Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combining epigenetic drugs with other therapies for solid tumours — past lessons and future promise

Abstract

Epigenetic dysregulation has long been recognized as a key factor contributing to tumorigenesis and tumour maintenance that can influence all of the recognized hallmarks of cancer. Despite regulatory approvals for the treatment of certain haematological malignancies, the efficacy of the first generation of epigenetic drugs (epi-drugs) in patients with solid tumours has been disappointing; however, successes have now been achieved in selected solid tumour subtypes, thanks to the development of novel compounds and a better understanding of cancer biology that have enabled precision medicine approaches. Several lines of evidence support that, beyond their potential as monotherapies, epigenetic drugs could have important roles in synergy with other anticancer therapies or in reversing acquired therapy resistance. Herein, we review the mechanisms by which epi-drugs can modulate the sensitivity of cancer cells to other forms of anticancer therapy, including chemotherapy, radiation therapy, hormone therapy, molecularly targeted therapy and immunotherapy. We provide a critical appraisal of the preclinical rationale, completed clinical studies and ongoing clinical trials relating to combination therapies incorporating epi-drugs. Finally, we propose and discuss rational clinical trial designs and drug development strategies, considering key factors including patient selection, tumour biomarker evaluation, drug scheduling and response assessment and study end points, with the aim of optimizing the development of such combinations.

Key points

  • The first generation of drugs targeting the epigenome (epi-drugs) were developed using a ‘one size fits all’ approach and proved to have disappointing efficacy in patients with solid tumours.

  • The potential of epi-drugs to modulate the sensitivity of tumours to other anticancer drugs and to overcome therapy resistance presents major new avenues of clinical investigation.

  • A new generation of epi-drugs, which were developed to be more specific for their targets and have promising activity in certain biomarker-selected populations, is now entering early phase clinical trials and are showing promising efficacy.

  • Epi-drug development should follow a precision-medicine approach, with further identification of robust predictive biomarkers for patient selection and subsequent implementation of this strategy in clinical trials.

  • Sequential treatment schedules and/or dosing at less than the maximum tolerated dose might improve the efficacy and tolerability of epi-drugs when used in combination with various other anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting the epigenome.
Fig. 2: Epi-drugs can enhance the activity of other anticancer therapies to counteract the hallmarks of cancer.
Fig. 3: Rationale for epi-drug combination, with examples of synergy or reversal of resistance mechanisms.
Fig. 4: Overview of ongoing clinical trials of epi-drugs in combination with other anticancer therapies.
Fig. 5: Challenges to successful epi-drug development and combination scheduling strategies.

Similar content being viewed by others

References

  1. Berdasco, M. & Esteller, M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev. Cell 19, 698–711 (2010).

    CAS  PubMed  Google Scholar 

  2. Morel, D., Almouzni, G., Soria, J.-C. & Postel-Vinay, S. Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism. Ann. Oncol. 28, 254–269 (2017).

    CAS  PubMed  Google Scholar 

  3. DiNardo, C. D. et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 378, 2386–2398 (2018).

    CAS  PubMed  Google Scholar 

  4. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

    CAS  PubMed  Google Scholar 

  5. Stathis, A. et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Easwaran, H., Tsai, H.-C. & Baylin, S. B. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 54, 716–727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. & Kuperwasser, C. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65–78 (2019).

    CAS  PubMed  Google Scholar 

  9. Hosseini, A. & Minucci, S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 9, 1123–1142 (2017).

    CAS  PubMed  Google Scholar 

  10. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  11. Mohammad, H. P., Barbash, O. & Creasy, C. L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403–418 (2019).

    CAS  PubMed  Google Scholar 

  12. Bruzzese, F. et al. Synergistic antitumor effect between vorinostat and topotecan in small cell lung cancer cells is mediated by generation of reactive oxygen species and DNA damage-induced apoptosis. Mol. Cancer Ther. 8, 3075–3087 (2009).

    CAS  PubMed  Google Scholar 

  13. Thurn, K. T., Thomas, S., Raha, P., Qureshi, I. & Munster, P. N. Histone deacetylase regulation of ATM-mediated DNA damage signaling. Mol. Cancer Ther. 12, 2078–2087 (2013).

    CAS  PubMed  Google Scholar 

  14. Zhang, Y.-W. et al. Integrated analysis of DNA methylation and mRNA expression profiling reveals candidate genes associated with cisplatin resistance in non-small cell lung cancer. Epigenetics 9, 896–909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Candelaria, M. et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol. 18, 1529–1538 (2007).

    CAS  PubMed  Google Scholar 

  16. Wang, N. et al. TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer. J. Exp. Clin. Cancer Res. 31, 6 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Gurard-Levin, Z. A. et al. Chromatin regulators as a guide for cancer treatment choice. Mol. Cancer Ther. 15, 1768–1777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell, E. H. et al. SMARCA4/BRG1 is a novel prognostic biomarker predictive of cisplatin-based chemotherapy outcomes in resected non-small cell lung cancer. Clin. Cancer Res. 22, 2396–2404 (2016).

    CAS  PubMed  Google Scholar 

  19. Fillmore, C. M. et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 520, 239–242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).

    CAS  PubMed  Google Scholar 

  21. Bajbouj, K. et al. PRMT5 selective inhibitor enhances therapeutic efficacy of cisplatin in lung adenocarcinoma cells [abstract]. Cancer Res. 79 (Suppl 13), 4711 (2019).

    Google Scholar 

  22. Balch, C. et al. Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol. Cancer Ther. 4, 1505–1514 (2005).

    CAS  PubMed  Google Scholar 

  23. Zeller, C. et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene 31, 4567–4576 (2012).

    CAS  PubMed  Google Scholar 

  24. Glasspool, R. M. et al. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br. J. Cancer 110, 1923–1929 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matei, D. et al. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res. 72, 2197–2205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwon, N.-H., Kim, J.-S., Lee, J.-Y., Oh, M.-J. & Choi, D.-C. DNA methylation and the expression of IL-4 and IFN-γ promoter genes in patients with bronchial asthma. J. Clin. Immunol. 28, 139–146 (2008).

    CAS  PubMed  Google Scholar 

  27. Appleton, K. et al. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J. Clin. Oncol. 25, 4603–4609 (2007).

    CAS  PubMed  Google Scholar 

  28. Choy, E. et al. Phase 1 study of oral abexinostat, a histone deacetylase inhibitor, in combination with doxorubicin in patients with metastatic sarcoma. Cancer 121, 1223–1230 (2015).

    CAS  PubMed  Google Scholar 

  29. Nogales, V. et al. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 7, 3084–3097 (2016).

    PubMed  Google Scholar 

  30. Giovannetti, E. et al. Role of proton-coupled folate transporter in pemetrexed resistance of mesothelioma: clinical evidence and new pharmacological tools. Ann. Oncol. 28, 2725–2732 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Camphausen, K. & Tofilon, P. J. Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J. Clin. Oncol. 25, 4051–4056 (2007).

    CAS  PubMed  Google Scholar 

  32. Zhang, Y. et al. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression. Radiat. Res. 168, 115–124 (2007).

    CAS  PubMed  Google Scholar 

  33. Zhu, X., Wang, Y., Tan, L. & Fu, X. The pivotal role of DNA methylation in the radio-sensitivity of tumor radiotherapy. Cancer Med. 7, 3812–3819 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, C. et al. Inhibition of EZH2 by chemo- and radiotherapy agents and small molecule inhibitors induces cell death in castration-resistant prostate cancer. Oncotarget 7, 3440–3452 (2016).

    PubMed  Google Scholar 

  35. Xia, H. et al. EZH2 silencing with RNAi enhances irradiation-induced inhibition of human lung cancer growth in vitro and in vivo. Oncol. Lett. 4, 135–140 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chinnaiyan, P. et al. Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin. Cancer Res. 14, 5410–5415 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, J. et al. Pharmacological targeting of BET proteins attenuates radiation-induced lung fibrosis. Sci. Rep. 8, 998 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Chan, E. et al. Phase I trial of vorinostat added to chemoradiation with capecitabine in pancreatic cancer. Radiother. Oncol. 119, 312–318 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. DuBois, S. G. et al. Phase I study of vorinostat as a radiation sensitizer with 131I-metaiodobenzylguanidine (131I-MIBG) for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res. 21, 2715–2721 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Galanis, E. et al. Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02. Neuro. Oncol. 20, 546–556 (2018).

    CAS  PubMed  Google Scholar 

  41. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).

    CAS  PubMed  Google Scholar 

  42. Welboren, W.-J. et al. ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 28, 1418–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hodges-Gallagher, L., Valentine, C. D., Bader, S. E. & Kushner, P. J. Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res. Treat. 105, 297–309 (2007).

    CAS  PubMed  Google Scholar 

  44. Thomas, S., Thurn, K. T., Biçaku, E., Marchion, D. C. & Münster, P. N. Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy. Breast Cancer Res. Treat. 130, 437–447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Alao, J. P. et al. Histone deacetylase inhibitor trichostatin A represses estrogen receptor alpha-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines. Clin. Cancer Res. 10, 8094–8104 (2004).

    CAS  PubMed  Google Scholar 

  46. Margueron, R. et al. Histone deacetylase inhibition and estrogen receptor alpha levels modulate the transcriptional activity of partial antiestrogens. J. Mol. Endocrinol. 32, 583–594 (2004).

    CAS  PubMed  Google Scholar 

  47. Reid, G. et al. Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24, 4894–4907 (2005).

    CAS  PubMed  Google Scholar 

  48. Fiskus, W. et al. Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-alpha levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin. Cancer Res. 13, 4882–4890 (2007).

    CAS  PubMed  Google Scholar 

  49. Dowling, C. et al. Discovery of a novel histone deacetylase 6 inhibitor that kills drug-resistant breast cancer [abstract]. Cancer Res. 79 (Suppl 13), 5186 (2019).

    Google Scholar 

  50. Feng, Q. et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 24, 809–819 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ladd, B. et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget 7, 54120–54136 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Sengupta, S., Biarnes, M. C., Clarke, R. & Jordan, V. C. Inhibition of BET proteins impairs estrogen-mediated growth and transcription in breast cancers by pausing RNA polymerase advancement. Breast Cancer Res. Treat. 150, 265–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nagarajan, S. et al. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep. 8, 460–469 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bommi-Reddy, A. et al. Efficacy of a novel EP300/CBP histone acetyltransferase inhibitor in hormone responsive breast cancer [abstract]. Cancer Res 79 (Suppl 13), 4722 (2019).

    Google Scholar 

  55. Munster, P. N. et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer 104, 1828–1835 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yardley, D. A. et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol. 31, 2128–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tomita, Y. et al. The interplay of epigenetic therapy and immunity in locally recurrent or metastatic estrogen receptor-positive breast cancer: correlative analysis of ENCORE 301, a randomized, placebo-controlled phase II trial of exemestane with or without entinostat. Oncoimmunology 5, e1219008 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Yeruva, S. L. H. et al. E2112: randomized phase III trial of endocrine therapy plus entinostat/placebo in patients with hormone receptor-positive advanced breast cancer. npj Breast Cancer 4, 1–5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jiang, Z. et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 806–815 (2019).

    CAS  PubMed  Google Scholar 

  60. Gaughan, L., Logan, I. R., Cook, S., Neal, D. E. & Robson, C. N. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J. Biol. Chem. 277, 25904–25913 (2002).

    CAS  PubMed  Google Scholar 

  61. Xia, Q. et al. Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res. 66, 7237–7244 (2006).

    CAS  PubMed  Google Scholar 

  62. Urbanucci, A., Marttila, S., Jänne, O. A. & Visakorpi, T. Androgen receptor overexpression alters binding dynamics of the receptor to chromatin and chromatin structure. Prostate 72, 1223–1232 (2012).

    CAS  PubMed  Google Scholar 

  63. Jansson, K. H. et al. High-throughput screens identify HSP90 inhibitors as potent therapeutics that target inter-related growth and survival pathways in advanced prostate cancer. Sci. Rep. 8, 17239 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Asangani, I. A. et al. BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol. Cancer Res. 14, 324–331 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ferrari, A. C. et al. Epigenetic therapy with panobinostat combined with bicalutamide rechallenge in castration-resistant prostate cancer. Clin. Cancer Res. 25, 52–63 (2019).

    PubMed  Google Scholar 

  67. Edwards, A., Li, J., Atadja, P., Bhalla, K. & Haura, E. B. Effect of the histone deacetylase inhibitor LBH589 against epidermal growth factor receptor-dependent human lung cancer cells. Mol. Cancer Ther. 6, 2515–2524 (2007).

    CAS  PubMed  Google Scholar 

  68. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    CAS  PubMed  Google Scholar 

  69. Tanimoto, A. et al. Histone deacetylase 3 inhibition overcomes BIM deletion polymorphism-mediated osimertinib resistance in EGFR-mutant lung cancer. Clin. Cancer Res. 23, 3139–3149 (2017).

    CAS  PubMed  Google Scholar 

  70. Stuhlmiller, T. J. et al. Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains. Cell Rep. 11, 390–404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stuhlmiller, T. J., Miller, S. M. & Johnson, G. L. Epigenetic inhibition of adaptive bypass responses to lapatinib by targeting BET bromodomains. Mol. Cell. Oncol. 3 (2016).

  72. Leonard, B. et al. BET inhibition overcomes receptor tyrosine kinase-mediated cetuximab resistance in HNSCC. Cancer Res. 78, 4331–4343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Witta, S. E. et al. Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J. Clin. Oncol. 30, 2248–2255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Han, J.-Y. et al. Phase I/II study of gefitinib (Iressa(®)) and vorinostat (IVORI) in previously treated patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. 75, 475–483 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Recondo, G., Facchinetti, F., Olaussen, K. A., Besse, B. & Friboulet, L. Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nat. Rev. Clin. Oncol. 15, 694–708 (2018).

    CAS  PubMed  Google Scholar 

  76. Qian, D. Z. et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Res. 66, 8814–8821 (2006).

    CAS  PubMed  Google Scholar 

  77. Qian, D. Z. et al. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res. 64, 6626–6634 (2004).

    CAS  PubMed  Google Scholar 

  78. Ellis, L., Hammers, H. & Pili, R. Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett. 280, 145–153 (2009).

    CAS  PubMed  Google Scholar 

  79. Pili, R. et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial. Br. J. Cancer 116, 874–883 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bitzer, M. et al. Resminostat plus sorafenib as second-line therapy of advanced hepatocellular carcinoma – the SHELTER study. J. Hepatol. 65, 280–288 (2016).

    CAS  PubMed  Google Scholar 

  81. Drappatz, J. et al. Phase I study of panobinostat in combination with bevacizumab for recurrent high-grade glioma. J. Neurooncol. 107, 133–138 (2012).

    CAS  PubMed  Google Scholar 

  82. Lee, E. Q. et al. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro. Oncol. 17, 862–867 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Aggarwal, R. et al. Inhibiting histone deacetylase as a means to reverse resistance to angiogenesis inhibitors: phase I study of abexinostat plus pazopanib in advanced solid tumor malignancies. J. Clin. Oncol. 35, 1231–1239 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, C. S., Weng, S. C., Tseng, P. H., Lin, H. P. & Chen, C. S. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J. Biol. Chem. 280, 38879–38887 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bali, P. et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729–26734 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mahalingam, D. et al. Vorinostat enhances the activity of temsirolimus in renal cell carcinoma through suppression of survivin levels. Clin. Cancer Res. 16, 141–153 (2010).

    CAS  PubMed  Google Scholar 

  87. Malone, C. F. et al. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discov. 7, 1450–1463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Piao, J. et al. Superior efficacy of co-treatment with the dual PI3K/mTOR inhibitor BEZ235 and histone deacetylase inhibitor trichostatin A against NSCLC. Oncotarget 7, 60169–60180 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Lin, T.-W. et al. TDP-43/HDAC6 axis promoted tumor progression and regulated nutrient deprivation-induced autophagy in glioblastoma. Oncotarget 8, 56612–56625 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Pei, Y. et al. HDAC and PI3K Antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 29, 311–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Vázquez, R. et al. The bromodomain inhibitor OTX015 (MK-8628) exerts anti-tumor activity in triple-negative breast cancer models as single agent and in combination with everolimus. Oncotarget 8, 7598–7613 (2016).

    PubMed Central  Google Scholar 

  92. Stratikopoulos, E. E. et al. Kinase and BET inhibitors together clamp inhibition of PI3K signaling and overcome resistance to therapy. Cancer Cell 27, 837–851 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Iniguez, A. B. et al. Resistance to epigenetic-targeted therapy engenders tumor cell vulnerabilities associated with enhancer remodeling. Cancer Cell 34, 922–938 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kurimchak, A. M. et al. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep. 16, 1273–1286 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gyawali, B. & Prasad, V. Drugs that lack single-agent activity: are they worth pursuing in combination? Nat. Rev. Clin. Oncol. 14, 193–194 (2017).

    PubMed  Google Scholar 

  96. Zibelman, M. et al. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors. Invest. New Drugs 33, 1040–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Park, H. et al. Phase I dose-escalation study of the mTOR inhibitor sirolimus and the HDAC inhibitor vorinostat in patients with advanced malignancy. Oncotarget 7, 67521–67531 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Carson, R. et al. HDAC Inhibition overcomes acute resistance to MEK inhibition in -mutant colorectal cancer by downregulation of c-FLIPL. Clin. Cancer Res. 21, 3230–3240 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gallagher, S. J. et al. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int. J. Cancer 142, 1926–1937 (2018).

    CAS  PubMed  Google Scholar 

  100. Johannessen, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504, 138–142 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Maertens, O. et al. MAPK pathway suppression unmasks latent DNA repair defects and confers a chemical synthetic vulnerability in BRAF-, NRAS-, and NF1-mutant melanomas. Cancer Discov. 9, 526–545 (2019).

    CAS  PubMed  Google Scholar 

  102. Paoluzzi, L. et al. BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma. Cancer Med. 5, 1183–1193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fallahi-Sichani, M. et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol. Syst. Biol. 13, 905 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Kitajima, S. et al. Overcoming resistance to dual innate immune and MEK inhibition downstream of KRAS. Cancer Cell 34, 439–452 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Postel-Vinay, S. et al. Phase I trials of molecularly targeted agents: should we pay more attention to late toxicities? J. Clin. Oncol. 29, 1728–1735 (2011).

    PubMed  Google Scholar 

  106. Paoletti, X. et al. Defining dose-limiting toxicity for phase 1 trials of molecularly targeted agents: results of a DLT-TARGETT international survey. Eur. J. Cancer 50, 2050–2056 (2014).

    CAS  PubMed  Google Scholar 

  107. Ha, K. et al. Histone deacetylase inhibitor treatment induces ‘BRCAness’ and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells. Oncotarget 5, 5637–5650 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Yin, L. et al. PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells. J. Exp. Clin. Cancer Res. 37, 153 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Konstantinopoulos, P. A., Wilson, A. J., Saskowski, J., Wass, E. & Khabele, D. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer. Gynecol. Oncol. 133, 599–606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Karakashev, S. et al. BET bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer. Cell Rep. 21, 3398–3405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sun, C. et al. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell 33, 401–416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wilson, A. J., Stubbs, M., Liu, P., Ruggeri, B. & Khabele, D. The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Gynecol. Oncol. 149, 575–584 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang, L. et al. Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci. Transl Med. 9, eaal1645 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Pawar, A., Gollavilli, P. N., Wang, S. & Asangani, I. A. Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in castration-resistant prostate cancer. Cell Rep. 22, 2236–2245 (2018).

    CAS  PubMed  Google Scholar 

  115. Huang, X. et al. Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors. Cell 175, 186–199 (2018).

    CAS  PubMed  Google Scholar 

  116. Agrawal, K. et al. Chromatin reader machinery as target for overcoming resistance to DNA-demethylating epi-drug decitabine [abstract]. Cancer Res. 79 (Suppl 13), 5182 (2019).

    Google Scholar 

  117. Ng, C. et al. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain Cd4 silencing in cytotoxic T cells. Genes Dev. 33, 669–683 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018).

    CAS  PubMed  Google Scholar 

  119. Lau, C. M. et al. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19, 963–972 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Aspeslagh, S., Morel, D., Soria, J.-C. & Postel-Vinay, S. Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Ann. Oncol. 29, 812–824 (2018).

    CAS  PubMed  Google Scholar 

  121. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–E10990 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Terranova-Barberio, M. et al. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget 8, 114156–114172 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Topper, M. J. et al. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171, 1284–1300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, B. et al. Epigenetic regulation of CXCL12 plays a critical role in mediating tumor progression and the immune response in osteosarcoma. Cancer Res. 78, 3938–3953 (2018).

    CAS  PubMed  Google Scholar 

  128. Qin, Y. et al. Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. Oncogene 38, 390–405 (2019).

    CAS  PubMed  Google Scholar 

  129. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Boulding, T. et al. LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer. Sci. Rep. 8, 73 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Christmas, B. J. et al. Entinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCs. Cancer Immunol. Res. 6, 1561–1577 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Hicks, K. C. et al. Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. Oncoimmunology 7, e1466018 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Degagné, E. et al. Tumor abscopal responses induced by the TLR9 agonist, SD-101, are strongly potentiated by a HDAC class I inhibitor, domatinostat. [abstract]. Cancer Res. 79 (Suppl 13), 2259 (2019).

    Google Scholar 

  134. Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. J. Clin. Invest. 128, 3813–3818 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. Gounder, M. M. et al. Immunologic correlates of the abscopal effect in a SMARCB1/INI1-negative poorly differentiated chordoma after EZH2 inhibition and radiotherapy. Clin. Cancer Res. 25, 2064–2071 (2019).

    PubMed  Google Scholar 

  136. Huang, S. et al. EZH2 inhibitor GSK126 suppresses antitumor immunity by driving production of myeloid-derived suppressor cells. Cancer Res. 79, 2009–2020 (2019).

    CAS  PubMed  Google Scholar 

  137. Saltos, A. N. et al. Phase I/Ib study of pembrolizumab and vorinostat in patients with metastatic NSCLC (mNSCLC). J. Clin. Oncol. 36, 9046–9046 (2018).

    Google Scholar 

  138. Hellman, M et al. Efficacy/safety of entinostat (ENT) and pembrolizumab (PEMBRO) in NSCLC patients previously treated with anti-PD(L)1 therapy. Presented at the 19th World Conference on Lung Cancer (2018).

  139. Azad, N. S. et al. ENCORE 601: a phase 2 study of entinostat in combination with pembrolizumab in patients with microsatellite stable metastatic colorectal cancer. J. Clin. Oncol. 36, 3557–3557 (2018).

    Google Scholar 

  140. Johnson, M. L. et al. ENCORE 601: a phase II study of entinostat (ENT) in combination with pembrolizumab (PEMBRO) in patients with melanoma. J. Clin. Oncol. 35, 9529–9529 (2017).

    Google Scholar 

  141. Levy, B. P. et al. Randomised phase 2 study of pembrolizumab plus CC-486 versus pembrolizumab plus placebo in patients with previously treated advanced non-small cell lung cancer. Eur. J. Cancer 108, 120–128 (2019).

    CAS  PubMed  Google Scholar 

  142. Spigel, D. R. et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation – positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol. 13, 682–688 (2018).

    PubMed  Google Scholar 

  143. Khushalani, N. I. et al. A phase I trial of panobinostat with ipilimumab in advanced melanoma. J. Clin. Oncol. 35, 9547–9547 (2017).

    Google Scholar 

  144. Rodriguez, C. P. et al. Phase I/II trial of pembrolizumab(P) and vorinostat(V) in recurrent metastatic head and neck squamous cell carcinomas (HN) and salivary gland cancer (SGC) [abstract]. J. Clin. Oncol. 36 (Suppl 15), 6025 (2018).

    Google Scholar 

  145. Bolden, J. E. et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep. 8, 1919–1929 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Murphy, A. G. et al. Epigenetic priming prior to pembrolizumab in mismatch repair-proficient advanced colorectal cancer. J. Clin. Oncol. 37, 591–591 (2019).

    Google Scholar 

  147. Grossman, S. R. p300/CBP/p53 interaction and regulation of the p53 response. Eur. J. Biochem. 268, 2773–2778 (2001).

    CAS  PubMed  Google Scholar 

  148. Karkhanis, V., Hu, Y.-J., Baiocchi, R. A., Imbalzano, A. N. & Sif, S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem. Sci. 36, 633–641 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355, 1147–1152 (2017).

    CAS  PubMed  Google Scholar 

  150. Campbell, R. M. & Tummino, P. J. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J. Clin. Invest. 124, 64–69 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Le Loarer, F. et al. SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAF-deficient sarcomas. Nat. Genet. 47, 1200–1205 (2015).

    PubMed  Google Scholar 

  152. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with Braf V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhong, J. et al. Enhanced and controlled chromatin extraction for chromatin-based epigenetic assays in FFPE tissues [abstract]. Cancer Res. 79 (Suppl 13), 5180 (2019).

    Google Scholar 

  154. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Smith-Roe, S. L. et al. SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget 6, 732–745 (2015).

    PubMed  PubMed Central  Google Scholar 

  156. Rhyasen, G. W. et al. BRD4 amplification facilitates an oncogenic gene expression program in high-grade serous ovarian cancer and confers sensitivity to BET inhibitors. PLOS ONE 13, e0200826 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Wu, Y. et al. Therapeutic targeting of BRD4 in head neck squamous cell carcinoma. Theranostics 9, 1777–1793 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. McCabe, M. T. et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492, 108–112 (2012).

    CAS  PubMed  Google Scholar 

  159. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Qu, K. et al. Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell 32, 27–41 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

    CAS  PubMed  Google Scholar 

  162. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

    CAS  PubMed  Google Scholar 

  163. Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    CAS  PubMed  Google Scholar 

  164. Leroy, L. et al. Safety profile of epigenetic therapies in early phase trials: do epidrugs deserve specific drug development processes? [abstract 10P]. Ann. Oncol. 30 (Suppl 1), i4–i9 (2019).

    Google Scholar 

  165. Sivick, K. E. et al. Magnitude of therapeutic sting activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085 (2018).

    CAS  PubMed  Google Scholar 

  166. Champiat, S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920–1928 (2017).

    CAS  PubMed  Google Scholar 

  167. Gandhi, L. et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with non-small cell lung cancer (NSCLC) previously treated with anti-PD-(L)1 therapy. J. Clin. Oncol. 36, 9036–9036 (2018).

    Google Scholar 

  168. Aggarwal, R. R. et al. Exceptional responders to abexinostat (ABX) plus pazopanib (PAZ) in pretreated renal cell carcinoma (RCC) and other solid tumors: long-term follow-up of a phase 1b study [abstract]. J. Clin. Oncol. 37 (Suppl.), 3022 (2019).

    Google Scholar 

  169. Dawson, M. et al. A phase I study of GSK525762, a selective bromodomain (BRD) and extra terminal protein (BET) inhibitor: results from part 1 of phase I/II open label single agent study in patients with acute myeloid leukemia (AML). Blood 130, 1377–1377 (2017).

    Google Scholar 

  170. Fu, S. et al. Phase 1b-2a study to reverse platinum resistance through use of a hypomethylating agent, azacitidine, in patients with platinum-resistant or platinum-refractory epithelial ovarian cancer. Cancer 117, 1661–1669 (2011).

    CAS  PubMed  Google Scholar 

  171. Mazor, T., Pankov, A., Song, J. S. & Costello, J. F. Intratumoral heterogeneity of the epigenome. Cancer Cell 29, 440–451 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Mohammad, F. & Helin, K. Oncohistones: drivers of pediatric cancers. Genes Dev. 31, 2313–2324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rickman, D. S., Schulte, J. H. & Eilers, M. The expanding world of N-MYC-driven tumors. Cancer Discov. 8, 150–163 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of D.M. is funded by an Institut National de la Santé et de la Recherche Médicale (INSERM) l’Institut Thématique Multi-Organisme Cancer (ITMO Cancer) grant. The work of D.J. is funded in part by the Fondation ARC pour la Recherche sur le Cancer and Labex DEEP. The work of G.A. is funded by grants from la Ligue Nationale Contre le Cancer (Equipe labellisée Ligue), l’Agence Nationale de la Recherche (ANR-11-LABX-0044 ‘DEEP’, ANR-10-IDEX-0001-02 ‘PSL’, ANR-12-BSV5-0022-02 ‘CHAPINHIB’, ANR-14-CE16-0009 ‘Epicure’, ANR-14-CE10-0013 ‘CELLECTCHIP’, ANR-16-CE15-0018 ‘CHRODYT’ and ANR-16-CE12-0024 ‘CHIFT’) and the H2020 European Research Council (ERC-2015-POC project 678563 ‘EPOCH28’ and ERC-2015-ADG- 694694 ‘ChromADICT’). The work of S.P.-V. is funded by the ATIP–Avenir INSERM Young Group Leader grant programme and the Sites de Recherche Intégrée sur le Cancer (SIRIC; INCa-DGOS-INSERM_12551 ‘SOCRATE-2’).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of manuscript preparation. D.M. and D.J. contributed equally as co-first authors and G.A. and S.P.-V. contributed equally as co-supervisors.

Corresponding authors

Correspondence to Geneviève Almouzni or Sophie Postel-Vinay.

Ethics declarations

Competing interests

As part of the Drug Development Department (DITEP), S.P.-V. has been a principal/sub-investigator of clinical trials for Aduro Biotech, Agios Pharmaceuticals, Amgen, Argen-X, Arno Therapeutics, Astex Pharmaceuticals, AstraZeneca, Aveo, Bayer, Beigene, Bioalliance Pharma, Biontech, Blueprint Medicines, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Chugai Pharmaceutical, Clovis Oncology, Daiichi Sankyo, Debiopharm, Eisai, Exelixis, Forma, Gamamabs, Genentech, Gilead Sciences, GlaxoSmithKline, Glenmark Pharmaceuticals, H3 Biomedicine, Hoffmann-La Roche, Incyte, Innate Pharma, Iris Servier, Janssen, Kura Oncology, Kyowa Kirin, Lilly, Loxo Oncology, Lytix Biopharma, MedImmune, Menarini Ricerche, Merck Sharp & Dohme-Chibret, Merrimack Pharmaceuticals, Merus, Millennium Pharmaceuticals, Nanobiotix, Nektar Therapeutics, Novartis Pharma, Octimet Oncology, Oncoethix, Oncomed, Oncopeptides, Onyx Therapeutics, Orion Pharma, Oryzon Genomics, Pfizer, PharmaMar, Pierre Fabre, Rigontec, Roche, Sanofi Aventis, Sierra Oncology, Taiho Pharma, Tesaro, Tioma Therapeutics, to-BBB Technologies BV and Xencor. S.P.-V. has received research grants from AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Janssen Cilag, Merck, Novartis, Pfizer, Roche and Sanofi, as well as non-financial research support (provision of drugs) from Astrazeneca, Bayer, Bristol-Myers Squibb, Boehringer Ingelheim, Johnson & Johnson, Lilly, MedImmune, Merck, NH TherAGuiX, Pfizer and Roche. S.P.-V. has also received research funding from Boehringer Ingelheim, Merck and Roche for research projects unrelated to this manuscript. S.P.-V. has participated on advisory boards for Merck and has benefited from non-financial support for attending symposia (travel paid and congress registration) from AstraZeneca. D.M., D.J., S.A. and G.A. declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks E. Choy, C. Jeronimo and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morel, D., Jeffery, D., Aspeslagh, S. et al. Combining epigenetic drugs with other therapies for solid tumours — past lessons and future promise. Nat Rev Clin Oncol 17, 91–107 (2020). https://doi.org/10.1038/s41571-019-0267-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0267-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing