Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ion mobility–mass spectrometry of supramolecular complexes and assemblies

Abstract

Despite their structural and functional differences, synthetic supramolecular assemblies share many similarities with biological assemblies, especially enzymes. The assemblies can be on the same length scale, and their structures and guest binding are typically governed by non-covalent interactions. Thus, only relatively weak interactions define the shape of a synthetic supramolecule or the secondary and tertiary structure of a protein, such that the resulting dynamism makes structure elucidation challenging. For biomolecules such as peptides, proteins, glycans and lipids this has often been tackled using ion mobility–mass spectrometry (IM-MS), whereby analyte ions are separated according to their gas-phase mobility and their mass-to-charge ratio. IM-MS is an established method in omics, separation sciences and small-molecule structural chemistry, but has only recently grown in popularity for the study of synthetic supramolecular assemblies in the gas phase. This Review describes IM-MS techniques and how they can help us understand the structures of molecular self-assemblies, host–guest complexes and metallosupramolecular complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Layout of an ion mobility–mass spectrometer and common ion mobility cells.
Fig. 2: Non-covalent interactions between PDF and three bacterial PDF inhibitors monitored by TWIM-MS.
Fig. 3: Endo and exo complexes of organic hosts and guests are distinguishable by ion mobility–mass spectrometry.
Fig. 4: Redox-triggered threading of [1]pseudorotaxane can be observed using ion mobility spectrometry.
Fig. 5: Ion mobility–mass spectrometry can help us to identify complexes with overlapping m/z values and isotopic patterns.
Fig. 6: Transformation of a superchiral metal complex through displacement of the ligands by Cl ions monitored by DTIM-MS.

Similar content being viewed by others

References

  1. Rissanen, K. Crystallography of encapsulated molecules. Chem. Soc. Rev. 46, 2638–2648 (2017).

    Article  CAS  Google Scholar 

  2. Mali, K. S., Pearce, N., De Feyter, S. & Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 46, 2520–2542 (2017).

    Article  CAS  Google Scholar 

  3. Avram, L. & Cohen, Y. Diffusion NMR of molecular cages and capsules. Chem. Soc. Rev. 44, 586–602 (2015).

    Article  CAS  Google Scholar 

  4. Avram, L. & Cohen, Y. Self-assembly of resorcin[4]arene in the presence of small alkylammonium guests in solution. Org. Lett. 10, 1505–1508 (2008).

    Article  CAS  Google Scholar 

  5. Evan-Salem, T. & Cohen, Y. Octahydroxypyridine[4]arene self-assembles spontaneously to form hexameric capsules and dimeric aggregates. Chem. Eur. J. 13, 7659–7663 (2007).

    Article  CAS  Google Scholar 

  6. Cohen, Y., Evan-Salem, T. & Avram, L. Hydrogen-bonded hexameric capsules of resorcin[4]arene, pyrogallol[4]arene and octahydroxypyridine[4]arene are abundant structures in organic solvents: a view from diffusion NMR. Supramol. Chem. 20, 71–79 (2008).

    Article  CAS  Google Scholar 

  7. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    Article  CAS  Google Scholar 

  8. von Krbek, L. K. S., Schalley, C. A. & Thordarson, P. Assessing cooperativity in supramolecular systems. Chem. Soc. Rev. 46, 2622–2637 (2017).

    Article  Google Scholar 

  9. Hill, H. J., Eiceman, G. A. & Karpas, Z. Ion Mobility Spectrometry 3rd edn (CRC Press, 2013).

  10. May, J. C., Morris, C. B. & McLean, J. A. Ion mobility collision cross section compendium. Anal. Chem. 89, 1032–1044 (2017).

    Article  CAS  Google Scholar 

  11. Kanu, A. B., Dwivedi, P., Tam, M., Matz, L. & Hill, H. H. Ion mobility–mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008).

    Article  CAS  Google Scholar 

  12. Lanucara, F., Holman, S. W., Gray, C. J. & Eyers, C. E. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294 (2014).

    Article  CAS  Google Scholar 

  13. Konijnenberg, A., Butterer, A. & Sobott, F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim. Biophys. Acta. 1834, 1239–1256 (2013).

    Article  CAS  Google Scholar 

  14. Uetrecht, C., Rose, R. J., van Duijn, E., Lorenzen, K. & Heck, A. J. R. Ion mobility mass spectrometry of proteins and proteinassemblies. Chem. Soc. Rev. 39, 1633–1655 (2010).

    Article  CAS  Google Scholar 

  15. Van Berkel, G. J., Pasilis, S. P. & Ovchinnikova, O. Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J. Mass Spectrom. 43, 1161–1180 (2008).

    Article  Google Scholar 

  16. Bowers, M. T. Re-print of “ion mobility spectrometry: a personal view of its development at UCSB”. Int. J. Mass Spectrom. 377, 625–645 (2015).

    Article  CAS  Google Scholar 

  17. May, J. C. et al. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal. Chem. 86, 2107–2116 (2014).

    Article  CAS  Google Scholar 

  18. Michelmann, K., Silveira, J. A., Ridgeway, M. E. & Park, M. A. Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26, 14–24 (2014).

    Article  Google Scholar 

  19. Kaplan, K. et al. Resistive glass IM-TOFMS. Anal. Chem. 82, 9336–9343 (2010).

    Article  CAS  Google Scholar 

  20. Giles, K., Williams, J. P. & Campuzano, I. Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25, 1559–1566 (2011).

    Article  CAS  Google Scholar 

  21. May, J. C. & McLean, J. A. Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal. Chem. 87, 1422–1436 (2015).

    Article  CAS  Google Scholar 

  22. Wyttenbach, T., Bleiholder, C. & Bowers, M. T. Factors contributing to the collision cross section of polyatomic ions in the kilodalton to gigadalton range: application to ion mobility measurements. Anal. Chem. 85, 2191–2199 (2013).

    Article  CAS  Google Scholar 

  23. Wyttenbach, T., Bleiholder, C., Anderson, S. E. & Bowers, M. T. A new algorithm to characterise the degree of concaveness of a molecular surface relevant in ion mobility spectrometry. Mol. Phys. 113, 2344–2349 (2015).

    Article  CAS  Google Scholar 

  24. Larriba, C. & Hogan, C. J. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation. J. Comput. Phys. 251, 344–336 (2013).

    Article  CAS  Google Scholar 

  25. Shvartsburg, A. A. & Jarrold, M. F. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996).

    Article  CAS  Google Scholar 

  26. Siems, W. F., Viehland, L. A. & Hill, H. H. Correcting the fundamental ion mobility equation for field effects. Analyst 141, 6396–6407 (2016).

    Article  CAS  Google Scholar 

  27. Giles, K. et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18, 2401–2414 (2004).

    Article  CAS  Google Scholar 

  28. Hines, K. M., May, J. C., McLean, J. A. & Xu, L. Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal. Chem. 88, 7329–7336 (2016).

    Article  CAS  Google Scholar 

  29. Silveira, J. A., Michelmann, K., Ridgeway, M. E. & Park, M. A. Fundamentals of trapped ion mobility spectrometry part II: fluid dynamics. J. Am. Soc. Mass Spectrom. 27, 585–595 (2016).

    Article  CAS  Google Scholar 

  30. Benigni, P. et al. Analysis of geologically relevant metal porphyrins using trapped ion mobility spectrometry–mass spectrometry and theoretical calculations. Energy Fuels 30, 10341–10347 (2016).

    Article  CAS  Google Scholar 

  31. Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).

    Article  CAS  Google Scholar 

  32. Wyttenbach, T., Pierson, N. A., Clemmer, D. E. & Bowers, M. T. Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65, 175–196 (2014).

    Article  CAS  Google Scholar 

  33. Allison, T. M. et al. Quantifying the stabilizing effects of protein–ligand interactions in the gas phase. Nat. Commun. 6, 8551 (2015).

    Article  CAS  Google Scholar 

  34. Stojko, J. et al. Ion mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes. Analyst 140, 7234–7245 (2015).

    Article  CAS  Google Scholar 

  35. Jurneczko, E. & Barran, P. E. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst 136, 20–28 (2011).

    Article  CAS  Google Scholar 

  36. Lee, J. W., Davidson, K. L., Bush, M. F. & Kim, H. I. Collision cross sections and ion structures: development of a general calculation method via high-quality ion mobility measurements and theoretical modeling. Analyst 142, 4289–4298 (2017).

    Article  CAS  Google Scholar 

  37. Albrecht, M. & Hahn, F. E. (eds) Topics in Current Chemistry: Chemistry of Nanocontainers Vol. 319 (Springer-Verlag, Berlin, Heidelberg, 2012).

  38. Pinalli, R. & Dalcanale, E. Supramolecular sensing with phosphonate cavitands. Acc. Chem. Res. 46, 399–411 (2013).

    Article  CAS  Google Scholar 

  39. Beer, P. & Gale, P. Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001).

    Article  CAS  Google Scholar 

  40. Brotherhood, P. R. & Davis, A. P. Steroid-based anion receptors and transporters. Chem. Soc. Rev. 39, 3633–3647 (2010).

    Article  CAS  Google Scholar 

  41. Zhang, H., Grabenauer, M., Bowers, M. T. & Dearden, D. V. Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n=5, 6) or α-cyclodextrin. J. Phys. Chem. A 113, 1508–1517 (2009).

    Article  CAS  Google Scholar 

  42. Lee, S. J. C. et al. Host-guest chemistry from solution to the gas phase: an essential role of direct interaction with water for high-affinity binding of cucurbit[n]urils. J. Phys. Chem. B 117, 8855–8864 (2013).

    Article  CAS  Google Scholar 

  43. Wu, G., Olesin´ska, M., Wu, Y., Matak-Vinkovic, D. & Scherman, O. A. Mining 2:2 complexes from 1:1 stoichiometry: formation of cucurbit[8]uril–diarylviologen quaternary complexes favored by electron-donating substituents. J. Am. Chem. Soc. 139, 3202–3208 (2017).

    Article  CAS  Google Scholar 

  44. Kovalenko, E. et al. Supramolecular adducts of cucurbit[7]uril and amino acids in the gas phase. J. Am. Soc. Mass Spectrom. 27, 265–276 (2016).

    Article  CAS  Google Scholar 

  45. Lee, J. W., Shin, M. H., Mobley, W., Urbach, A. R. & Kim, H. I. Supramolecular enhancement of protein analysis via the recognition of phenylalanine with cucurbit[7]uril. J. Am. Chem. Soc. 137, 15322–15329 (2015).

    Article  CAS  Google Scholar 

  46. Lee, T.-C. et al. Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376–382 (2013).

    Article  CAS  Google Scholar 

  47. Carroy, G. et al. Influence of equilibration time in solution on the inclusion/exclusion topology ratio of host–guest complexes probed by ion mobility and collision-induced dissociation. Chem. Eur. J. 22, 4528–4534 (2016).

    Article  CAS  Google Scholar 

  48. Kiesilä, A. et al. Simultaneous endo and exo complex formation of pyridine[4]arene dimers with neutral and anionic guests. Angew. Chem. Int. Ed. 56, 10942–10946 (2017).

    Article  Google Scholar 

  49. Schröder, H. V., Wollschläger, J. M. & Schalley, C. A. Redox-controlled self-inclusion of a lasso-type pseudo[1]rotaxane. Chem. Commun. 53, 9218–9221 (2017).

    Article  Google Scholar 

  50. Brocker, E. R., Anderson, S. E., Northrop, B. H., Stang, P. J. & Bowers, M. T. Structures of metallosupramolecular coordination assemblies can be obtained by ion mobility spectrometry–mass spectrometry. J. Am. Chem. Soc. 132, 13486–13494 (2010).

    Article  CAS  Google Scholar 

  51. Guo, K. et al. Characterization of metallosupramolecular polymers by top-down multidimensional mass spectrometry methods. Macromol. Rapid Commun. 36, 1539–1552 (2015).

    Article  CAS  Google Scholar 

  52. Wang, L. et al. Self-assembly of tetrameric and hexameric terpyridine-based macrocycles using Cd(II), Zn(II), and Fe(II). Inorg. Chem. 57, 3548–3558 (2018).

    Article  CAS  Google Scholar 

  53. Myung, S., Julian, R. R., Nanita, S. C., Cooks, R. G. & Clemmer, D. E. Formation of nanometer-scale serine clusters by sonic spray. J. Phys. Chem. B 108, 6105–6111 (2004).

    Article  CAS  Google Scholar 

  54. Turunen, L. et al. [N···I+···N] Halogen-bonded dimeric capsules from tetrakis(3-pyridyl)ethylene cavitands. Angew. Chem. Int. Ed. 55, 14033–14036 (2016).

    Article  CAS  Google Scholar 

  55. Chan, Y.-T. et al. Self-assembly and traveling wave ion mobility mass spectrometry analysis of hexacadmium macrocycles. J. Am. Chem. Soc. 131, 16395–16397 (2009).

    Article  CAS  Google Scholar 

  56. Perera, S. et al. Hexameric palladium(II) terpyridyl metallomacrocycles: assembly with 4,4’-bipyridine and characterization by TWIM mass spectrometry. Angew. Chem. Int. Ed. 49, 6539–6544 (2010).

    Article  CAS  Google Scholar 

  57. Chan, Y.-T. et al. Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)– and ruthenium(II)–terpyridine metallomacrocycles. J. Am. Chem. Soc. 133, 11967–11976 (2011).

    Article  CAS  Google Scholar 

  58. Li, Y. et al. Giant, hollow 2D metalloarchitecture: stepwise self-assembly of a hexagonal supramolecular nut. J. Am. Chem. Soc. 138, 10041–10046 (2016).

    Article  CAS  Google Scholar 

  59. Bonakdarzadeh, P. et al. DOSY NMR, x-ray structural and ion-mobility mass spectrometric studies on electron-deficient and electron-rich M6L4 coordination cages. Inorg. Chem. 54, 6055–6061 (2015).

    Article  CAS  Google Scholar 

  60. Song, B. et al. Direct self-assembly of a 2D and 3D Star of David. Angew. Chem. Int. Ed. 56, 5258–5262 (2017).

    Article  CAS  Google Scholar 

  61. Baker, E. S. et al. Probing shapes of bichromophoric metal–organic complexes using ion mobility mass spectrometry. J. Am. Chem. Soc. 127, 18222–18228 (2005).

    Article  CAS  Google Scholar 

  62. Baksi, A. et al. Isomerism in monolayer protected silver cluster ions: an ion mobility-mass spectrometry approach. J. Phys. Chem. C 121, 13421–13427 (2017).

    Article  CAS  Google Scholar 

  63. Jurc˘ek, O. et al. Superchiral Pd3L6 coordination complex and its reversible structural conversion into Pd3L3Cl6 metallocycles. Angew. Chem. Int. Ed. 54, 15462–15467 (2015).

    Article  Google Scholar 

  64. Ujma, J. et al. Shapes of supramolecular cages by ion mobility mass spectrometry. Chem. Commun. 48, 4423–4425 (2012).

    Article  CAS  Google Scholar 

  65. Wang, C. et al. Self-assembly of giant supramolecular cubes with terpyridine ligands as vertices and metals on edges. Chem. Sci. 5, 1221–1226 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Academy of Finland (project numbers 284562 and 312514) and the University of Jyväskylä for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Elina Kalenius or Kari Rissanen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenius, E., Groessl, M. & Rissanen, K. Ion mobility–mass spectrometry of supramolecular complexes and assemblies. Nat Rev Chem 3, 4–14 (2019). https://doi.org/10.1038/s41570-018-0062-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0062-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing