022-01851-x (2022).

    Article  PubMed  Google Scholar 

  41. Rawson, R. V. et al. Pathological response and tumour bed histopathological features correlate with survival following neoadjuvant immunotherapy in stage III melanoma. Ann. Oncol. https://doi.org/10.1016/j.annonc.2021.03.006 (2021).

    Article  PubMed  Google Scholar 

  42. Tetzlaff, M. T. et al. Histopathological features of complete pathological response predict recurrence-free survival following neoadjuvant targeted therapy for metastatic melanoma. Ann. Oncol. 31, 1569–1579 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Reijers, I. L. M. et al. Representativeness of the index lymph node for total nodal basin in pathologic response assessment after neoadjuvant checkpoint inhibitor therapy in patients with stage III melanoma. JAMA Surg. 157, 335–342 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Schermers, B. et al. Surgical removal of the index node marked using magnetic seed localization to assess response to neoadjuvant immunotherapy in patients with stage III melanoma. Br. J. Surg. 106, 519–522 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. de Vries, M., Vonkeman, W. G., van Ginkel, R. J. & Hoekstra, H. J. Morbidity after axillary sentinel lymph node biopsy in patients with cutaneous melanoma. Eur. J. Surg. Oncol. 31, 778–783 (2005).

    Article  PubMed  Google Scholar 

  46. de Vries, M., Vonkeman, W. G., van Ginkel, R. J. & Hoekstra, H. J. Morbidity after inguinal sentinel lymph node biopsy and completion lymph node dissection in patients with cutaneous melanoma. Eur. J. Surg. Oncol. 32, 785–789 (2006).

    Article  PubMed  Google Scholar 

  47. Guggenheim, M. M. et al. Morbidity and recurrence after completion lymph node dissection following sentinel lymph node biopsy in cutaneous malignant melanoma. Ann. Surg. 247, 687–693 (2008).

    Article  PubMed  Google Scholar 

  48. Kretschmer, L. et al. Postoperative morbidity of lymph node excision for cutaneous melanoma-sentinel lymphonodectomy versus complete regional lymph node dissection. Melanoma Res. 18, 16–21 (2008).

    Article  PubMed  Google Scholar 

  49. Morton, D. L. et al. Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. Ann. Surg. 242, 302–311 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  50. Forde, P. M., Spicer, J. & Girard, N. Neoadjuvant nivolumab plus chemotherapy in lung cancer. N. Engl. J. Med. 387, 572–573 (2022).

    PubMed  Google Scholar 

  51. Cercek, A. & Diaz, L. A. Jr PD-1 blockade in mismatch repair-deficient rectal cancer. N. Engl. J. Med. 387, 855–856 (2022).

    PubMed  Google Scholar 

  52. Raimondi, A. et al. TremelImumab and durvalumab combination for the non-operative management (NOM) of microsatellite instability (MSI)-high resectable gastric or gastroesophageal junction cancer: the multicentre, single-arm, multi-cohort, phase II INFINITY study. Cancers (Basel) 13, 2839 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Stockem, C. F. et al. A phase II clinical study to assess efficacy of induction ipilimumab/nivolumab to spare the bladder in urothelial bladder cancer (INDI-BLADE) [abstract 1780TiP]. Ann. Oncol. 33 (Suppl. 7), S1351 (2022).

    Article  Google Scholar 

  54. Heil, J. et al. Eliminating the breast cancer surgery paradigm after neoadjuvant systemic therapy: current evidence and future challenges. Ann. Oncol. 31, 61–71 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Gerber, B. et al. Pathological response in the breast and axillary lymph nodes after neoadjuvant systemic treatment in patients with initially node-positive breast cancer correlates with disease free survival: an exploratory analysis of the GeparOcto trial. Cancers (Basel) 14, 521 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. van Loevezijn, A. A. et al. Minimally invasive complete response assessment of the breast after neoadjuvant systemic therapy for early breast cancer (MICRA trial): interim analysis of a multicenter observational cohort study. Ann. Surg. Oncol. 28, 3243–3253 (2021).

    Article  PubMed  Google Scholar 

  57. van der Noordaa, M. E. M. et al. Major reduction in axillary lymph node dissections after neoadjuvant systemic therapy for node-positive breast cancer by combining PET/CT and the MARI procedure. Ann. Surg. Oncol. 25, 1512–1520 (2018).

    Article  PubMed  Google Scholar 

  58. Dossa, F., Chesney, T. R., Acuna, S. A. & Baxter, N. N. A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2, 501–513 (2017).

    Article  PubMed  Google Scholar 

  59. van der Valk, M. J. M. et al. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet 391, 2537–2545 (2018).

    Article  PubMed  Google Scholar 

  60. van Akkooi, A. C. J. et al. Neoadjuvant systemic therapy (NAST) in patients with melanoma: surgical considerations by the International Neoadjuvant Melanoma Consortium (INMC). Ann. Surg. Oncol. https://doi.org/10.1245/s10434-021-11236-y (2022).

    Article  PubMed  Google Scholar 

  61. Versluis, J. M. et al. Survival update of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma in the OpACIN and OpACIN-neo trials. Ann. Oncol. https://doi.org/10.1016/j.annonc.2023.01.004 (2023).

    Article  PubMed  Google Scholar 

  62. Mulder, E. et al. Cost-effectiveness of adjuvant systemic therapies for patients with high-risk melanoma in Europe: a model-based economic evaluation. ESMO Open 6, 100303 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Reschke, R., Jager, I., Mehnert-Theuerkauf, A. & Ziemer, M. Therapy understanding and health related quality of life in stage III/IV melanoma patients treated with novel adjuvant therapies. J. Dtsch. Dermatol. Ges. 19, 215–221 (2021).

    PubMed  Google Scholar 

  65. Bottomley, A. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): health-related quality-of-life results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 22, 655–664 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Long, G. V. et al. Adjuvant therapy with nivolumab (NIVO) combined with ipilimumab (IPI) vs NIVO alone in patients (pts) with resected stage IIIB-D/IV melanoma (CheckMate 915) [abstract CT004]. Cancer Res. 81 (Suppl. 13), CT004 (2021).

    Article  Google Scholar 

  67. Hodi, F. S. et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1480–1492 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Zimmer, L. et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 395, 1558–1568 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Amaria, R. N. et al. Neoadjuvant and adjuvant nivolumab (nivo) with anti-LAG3 antibody relatlimab (rela) for patients (pts) with resectable clinical stage III melanoma [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 9502 (2021).

    Article  Google Scholar 

  70. Algazi, A. P. et al. Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clin. Cancer Res. 26, 2827–2837 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kaptein, P. et al. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci. Transl. Med. 14, eabj9779 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Owen, C. N. et al., Management of early melanoma recurrence despite adjuvant anti-PD-1 antibody therapy. Ann. Oncol. 31, 1075–1082 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Taylor, A. M. et al. Efficacy and safety of “second adjuvant” therapy with BRAF/MEK inhibitors after resection of recurrent melanoma following adjuvant PD-1-based immunotherapy [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 9575 (2022).

    Article  Google Scholar 

  74. Atkins, M. M. et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: the DREAMseq trial-ECOG-ACRIN EA6134Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: the DREAMseq trial-ECOG-ACRIN EA6134. J. Clin. Oncol. 41, 186–197 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Atkins, M. B. et al. Comparative efficacy of combination immunotherapy and targeted therapy in the treatment of BRAF-mutant advanced melanoma: a matching-adjusted indirect comparison. Immunotherapy 11, 617–629 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Luke, J. J., Flaherty, K. T., Ribas, A. & Long, G. V. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat. Rev. Clin. Oncol. 14, 463–482 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Burmeister, B. H. et al. Adjuvant radiotherapy versus observation alone for patients at risk of lymph-node field relapse after therapeutic lymphadenectomy for melanoma: a randomised trial. Lancet Oncol. 13, 589–597 (2012).

    Article  PubMed  Google Scholar 

  78. Henderson, M. A. et al. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. Lancet Oncol. 16, 1049–1060 (2015).

    Article  PubMed  Google Scholar 

  79. Penedo, F. J. et al. The increasing value of eHealth in the delivery of patient-centred cancer care. Lancet Oncol. 21, e240–e251 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  80. Basch, E. et al. Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial. J. Clin. Oncol. 34, 557–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Girgis, A. et al. Web-based patient-reported outcome measures for personalized treatment and care (PROMPT-Care): multicenter pragmatic nonrandomized trial. J. Med. Internet Res. 22, e19685 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  82. Klagholz, S. D. et al. Assessing the feasibility of an electronic patient-reported outcome (ePRO) collection system in caregivers of cancer patients. Psychooncology 27, 1350–1352 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362, eaar3593 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  85. Indini, A., Roila, F., Grossi, F., Massi, D. & Mandala, M. Impact of circulating and tissue biomarkers in adjuvant and neoadjuvant therapy for high-risk melanoma: ready for prime time? Am. J. Clin. Dermatol. 22, 511–522 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  86. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  87. McNamara, M. G. et al. Impact of high tumor mutational burden in solid tumors and challenges for biomarker application. Cancer Treat. Rev. 89, 102084 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  89. Wu, Y. et al. The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: a systematic review and meta-analysis. Front. Oncol. 9, 1161 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  90. McGrail, D. J. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 32, 661–672 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Food and Drug Administration. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. FDA https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2020).

  92. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Schrock, A. B. et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 30, 1096–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Hodi, F. S. et al. TMB and inflammatory gene expression associated with clinical outcomes following immunotherapy in advanced melanoma. Cancer Immunol. Res. 9, 1202–1213 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  97. Weber, J. S. et al. Adjuvant nivolumab (NIVO) versus ipilimumab (IPI) in resected stage III/IV melanoma: 3-year efficacy and biomarker results from the phase III CheckMate 238 trial [abstract 1310O]. Ann. Oncol 30 (Suppl. 5), v533–v534 (2019).

    Article  Google Scholar 

  98. Johnson, D. B. et al. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol. Res. 4, 959–967 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Mankor, J. M. et al. Impact of panel design and cut-off on tumour mutational burden assessment in metastatic solid tumour samples. Br. J. Cancer 122, 953–956 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  100. Grigg, C. & Rizvi, N. A. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J. Immunother. Cancer 4, 48 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  101. Wang, Y. et al. FDA-approved and emerging next generation predictive biomarkers for immune checkpoint inhibitors in cancer patients. Front. Oncol. 11, 683419 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  102. Rimm, D. L. et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 3, 1051–1058 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  103. Lu, S. et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 5, 1195–1204 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  104. Ji, R. R. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 61, 1019–1031 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  106. Castro, F., Cardoso, A. P., Goncalves, R. M., Serre, K. & Oliveira, M. J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  107. Ikeda, H., Old, L. J. & Schreiber, R. D. The roles of IFNγ in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev. 13, 95–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell https://doi.org/10.1016/j.cell.2016.08.069 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  109. Abiko, K. et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer 112, 1501–1509 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  112. Dummer, R. et al. Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAFV600-mutant, stage III melanoma (COMBI-AD): exploratory biomarker analyses from a randomised, phase 3 trial. Lancet Oncol. 21, 358–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Reijers, I. L. M. et al. IFN-γ signature enables selection of neoadjuvant treatment in patients with stage III melanoma. J. Exp. Med. 220, e20221952 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Tinker, A. V., Boussioutas, A. & Bowtell, D. D. The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 9, 333–339 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Cesano, A. nCounter((R)) PanCancer immune profiling panel (NanoString Technologies, Inc., Seattle, WA). J. Immunother. Cancer 3, 42 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  116. Chen, P.-L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  117. Lee, J. H. et al. Pre-operative ctDNA predicts survival in high-risk stage III cutaneous melanoma patients. Ann. Oncol. 30, 815–822 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Tan, L. et al. Prediction and monitoring of relapse in stage III melanoma using circulating tumor DNA. Ann. Oncol. 30, 804–814 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Lee, R. J. et al. Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann. Oncol. 29, 490–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Liu, J. et al. Batf3+ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncoimmunology 8, e1546068 (2019).

    Article  PubMed  Google Scholar 

  121. Jorgensen, J. T. Companion diagnostic assays for PD-1/PD-L1 checkpoint inhibitors in NSCLC. Expert. Rev. Mol. Diagn. 16, 131–133 (2016).

    Article  PubMed  Google Scholar 

  122. Cortazar, P. & Geyer, C. E. Jr. Pathological complete response in neoadjuvant treatment of breast cancer. Ann. Surg. Oncol. 22, 1441–1446 (2015).

    Article  PubMed  Google Scholar 

  123. Center for Drug Evaluation and Research. Pathological complete response in neoadjuvant treatment of high-risk early-stage breast cancer: use as an endpoint to support accelerated approval. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pathological-complete-response-neoadjuvant-treatment-high-risk-early-stage-breast-cancer-use (2020).

  124. Mueller, K. L. et al. Neoadjuvant therapy for melanoma: a U.S. Food and Drug Administration-Melanoma Research Alliance public workshop. Clin. Cancer Res. 27, 394–401 (2021).

    Article  PubMed  Google Scholar 

  125. Versluis, J. M., Thommen, D. S. & Blank, C. U. Rationalizing the pathway to personalized neoadjuvant immunotherapy: the Lombard Street Approach. J. Immunother. Cancer 8, e001352 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  126. Davar D, K. A. et al. Phase II trial of neoadjuvant nivolumab (Nivo) and intra-tumoral (IT) CMP-001 in high-risk resectable melanoma (Neo-C-Nivo): preliminary results. Presente. SITC 2019, 6–10 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge B. A. van de Wiel of the Department of Pathology, Netherlands Cancer Institute, Amsterdam for providing images for Fig. 1b–e.

Author information

Authors and Affiliations

Authors

Contributions

M.W.L. wrote the manuscript, all authors made substantial contributions to researching data for this article, discussions of content and reviewing and/or editing prior to submission.

Corresponding author

Correspondence to Christian U. Blank.

Ethics declarations

Competing interests

C.U.B. has acted as an advisor to AZ, BMS, GenMab, GSK, Lilly, MSD, Novartis, Pfizer, Pierre Fabre, Roche and Third Rock Ventures, has received research funding from 4SC, BMS, NanoString and Novartis, is a co-founder of and owns shares in Immagene BV and Signature Oncology, and is listed as an inventor on several related patents (including submitted): WO 2021/177822 A1, N2027907 and P091040NL2. The other authors declare no competing interests.

Peer review

Peer reviewer information

Nature Reviews Clinical Oncology thanks E. Bartlett, J. Delyon, M. Ernstoff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, M.W., Versluis, J.M., Rozeman, E.A. et al. Personalizing neoadjuvant immune-checkpoint inhibition in patients with melanoma. Nat Rev Clin Oncol 20, 408–422 (2023). https://doi.org/10.1038/s41571-023-00760-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00760-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer